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Efficient Homomorphic Evaluation of Arbitrary Uni/Bivariate

Integer Functions and Their Applications∗
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Kazuhide FUKUSHIMA††, Senior Member, and Takashi NISHIDE†a), Member

SUMMARY We propose how to homomorphically evaluate arbitrary

univariate and bivariate integer functions such as division. A prior work

proposed by Okada et al. (WISTP’18) uses polynomial evaluations such

that the scheme is still compatible with the SIMD operations in BFV and

BGV schemes, and is implemented with the input domain Z257. However,

the scheme of Okada et al. requires the quadratic numbers of plaintext-

ciphertext multiplications and ciphertext-ciphertext additions in the input

domain size, and although these operations are more lightweight than the

ciphertext-ciphertext multiplication, the quadratic complexity makes han-

dling larger inputs quite inefficient. In this work, first we improve the prior

work and also propose a new approach that exploits the packing method to

handle the larger input domain size instead of enabling the SIMD operation,

thus making it possible to work with the larger input domain size, e.g.,

Z215 in a reasonably efficient way. In addition, we show how to slightly

extend the input domain size to Z216 with a relatively moderate overhead.

Further we show another approach to handling the larger input domain size

by using two ciphertexts to encrypt one integer plaintext and applying our

techniques for uni/bivariate function evaluation. We implement the prior

work of Okada et al., our improved version of Okada et al., and our new

scheme in PALISADE with the input domain Z215 , and confirm that the

estimated run-times of the prior work and our improved version of the prior

work are still about 117 days and 59 days respectively while our new scheme

can be computed in 307 seconds.

key words: Fully Homomorphic Encryption, Polynomial Interpolation,

Homomorphic Evaluation of Non-Linear Bivariate Function

1. Introduction

1.1 Background

Fully homomorphic encryption (FHE) is a promising tool for

achieving privacy in the data analysis, and has the advantage

that it enables non-interactive secure computation compared

with, e.g., secret sharing based secure computation. After the

first FHE construction of Gentry [11], many FHE schemes

are proposed and already implemented in modern software

libraries like [1], [13], [29]. FHE schemes can be categorized

into three classes. The first class deals with Boolean circuits

and lookup tables based on functional bootstrapping and the

FHEW and TFHE (also known as CGGI) schemes [7]–[9],

[12] are included in this class. The second class can encrypt

†The authors are with University of Tsukuba.
††The authors are with KDDI Research, Inc.
∗A preliminary version of this work appeared in WAHC’22

[24]. In this extended version, we add to §3.7 how to extend the
input domain size fromZC toZC2 by using two ciphertexts to encrypt
one integer plaintext and how to realize basic integer operations with
the extended input domain ZC2 .

a) E-mail: nishide@risk.tsukuba.ac.jp

vectors, and supports modular arithmetic over a finite field in

each slot of the vectors (called SIMD functionality), which is

typically used to simulate integer arithmetic. The Brakerski-

Gentry-Vaikuntantan (BGV) and Brakerski-Fan-Vercauteren

(BFV) schemes [2], [3], [10], [20] are included in this class.

The third class supports approximate computation of vectors

consisting of real and complex numbers, and the Cheon-Kim-

Kim-Song (CKKS) scheme [5] is included in this class. The

security of these classes is based on Ring Learning With Er-

rors (RLWE), and each of these FHE schemes can be useful

depending on the types of computation we need to perform

securely. In general, the FHE schemes in the first class are

the most versatile, and for example, in [12], any computa-

tion can be performed by representing it as a lookup table

(Z�)= → Z� where � is a small radix (e.g., ≤ 26) and by ap-

plying the technique called “functional bootstrap” iteratively

to select the final output from the lookup table†. On the other

hand, the second and third classes can be more suitable for

integer/fixed-point arithmetic computation including many

addition and multiplication operations.

In this work, we focus on the BFV scheme of the second

class††. In the BFV scheme supporting integer-wise oper-

ations, addition and multiplication can be performed easily

without the bit-wise/digit-wise encryption approach, and if

we can realize the mixed computation in which these addition

and multiplication can be combined with complex non-linear

functions seamlessly, it will be advantageous. One standard

way to compute a non-linear function 5 in the second and

third classes is to perform polynomial evaluation by repre-

senting 5 as a polynomial via polynomial interpolation. If

the non-linear function 5 we want to homomorphically eval-

uate is univariate and the input domain size is small, a simple

approach based on polynomial evaluation is viable, but if 5

is bivariate and the input domain size # is relatively large

(e.g., # = 215), it can be non-trivial to compute an arbitrary

non-linear function 5 : Z# × Z# → Z# in a reasonably

efficient way even if we use polynomial evaluation.

1.2 Our Contributions

First we improve the prior work of Okada et al. [27] that

†As mentioned in [12], evaluating lookup tables homomorphi-
cally inherently requires the exponential time complexity in the
input size.
††We believe most of our idea can be used for BGV as well.
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shows how to homomorphically compute an arbitrary bi-

variate integer function based on polynomial evaluation. Our

improved version of [27] has the advantage that it can still be

combined with the SIMD functionality [30] of BFV/BGV,

i.e., the parallel computation of the same bivariate function

in multiple slots is supported, but as our experiment shows,

it is still prohibitively inefficient with, e.g., our typical input

domain size† # = 215 and plaintext modulus C = 216 + 1.

To overcome the above issue, we also propose another

approach at the price of allowing only a single slot to be

used during the computation of bivariate functions. That

is, the SIMD functionality of BFV/BGV is usually used for

parallel computation, but instead we exploit the SIMD func-

tionality to realize an arbitrary non-linear univariate function

5 : Z# → Z# , which we call One-HotSlot technique. Fur-

ther combining One-HotSlot with the Paterson-Stockmeyer

method [28], we show how to compute an arbitrary bivariate

non-linear function 5 : Z#×Z# → Z# , which is much faster

than homomorphically computing the bivariate function in

all the slots in parallel (i.e., with fully packed ciphertexts)††.
Further we show that the input domain size can be extended

such that the bivariate function is of type Z2# ×Z2# → Z2#

with a relatively moderate overhead. In §3.7, we slightly

extend our above techniques for uni/bivariate function eval-

uation so that they can handle functions of type ZC → ZC
and ZC × ZC → ZC where C is a plaintext modulus, and show

another approach to extending the input domain size from

ZC to ZC2 by using two ciphertexts to encrypt one integer

plaintext.

1.3 Related Work

Computing non-linear arbitrary functions including integer-

wise comparison and division can be a challenging task in

the context of CKKS, BFV, and BGV, and polynomial inter-

polation and evaluation are the important tools for realizing

non-linear functions over a finite prime field or ring and even

for performing bootstrap procedures [4], [14].

Lu et al. [23] proposed a homomorphic comparison

operation for BFV/BGV, and it was extended by Ishimaki and

Yamana [17]. The underlying idea is to encode a plaintext

integer 0 as a polynomial -0 before encrypting it by FHE.

Although such an encoding can achieve better efficiency for a

comparison operation, the special-purpose encoding makes

it inefficient to perform ciphertext-ciphertext additions and

multiplications.

Kaji et al. [19] investigated how to represent non-linear

max and argmax functions as concrete bivariate polynomials

over a finite prime field F? in relation to a homomorphic

comparison operation, but their results are not so efficient

in the sense that $ (?2) ciphertext-ciphertext multiplications

are required.

†As shown in §4.2, our estimate shows that it requires about 59
days in our experimental environment.
††It takes 307 seconds (§4.2) compared with 59 days of our

improved version of [27] in the setting of our typical input domain

size 215.

Tan et al. [31] proposed the special-purpose compar-

ison operation using BGV and equality function proposed

by Kim et al. [21]. Roughly speaking, the input integers

are represented as vectors in the base-? representation, and

the vectors are encrypted by using the SIMD functionality

and compared in lexicographical order by using the bivariate

polynomial.

Cheon et al. [6] proposed the comparison function for

CKKS. Roughly speaking, based on composite polynomial

approximation, they represent the comparison function 5 by

finding 5 ′ such that 5 ′(3) = 5 ′ ◦ 5 ′ ◦ · · · ◦ 5 ′ gets closer

to 5 by increasing 3. Here the computation is approximate

and the inputs to the comparison function need to be within a

specific range, and allowing the two inputs to be close to each

other can increase the computational cost of the comparison

function.

Iliashenko and Zucca [16] proposed how to represent

the comparison function as concrete bivariate and univariate

polynomials over a finite prime fieldF? where BFV and BGV

are the underlying FHE schemes. Also they showed that

polynomial evaluations can be done with $ (?) ciphertext-

ciphertext multiplications in the case of the bivariate polyno-

mial, and with $ (√?) ciphertext-ciphertext multiplications

in the case of the univariate polynomial. For homomorphic

comparison of large inputs, in [16], input integers need to

be represented in the base-? representation, encoded as el-

ements in the extension field F?3 assuming ? is not large,

and the corresponding vectors of coefficients are compared

in lexicographical order, so the comparison operation does

not seem to be combined with homomorphic additions and

multiplications seamlessly to simulate integer arithmetic.

Iliashenko et al. [15] showed that several non-linear

univariate functions such as “modulo”, “is power of 1”,

“Hamming weight” and “Mod2” can have nice polynomial

structures like an odd function when the related parame-

ters satisfy specific conditions†††, which allows more effi-

cient polynomial evaluation compared with the well-known

Paterson-Stockmeyer method [28].

Okada et al. [27] proposed how to compute the di-

vision function using BGV by combining the polynomial

evaluations of two univariate functions, equality function

and division function with a public divisor, and showed that

8-bit integer division can be computed in 795.8 seconds.

Their method to compute the division function can easily be

generalized to realize arbitrary bivariate integer functions.

To realize arbitrary bivariate integer functions rather

than specific or special-purpose non-linear functions, we

improve the work of [27] and also propose a new approach

enabling to handle the larger input domain size.

†††For example, a “modulo <” function can be represented by
a univariate polynomial similar to an odd polynomial when ? ≡
< − 1 mod <.
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2. Preliminaries

2.1 Notation

We summarize the symbols used in this work in Table 1.

One of the typical settings for this work is # = 215 and

C = 2# + 1 = 65537 †.

Table 1 Notation

Notation Description

# Power of two

C , @ Integers for plaintext and ciphertext moduli

where C ≪ @ and C is a prime s.t. 2# | C − 1

Z[-] Set of integer coefficient polynomials in variable -

R Ring Z[-]/(-# + 1)
RC Ring defining plaintext space

ZC [-]/(-# + 1)
R@ Ring defining ciphertext space

Z@ [-]/(-# + 1)
J"K Ciphertext of plaintext "

⊕, ⊖, ⊗ Homomorphic addition, subtraction and multiplication

! [ 9 ] 9-th element of list/array ! with zero-based index

0 op 1 Predicate returning a Boolean value (0 or 1) where op

can be an operator such as =, ≠, ≤, <, ≥, >, ∈

2.2 Packing Method in Fully Homomorphic Encryption

The BGV [3] and BFV [10] schemes support integer opera-

tions and CKKS [5] scheme supports fixed-point arithmetic.

In this work, we focus on the BFV scheme [10], which is

one of the schemes that support the following functionalities:

integer-wise addition/multiplication, Galois automorphism,

and packing method.

2.2.1 Packing Method

The FHE schemes based on Ring-LWE can pack a set of

integers into a single plaintext or ciphertext polynomial by

setting some variables appropriately [30]. Let C and # be

such that 2# | C − 1, and � be a generator of Z×C satisfying

�C−1 ≡ 1 mod C. Then l ≡ �
C−1
2# ∈ ZC is the primitive 2#-th

root of 1 in ZC , i.e., l2# ≡ 1 mod C and l 9
. 1 mod C for

every 1 ≤ 9 ≤ 2# − 1.

In this setting, a ciphertext of a polynomial 5 (-) =
0

0
+ 0

1
- + · · · + 0

#−1
-#−1 ∈ RC can be viewed as a cipher-

text that packs a plaintext vector (0′
0
, 0′

1
, . . . , 0′

#−1
) ∈ Z#C

determined by the following matrix , .

†Another possible example is # = 215 and C = 3 × 218 + 1. In
this setting, the ciphertext size becomes larger and it causes lower
performance, but meanwhile we can have a larger level parameter
(multiplicative depth).



0′
0

0′
1

0′
2
...

0′
#−1

︸      ︷︷      ︸
Z
#
C

=



1 l · · · l#−1

1 l3 · · ·
(
l3

)#−1

1 l5 · · ·
(
l5

)#−1

...

1 l2#−1 · · ·
(
l2#−1

)#−1

︸                                          ︷︷                                          ︸
,∈Z#×#C



00

01

02

...

0#−1

︸      ︷︷      ︸
Z
#
C

=



5 (l)
5
(
l3

)
5
(
l5

)
...

5
(
l2#−1

)



=



00 + 01l + · · · + 0#−1l
#−1

00 + 01l
3 + · · · + 0#−1

(
l3

)#−1

00 + 01l
5 + · · · + 0#−1

(
l5

)#−1

...

00 + 01l
2#−1 + · · · + 0#−1

(
l2#−1

)#−1


Here the packed ciphertext is denoted by J 5 (-)K =

J(0′
0
, 0′

1
, . . . , 0′

#−1
)K, and similarly, the packed plaintext is

denoted by [ 5 (-)] = [(0′
0
, 0′

1
, . . . , 0′

#−1
)]. We call the 8-th

element of a vector the 8-th slot. Here the addition and multi-

plication of vectors are performed element-wise on each slot.

I.e., when we consider two packed ciphertexts J 5 (-)K =

J(0′
0
, 0′

1
, . . . , 0′

#−1
)K and J�(-)K = J(1′

0
, 1′

1
, . . . , 1′

#−1
)K,

it holds that

J 5 (-)K ⊕ J�(-)K = J(0′0 + 1′0, 0′1 + 1′1, . . . , 0′#−1 + 1
′
#−1)K

J 5 (-)K ⊗ J�(-)K = J(0′01′0, 0′11′1, . . . , 0′#−11
′
#−1)K

where the computation in each slot is done modulo C.

2.3 Polynomial Interpolation

Polynomial interpolation is a method to derive a polynomial

5 satisfying ~8 = 5 (G8) for 0 ≤ 8 ≤ # − 1, given # points

{(G8 , ~8)} where G8 ≠ G 9 if 8 ≠ 9 , and 5 (G) is obtained by

the following equation ††.

5 (G) ≡
#−1∑
8=0

©­
«

∏
0≤ 9≤#−1, 9≠8

G − G 9

G8 − G 9

ª®
¬
· ~8 mod C

2.4 Paterson-Stockmeyer Method

Given polynomial 5 (G) = 20 + 21G + 22G
2 + · · · + 2#−1G

#−1,

the naive method to evaluate 5 (G) requires computing

powers G, G2, · · · , G#−1, leading to $ (#) multiplications.

However, by using the well-known Paterson-Stockmeyer

method (PS method) [28], the number of multiplica-

tions required for polynomial evaluation can decrease to

††We note that if C is not a prime, polynomial interpolation may
not work.
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$ (
√
#). In the PS method, 5 (G) is transformed as fol-

lows, and evaluated with precomputed {G, G2, . . . , G?−1} and

{G? , (G?)2, . . . , (G?)B−1} where ?, B ≈
√
# .

5 (G) = 20 + 21G + · · · + 2#−1G
#−1 (where # = ?B)

=

(
20 + 21G + · · · + 2?−1G

?−1
)

+
(
2? + 2?+1G + · · · + 22?−1G

?−1
)
× G?

+
(
22? + 22?+1G + · · · + 23?−1G

?−1
)
× (G?)2

...

+
(
2 (B−1) ? + 2 (B−1) ?+1G + · · · + 2 (B−1) ?+?−1G

?−1
)

× (G?)B−1

3. Proposed Schemes

First we recall the prior work of Okada et al. [27] that shows

how to compute an arbitrary bivariate integer function with

BFV/BGV by using polynomial evaluations. Next we show

how to improve [27] by reducing the number of polynomial

evaluations. While the prior work [27] and our improved

version of [27] can work with the SIMD functionality to

enable parallel computation, as shown in our experiment

(§4.2), these are quite inefficient when the input domain size

becomes relatively large. To address this issue, we also

propose another approach that exploits the packing method

to handle the larger input domain size instead of enabling the

SIMD operation.

3.1 Prior Method for Homomorphically Computing Bi-

variate Function Based on Polynomial Evaluation

Here we recall the homomorphic integer-wise division [27]

(Algorithm 2). As in [27], for simplicity, we describe Algo-

rithm 2 assuming that the plaintext is a scalar rather than a

vector for the SIMD operation, but Algorithm 2 can easily be

adapted to work with the SIMD functionality. We consider

computing the division ⌊ 0
3
⌋ where 0, 3 ∈ ZC †. First we can

precompute, for 0 ≤ 8 ≤ C−1, the coefficients of polynomials

58 (G)††, �8 (G) : ZC → ZC satisfying

58 (G) =
⌊ G
8

⌋
, �8 (G) =

{
1 (if G = 8)
0 (otherwise)

via polynomial interpolation. Next we compute the ci-

phertexts of powers �
?>|
0 ← Pows(J0K, C), �

?>|

3
←

Pows(J3K, C) necessary for polynomial evaluation with mul-

tiplicative depth $ (log2(C)) where Pows is given in Algo-

rithm 1. In ConstDiv and ConstEq, we obtain J
⌊
0
8

⌋
K and

†Here we use the division operation as an example of a bivariate
function, but actually any bivariate function ZC × ZC → ZC can be
computed in a similar way.
††Here we use the division as an example, but by changing 58 (G),

an arbitrary bivariate function can actually be computed.

J8 = 3K respectively by homomorphically computing the

inner products between the powers and the coefficients of

58 (G), �8 (G)†††. We note that J8 = 3K equals J1K if 8 = 3,

and J0K otherwise, which means that J
⌊
0
8

⌋
K ⊗ J8 = 3K equals

J
⌊
0
3

⌋
K when 8 = 3 and J0K otherwise. Finally we obtain the

encrypted division result J
⌊
0
3

⌋
K in (.

Algorithm 1 Pows

Input: J0K, D
1: : = ⌊log2 (D) ⌋
2: for 8 = 0 to (: − 1) do

3: for 9 = 1 to 28 do

4: J028+ 9K← J028 K ⊗ J0 9K
5: end for

6: end for

7: if 2: < D − 1 then

8: for 8 = 1 to D − 1 − 2: do

9: J02:+8K← J02: K ⊗ J08K
10: end for

11: end if

Output: �
?>|
0 = (J00K, J0K, J02K, . . . , J0D−1K)

Algorithm 2 Homomorphic Division J
⌊
0
3

⌋
K

Input: J0K, J3K
1: ( ← J0K
2: �

?>|
0 ← Pows(J0K, C ) , �?>|

3
← Pows(J3K, C )

3: for 8 = 0 to C − 1 do

4: J
⌊
0
8

⌋
K = ConstDiv(�?>|

0 , 8)
5: J8 = 3K = ConstEq(�?>|

3
, 8)

6: ( ← ( ⊕ J
⌊
0
8

⌋
K ⊗ J8 = 3K

7: end for

Output: ( = J
⌊
0
3

⌋
K

3.2 Reducing the Number of Polynomial Evaluations

In [27], polynomial evaluations (corresponding to comput-

ing the inner products between the powers and polynomial

coefficients) are performed in both ConstDiv for division and

ConstEq for equality check. Although the polynomial eval-

uations do not include ciphertext-ciphertext multiplications,

this computation is the dominant part of the whole compu-

tation due to C iterations in the for loop. Algorithm 2 of [27]

is natural and seems optimal, but we show that the number

of polynomial evaluations can be reduced further by half.

3.2.1 Precomputation

We consider the division
⌊
0
3

⌋
where 0, 3 ∈ ZC ′ and C′ ≤ C

(i.e., C′ is the input domain size and C is the plaintext mod-

ulus). If 3 is fixed, we can precompute the coefficients

†††For this polynomial evaluation, computing all the necessary
powers first is more efficient than using the PS method. It is because
the polynomial evaluation is iterated C times and in each iteration,
we can go without ciphertext-ciphertext multiplications.
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(2
0,3

, 2
1,3

, 2
2,3

, . . . , 2
C ′−1,3

) of polynomial 53 (G) : ZC ′ →
ZC ′

53 (G)=
⌊ G
3

⌋
=20,3+21,3G+22,3G

2+· · ·+2C ′−1,3G
C ′−1 mod C

via polynomial interpolation. Also for 0 ≤ 9 ≤ C′ − 1 we

define polynomials � 9 (G) : ZC ′ → ZC ′

� 9 (G) = 2′0, 9 + 2
′
1, 9G + 2

′
2, 9G

2 + · · · + 2′C ′−1, 9G
C ′−1 mod C

that, given 3 as G, returns the 9-th coefficient 2
9 ,3

of 5
3
(G).

Now let +,., � and / be

+ =



00 01 02 · · · 0C
′−1

10 11 12 · · · 1C
′−1

...

(C′ − 1)0 (C′ − 1)1 (C′ − 1)2 · · · (C′ − 1)C ′−1


,

. =



2
0,0

2
0,1

· · · 2
0,C ′−1

2
1,0

2
1,1

· · · 2
1,C ′−1

...

2
C ′−1,0

2
C ′−1,1

· · · 2
C ′−1,C ′−1


,

� =



⌊ 0
0
⌋ ⌊ 0

1
⌋ · · · ⌊ 0

C ′−1
⌋

⌊ 1
0
⌋ ⌊ 1

1
⌋ · · · ⌊ 1

C ′−1
⌋

...

⌊ C ′−1
0
⌋ ⌊ C ′−1

1
⌋ · · · ⌊ C ′−1

C ′−1
⌋


,

/ =



2′
0,0

2′
0,1

· · · 2′
0,C ′−1

2′
1,0

2′
1,1

· · · 2′
1,C ′−1

...

2′
C ′−1,0

2′
C ′−1,1

· · · 2′
C ′−1,C ′−1


and then we have†

+. = � and +/ = .⊤,

so the coefficients of polynomials � 9 (G) can be precomputed

from

/ = +−1�⊤ (+−1)⊤ mod C.

3.2.2 Our Improved Algorithm

Now we describe, given J(0
0
, 0

1
, . . . , 0

#−1
)K and

J(3
0
, 3

1
, . . . , 3

#−1
)K, how to compute

s(⌊
0

0

3
0

⌋
,

⌊
0

1

3
1

⌋
, . . . ,

⌊
0
#−1

3
#−1

⌋){
.

First from the input ciphertexts, we compute the following C′

ciphertexts of powers

†In Matrix �, the elements with denominators equal to 0 rep-
resent the values in ZC ′ to be outputted when 3 = 0.

J(080, 081, . . . , 08#−1)K, J(380, 381, . . . , 38#−1)K
where 0 ≤ 8 ≤ C′ − 1 by Pows (Algorithm 1). Next, for

each 38 , we want to obtain the coefficients of 5
38
(G), i.e.,

(2
0,38

, 2
1,38

, . . . , 2
C ′−1,38

). For that, we compute the 9-th

coefficients (2
9 ,30

, 2
9 ,31

, . . . , 2
9 ,3#−1

) by polynomial evalu-

ation of � 9 (G) for 0 ≤ 9 ≤ C′ − 1 as

J(2 9 ,30
, 2 9 ,31

, . . . , 2 9 ,3
#−1
)K← [(2′0, 9 , 2′0, 9 , . . . , 2′0, 9 )]

⊕ [(2′1, 9 , 2′1, 9 , . . . , 2′1, 9 )] ⊗ J(30, 31, . . . , 3#−1)K
⊕ [(2′2, 9 , 2

′
2, 9 , . . . , 2

′
2, 9 )] ⊗ J(32

0 , 3
2
1 , . . . , 3

2
#−1)K

...

⊕ [(2′C ′−1, 9 , 2
′
C ′−1, 9 , . . . , 2

′
C ′−1, 9 )]⊗

J(3C ′−1
0 , 3C

′−1
1 , . . . , 3C

′−1
#−1)K.

Finally we compute the encrypted division result by parallel

polynomial evaluation of 5
3
8
(G) as

s(⌊
0

0

3
0

⌋
,

⌊
0

1

3
1

⌋
, . . . ,

⌊
0
#−1

3
#−1

⌋){
←J(20,30

, 20,31
, . . . , 20,3

#−1
)K

⊕ J(21,30
, 21,31

, . . . , 21,3
#−1
)K ⊗ J(00, 01, . . . , 0#−1)K

⊕ J(22,30
, 22,31

, . . . , 22,3#−1
)K ⊗ J(02

0, 0
2
1, . . . , 0

2
#−1)K

...

⊕ J(2C ′−1,30
, 2C ′−1,31

, . . . , 2C ′−1,3
#−1
)K⊗

J
(
0C
′−1

0 , 0C
′−1

1 , . . . , 0C
′−1
#−1

)
K.

The prior method [27] requires C′ polynomial evaluations

for each equality check and division respectively, that is, 2C′

times in total, while our method requires only C′ + 1 poly-

nomial evaluations, thus leading to better efficiency. We

note that each polynomial evaluation includes C′ plaintext-

ciphertext multiplications and C′ ciphertext-ciphertext addi-

tions. The run-times of one plaintext-ciphertext multipli-

cation and ciphertext-ciphertext addition are small, but the

total number of these required operations is quadratic in C′,
so as the input domain size C′ becomes larger, the damage

to the efficiency is non-negligible (see Table 2 on Page 8).

When C′ = 215, the estimate of the total computation time

is about 59 days in our experimental environment (see §4.2)

even if our improved algorithm is used. Therefore, we pro-

pose another method (§3.4) to compute an arbitrary bivariate

integer function in a reasonably efficient way even when the

input domain size is C′ = 215 at the price of allowing only

a single slot to be used during the computation of bivariate

functions.

3.3 Homomorphic Evaluation of Arbitrary Univariate

Function

3.3.1 One-HotSlot

As a very simple but important building block, first we pro-

pose Algorithm 3 which we call One-HotSlot and it can be
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used to compute an arbitrary univariate function later. On

input J(0, 0, . . . , 0)K where 0 ∈ Z# , One-HotSlot computes

a packed ciphertext in which only the 0-th slot is 1 and all

other slots are 0 with a zero-based index. We note that in

Step 3 of Algorithm 3 all non-zero slot values are set to 1 by

Fermat’s little theorem since C is a prime.

Algorithm 3 One-HotSlot

Input: Packed ciphertext J0K = J(0, 0, . . . , 0)K
1: ( ← [(0, 1, 2, . . . , # − 1) ]
2: ℓ ← J0K ⊖ (

= J(0, 0 − 1, 0 − 2, . . . , 0, . . . , 0 − # + 1)︸                                                   ︷︷                                                   ︸
only 0-th slot is 0

K

3: <← ℓC−1 // computed by repeated squaring modulo C

= J(1, 1, . . . , 0, 1, . . . , 1)K
4: =← [(1, 1, . . . , 1) ] ⊖ <

= J(0, 0, . . . , 1, 0, . . . , 0)K︸                            ︷︷                            ︸
only 0-th slot is 1

Output: =

3.3.2 Univariate Function Evaluation with One-HotSlot

and EvalSum

By recalling the packing method in §2.2, we observe that if

we take the sum of all the elements of the : (≠ 0)-th column

of the matrix , ∈ Z#×#C , we obtain

#−1∑
8=0

l (28+1): ≡l:+(l3):+(l5):+(l7):+ · · · +(l2#−1):

≡ l: (1 + l2: +· · ·+ l2(#−1):)
≡ l: (1 + l2: + · · · + (l2:) (#−1) )

≡ l: · 1 − (l
2:)#

1 − l2:

≡ 0 mod C (∵ l2# ≡ 1 mod C).

Based on the observation above, further we can de-

rive the following useful fact regarding J 5 (-)K =

J(0′
0
, 0′

1
, . . . , 0′

#−1
)K:

#−1∑
8=0

0′8 ≡ # · 00

+01 ·{l + (l3)+ · · · + (l2#−1)}
+02 ·{l2 + (l3)2+ · · · + (l2#−1)2}
...

+0#−1 ·{l#−1+ (l3)#−1+ · · · +(l2#−1)#−1}
≡ # · 00

≡ # · 5 (0) mod C (1)

In [17], an algorithm called ConstantTermExtract is pro-

posed to compute J 5 (0)K from J 5 (-)K, which is based on

the idea from [4, A.1]. ConstantTermExtract can be realized

by using Galois automorphisms and key switching. By com-

bining the relation in Eq. (1) with ConstantTermExtract, we

can construct EvalSum of Algorithm 4 which, on input the

ciphertext encrypting [ 5 (-)] = [(0′
0
, 0′

1
, . . . , 0′

#−1
)], re-

turns the packed ciphertext consisting of the sums of all the

slots
∑#−1

8=0 0′8 . We can construct EvalSum just by slightly

modifying ConstantTermExtract in [17].

Algorithm 4 EvalSum

Input: Packed ciphertext J 5 (-)K = J(0′
0
, 0′

1
, . . . , 0′

#−1
)K

1: 2 ← f
#+1 (J(0

′
0
, 0′

1
, . . . , 0′

#−1
)K)

2: 2 ← J(0′
0
, 0′

1
, . . . , 0′

#−1
)K ⊕ 2

3: for : = 1 to log2 (# ) − 1 do

4: 2′ ← f
#

2:
+1
(2)

5: 2 ← 2 ⊕ 2′

6: end for

Output: 2 (=J# · 5 (0)K=J
∑#−1

8=0
0′
8
K=J(∑#−1

8=0
0′
8
,
∑#−1

8=0
0′
8
, . . . ,

∑#−1
8=0

0′
8
)K)

Here f8 means the automorphism mapping for 8 ∈ Z∗
2#

and is defined such that f8 ( 5 (-)) = 5 (- 8). For example, if

# = 22, given 5 (-) = 1 + 2- + 3-2 + 4-3, we have

f5( 5 (-)) = 1 + 2(-5) + 3(-5)2 + 4(-5)3

= 1 − 2- + 3-2 − 4-3 mod -# + 1.

The plaintext polynomial encrypted in the output ciphertext

2 of EvalSum consists of only a constant term # · 5 (0), so

all the slots have the same value
∑#−1

8=0 0′8 according to Eq.

(1).

Now we propose Algorithm 5† to compute arbitrary

univariate functions such as bit/digit decomposition, which is

realized by the table lookup method combining One-HotSlot

and EvalSum.

Algorithm 5 Homomorphic Evaluation of Arbitrary Uni-

variate Function
Input: Packed ciphertext J0K = J(0, 0, . . . , 0)K and packed plaintext

) = [ ( 5 (0) , 5 (1) , . . . , 5 (# − 1) ) ] representing a lookup table of

function 5 : Z# → Z#
1: ℓ ← One-HotSlot(J0K)
2: <← ℓ ⊗ ) = ℓ ⊗ [ ( 5 (0) , 5 (1) , . . . , 5 (# − 1) ) ]
3: =← EvalSum(<)

Output: = = J 5 (0)K

EvalSum performs automorphism mapping†† and addi-

tion of ciphertexts log2(#) times, and its computational cost

is about 6 times as large as that of a ciphertext-ciphertext

multiplication. In our experiment, it takes about one sec-

ond to perform EvalSum once. Hence we try to minimize

†The range of function 5 can actually be ZC .
††An automorphism actually needs a key switching operation,

but we omit it here because the detail of it is not essential in this
work.
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the number of EvalSum operations as well as ciphertext-

ciphertext multiplication in our construction.

3.3.3 Set-Membership Predicate by Univariate Function

We can see that a set-membership predicate 5
(
(G) = (G ∈

() ∈ {0, 1} can be easily constructed by slightly modifying

univariate function evaluation (Algorithm 5). I.e., if we re-

place ( (representing a set {0, 1, . . . , #−1}) in One-HotSlot

(Algorithm 3) with ( for the set-membership predicate 5
(
(G),

and set ) = [(1, 1, . . . , 1, 1)] (= [1]) in Algorithm 5, then

this variant of Algorithm 5 (invoking Algorithm 3) computes

the ciphertext of 5
(
(0), when provided with the ciphertext

of 0 as input.

3.3.4 Comparison Operation by Univariate Function

We can see that One-HotSlot(J0K) (Algorithm 3) returns the

all-zero vector J(0, . . . , 0)K if 0 ∉ ((= {0, 1, . . . , # − 1})
as mentioned in §3.3.3. Hence, given the two ciphertexts

of 0, 1 ∈ {0, 1, . . . , # − 1}, we can compute the ciphertext

of the comparison result (0 ≤ 1) ∈ {0, 1} just by inputting

J1 − 0K and ) = [(1, 1, . . . , 1, 1)] to Algorithm 5 where we

note that the computation of 1 − 0 is done modulo C and we

have −(# − 1) ≤ 1 − 0 ≤ # − 1. This way of computing

(0 ≤ 1) works correctly because we have 0 ≤ 1 − 0 ≤ # − 1

if and only if (0 ≤ 1) = 1 and Algorithm 5 returns J1K if

0 ≤ 1 − 0 ≤ # − 1 and J0K otherwise.

3.3.5 Simulating Bivariate Function by Univariate Func-

tion

Assuming that the input domain size is small, we can simu-

late a bivariate function just by computing a univariate func-

tion Z# → Z# using One-HotSlot. For example, suppose

we compute the division J⌊ 0
3
⌋K with inputs J0K and J3K where

0 < 27, 3 < 28 and the input domain size # of the univariate

function is # = 215. In this case, first we compute J0×28+3K,
and the division can be realized by preparing a lookup table

) whose 8-th slot is the division result ⌊ 0
3
⌋ when 8 = 0×28+3,

i.e., ) =

[( ⌊
0
0

⌋
,
⌊

0
1

⌋
, . . . ,

⌊
0

28−1

⌋
,
⌊

1
0

⌋
, . . . ,

⌊
27−1
28−1

⌋ )]
. We

show this division algorithm (which we call SmallDivision)

in Algorithm 6.

Algorithm 6 SmallDivision

Input: Packed ciphertexts J0K = J(0, 0, . . . , 0)K, J3K =

J(3, 3, . . . , 3)K where 0 < 27, 3 < 28

1: ) ←
[( ⌊

0
0

⌋
,
⌊

0
1

⌋
, . . . ,

⌊
0

28−1

⌋
,
⌊

1
0

⌋
, . . . ,

⌊
27−1

28−1

⌋ )]
2: : ← J0K ⊗ 28 ⊕ J3K
3: ℓ ← One-HotSlot(: )
4: <← ℓ ⊗ )

5: =← EvalSum(<)
Output: = // corresponding to J⌊ 0

3
⌋K

This way of computing a bivariate function is simple,

but if we compute a bivariate function 5 : Z# × Z# → Z# ,

we need to use the ciphertext space Z@ [-]/(-#2 +1), which

will be prohibitive when # = 215. In the next section, we

overcome this issue by showing how to compute 5 : Z# ×
Z# → Z# with the ciphertext space Z@ [-]/(-# + 1).

3.4 Homomorphic Evaluation of Arbitrary Bivariate Func-

tion

We show how to compute an arbitrary bivariate function

5 (G, ~) : Z# × Z# → Z# † by combining the table lookup

method using One-HotSlot with a parallel polynomial eval-

uation using the PS method.

First we define a polynomial 5
3
(G) = 5 (G, 3)

53 (G) = 20,3 + 21,3G + 22,3G
2 + · · · + 2#−1,3G

#−1 mod C

and the coefficients 2
8,3

of 5
3
(G) can be precom-

puted via polynomial interpolation††. Hence we

can precompute all the coefficients of polynomials

50 (G), . . . , 538 (G), . . . 5#−1 (G)where 3 = 0, 1, . . . , 38 , . . . , #−
1.

Next given the input packed ciphertexts J0K =

J(0, 0, . . . , 0)K†††, we want to compute

J 50(0), . . . , 538 (0), . . . 5#−1(0)K

by using the PS method (§2.4). For that, we use Pows and

compute the following powers

(J0K, J02K, . . . , J0?−1K), (J0?K, J(0?)2K, . . . , J(0?)B−1K)

with multiplicative depth log(?) and log(?B) respectively

where # = ?B.

Now we can obtain J 50(0), . . . , 538 (0), . . . 5#−1 (0)K by

computing

J 50 (0), . . . , 538 (0), . . . 5#−1 (0)K←
(20 + 21J0K + · · · + 2?−1J0?−1K)

+
(
2? + 2?+1J0K + · · · + 22?−1J0?−1K

)
× J0?K

+
(
22? + 22?+1J0K + · · · + 23?−1J0?−1K

)
× J(0?)2K

...

+
(
2 (B−1) ? + 2 (B−1) ?+1J0K + · · · + 2 (B−1) ?+?−1J0?−1K

)
× J(0?)B−1K

where each 28 (0 ≤ 8 < #) is the following packed plaintext

†The input domain size can be smaller than # , and the range
can actually be ZC .
††As an alternative, we can use �0 (G) = 5 (0, G) instead of

5
3
(G) if the polynomial �0 (G) has a simpler structure (such as an

odd polynomial) than 5
3
(G).

†††If the input ciphertext is of form J(0, . . . , 0, 0, 0, . . . , 0)K, it
can be transformed into the required form by applying EvalSum.
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20 =
[
(20,0, 20,1, . . . , 20,3 , . . . , 20,#−1)

]
21 =

[
(21,0, 21,1, . . . , 21,3 , . . . , 21,#−1)

]
...

2#−1 =
[
(2#−1,0, 2#−1,1, . . . , 2#−1,3 , . . . , 2#−1,#−1)

]
.

Further by multiplying J 50(0), . . . , 538 (0), . . . 5#−1(0)K
with the packed ciphertext One-HotSlot(J3K) in which only

the 3-th slot is 1 and all other slots are 0, we obtain the

packed ciphertext in which the 3-th slot contains the func-

tion output 53 (0) (= 5 (0, 3)) and the other slots are set to

0. This can be viewed as a table lookup operation using

a one-hot vector. Finally by applying EvalSum, we obtain

the final packed ciphertext in which all the slots contain the

function output. The above procedure is given in Algorithm

7.

Algorithm 7 Homomorphic Evaluation of Arbitrary Bivari-

ate Function
Input: Packed ciphertexts J0K = J(0, 0, . . . , 0)K, J3K = J(3, 3, . . . , 3)K
1: (Precomputations): Precompute coefficients 2

8,3
of the polynomials

5
3
(G ) where 0 ≤ 3 < # , and obtain the packed plaintexts 2

8
where

0 ≤ 8 < # .

2: �
?>|
0 ← Pows(J0K, ?)

3: �
?>|

0? ← Pows(J0?K, B) where # = ?B

4: ( ← 0

5: for 8 = 0 to B do

6: 5 ← 0

7: for 9 = 0 to ? do

8: 5 ← 5 ⊕ 2
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

9: end for

10: ( ← ( ⊕ 5 ⊗ �
?>|

0? [8 ]
11: end for

12: ( ← ( ⊗ One-HotSlot(J3K)
13: A ← EvalSum(()
Output: A // corresponding to the ciphertext of 5 (0, 3)

3.5 Complexity Analysis

Here we summarize the complexities of (i) our algorithm in

§3.2, (ii) Algorithm 7, and (iii) [27], and for ease of exposi-

tion, we refer to (i) as Proposal 1 and (ii) as Proposal 2. Table

2 shows the approximate numbers of operations required for

one invocation of 5 : ZC ′ × ZC ′ → ZC ′ in terms of plaintext-

ciphertext multiplication (pt × ct), ciphertext-ciphertext ad-

dition (ct + ct), ciphertext-ciphertext multiplication (ct × ct),

and MakePackedPlaintext. Here MakePackedPlaintext is an

operation† that creates packed plaintexts used as coefficients

in polynomial evaluations. As shown in Table 5 on Page

12, this operation is at least heavier than pt × ct in our ex-

perimental environment, so this operation is counted in the

complexity analysis. In Proposal 2, C′ needs to satisfy C′ ≤ #

where # is the degree defining R = Z[-]/(-# +1), and the

parameters ?, B for the PS method need to satisfy C′ = ? × B

†This operation is called MakePackedPlaintext in PALISADE
[1].

Table 2 Complexity Comparison of Computing 5 : ZC′ × ZC′ → ZC′

[27] Proposal 1 Proposal 2

pt × ct 2C ′2 C ′2 C ′

ct + ct 2C ′2 + C ′ C ′2 + C ′ C ′ + log2 (# ) + B
ct × ct 3C ′ 3C ′ log2 (C − 1) + ? + 2B

MakePackedPlaintext 2C ′2 C ′2 C ′

and ?, B ≈
√
C′, and C is the plaintext modulus.

We note that, in [27], Proposal 1, and Proposal 2, the

degree of the polynomials to be evaluated is C′ − 1, and

computing the powers (J00K, J0K, J02K, . . . , J0C ′−1K) with

Pows(J0K, C′) (Algorithm 1) requires approximately C′ mul-

tiplications (i.e., ct × ct). In [27] and Proposal 1, the polyno-

mial evaluation (related to ConstDiv,ConstEq in Algorithm

2) is done by computing the inner product between the pow-

ers and polynomial coefficients, which involves pt × ct and

ct + ct. In Proposal 2, the polynomial evaluation is done

with the PS method, and in addition, Proposal 2 involves

One-HotSlot and EvalSum. From these facts, we can derive

the complexities in Table 2. When C′ = # = 215, we can see

that the term C′2 in pt × ct, ct + ct, and MakePackedPlaintext

of [27] and Proposal 1 becomes quite large, and this causes

the computational bottleneck even if the complexities of pt ×
ct, ct + ct, and MakePackedPlaintext are smaller than that of

ct × ct, thus yielding the efficiency gaps among the schemes.

We summarize the tradeoff between Proposals 1 and

2. In Proposal 1, the input domain size can be set flexibly

without being limited to # , and the SIMD functionality can

be available with an appropriate parameter setting, but the

term C′2 in the complexity affects the run-time severely as

shown in Table 4 on Page 12. Meanwhile in Proposal 2,

the input domain size is limited to†† # which is also re-

lated to the ciphertext size and the SIMD functionality is not

available during the computation of bivariate functions, but

by removing the term C′2 in the complexity, the increase of

the run-time is much smaller compared with Proposal 1 as

shown in Table 4.

3.6 Extending Input Domain Size

The input domain size of Algorithm 7 is # , and we can

extend it such that the bivariate function 5 (G, ~) is of type

Z2# × Z2# → ZC with a relatively moderate overhead. Our

idea is simple, that is, we separately deal with the cases

where the second input is between 0 and # − 1, and between

# and 2# − 1. We modify Algorithm 7, and give Algorithm

8 for larger inputs.

††This can be slightly extended to 2# and C as shown in §3.6
and §3.7.1.
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Algorithm 8 Homomorphic Evaluation of Arbitrary Bivari-

ate Function with Larger Inputs (Z2# × Z2# → ZC )
Input: Packed ciphertexts J0K = J(0, 0, . . . , 0)K, J3K =

J(3, 3, . . . , 3)K
1: (Precomputations): Precompute coefficients 2

8,3
of the polynomial

5
3
(G ) where 0 ≤ 3 < # and coefficients 2′

8,3
of 5

3
(G ) where

# ≤ 3 < 2# , and obtain the packed plaintexts 2
8

and 2′
8

where

0 ≤ 8 < 2# .

2: �
?>|
0 ← Pows(J0K, ?)

3: �
?>|

0? ← Pows(J0?K, B) where 2# = ?B

4: ( ← 0, (′ ← 0

5: for 8 = 0 to B do

6: 5 ← 0, 5 ′ ← 0

7: for 9 = 0 to ? do

8: 5 ← 5 ⊕ 2
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

9: 5 ′ ← 5 ′ ⊕ 2′
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

10: end for

11: ( ← ( ⊕ 5 ⊗ �
?>|

0? [8 ]
12: (′ ← (′ ⊕ 5 ′ ⊗ �

?>|

0? [8 ]
13: end for

14: A ← ( ⊗ One-HotSlot(J3K) ⊕ (′ ⊗ One-HotSlot(J3 − #K)
15: A ← EvalSum(A )
Output: A // corresponding to the ciphertext of 5 (0, 3)

One-HotSlot(J3K) returns a one-hot packed cipher-

text if 0 ≤ 3 < # , and J0K otherwise. Similarly

One-HotSlot(J3 − #K) returns a one-hot packed ciphertext

if # ≤ 3 < 2# , and J0K otherwise†. Hence the correct value

is selected depending on the second input 3 at Step 14 of

Algorithm 8. By using the same technique, actually we can

realize the bivariate function of type ZC × ZC → ZC , and in

the typical setting C = 2# + 1, we need three invocations of

One-HotSlot at Step 14 of Algorithm 8 (see Algorithm 10)
††.

3.7 Further Extending Input Domain Size from ZC to ZC2

Here we show another approach to extending the input do-

main size from ZC to ZC2 by using two ciphertexts to encrypt

one integer plaintext. More precisely we realize the homo-

morphic operations for addition, multiplication, subtraction,

comparison, and arbitrary univariate functions in ZC2 by em-

ploying our techniques for uni/bivariate function evaluation

in ZC .

Now let � = 0
1
× C + 0

0
= (0

1
, 0

0
)C ∈ ZC2 and � =

1
1
× C + 1

0
= (1

1
, 1

0
)C ∈ ZC2 in the base-C representation

where 0
0
, 0

1
, 1

0
, 1

1
∈ ZC , and to encrypt plaintexts �, �,

we have four (BFV) ciphertexts encrypting 00, 01, 10, 11.

Then we consider how to simulate homomorphic operations

in ZC2 by homomorphic operations in ZC with the ciphertexts

of 0
0
, 0

1
, 1

0
, 1

1
. In this section, we assume the typical

setting (#, C) = (215, 2# + 1) = (215, 216 + 1), and give

several optimizations using the properties of this setting.

†We can see that One-HotSlot(J3 − #K) corresponds to invok-
ing One-HotSlot(J3K) with a packed plaintext [(#, # + 1, # +
2, . . . , 2# − 1)] instead of [(0, 1, 2, . . . , # − 1)] in Algorithm 3.
††This technique is also applicable to Algorithm 5 to realize the

univariate function of type ZC → ZC (see Algorithm 9).

3.7.1 Extending Algorithms 5 and 8

Before describing the homomorphic operations in ZC2 , first

we extend Algorithm 5 for a function of type Z# → Z# such

that the evaluated function is of type ZC → ZC (Algorithm

9). Similarly we extend Algorithm 8 for a function of type

Z2# → Z2# such that the evaluated function is of type

ZC × ZC → ZC (Algorithm 10).

Algorithm 9 Univariate Function Evaluation for 5 : ZC → ZC
Input: J0K = J(0, 0, . . . , 0)K, 3 packed plaintexts ) =

[ ( 5 (0) , 5 (1) , . . . , 5 (#−1) ) ],) ′ = [ ( 5 (# ) , 5 (#+1) , . . . , 5 (2#−
1) ) ], ) ′′ = [ ( 5 ( C − 1︸︷︷︸

2#

) , 0, . . . , 0) ]

1: ℓ ← One-HotSlot(J0K)
2: ℓ′ ← One-HotSlot(J0 − #K)
3: <← ℓ ⊗ ) ⊕ ℓ′ ⊗ ) ′ ⊕ {1 ⊖ (J0K ⊖ 2# )C−1 } ⊗ ) ′′︸                                ︷︷                                ︸

handling case of 0 = C − 1 (= 2# )
4: =← EvalSum(<)

Output: = = J 5 (0)K

Algorithm 10 Bivariate Function Evaluation for 5 : ZC ×
ZC → ZC
Input: J0K = J(0, 0, . . . , 0)K, J1K = J(1, 1, . . . , 1)K
1: (Precomputations): Precompute coefficients 2

8,1
of the polynomial

5
1
(G ) (= 5 (G, 1) ) where 0 ≤ 1 < # , coefficients 2′

8,1
of 5

1
(G )

where # ≤ 1 < 2# , and coefficients 2′′
8,2#

where 1 = C − 1 (= 2# ) ,
and obtain the packed plaintexts 2

8
, 2′

8
, 2′′

8
where 0 ≤ 8 < C .

2: �
?>|
0 ← Pows(J0K, ?)

3: �
?>|

0? ← Pows(J0?K, B) where ?, B ≈
√
C & C ≤ ?B

4: ( ← 0, (′ ← 0, (′′ ← 0

5: for 8 = 0 to B do

6: 5 ← 0, 5 ′ ← 0, 5 ′′ ← 0

7: for 9 = 0 to ? do

8: 5 ← 5 ⊕ 2
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

9: 5 ′ ← 5 ′ ⊕ 2′
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

10: 5 ′′ ← 5 ′′ ⊕ 2′′
8×?+ 9 ⊗ �

?>|
0 [ 9 ]

11: end for

12: ( ← ( ⊕ 5 ⊗ �
?>|

0? [8 ]
13: (′ ← (′ ⊕ 5 ′ ⊗ �

?>|

0? [8 ]
14: (′′ ← (′′ ⊕ 5 ′′ ⊗ �

?>|

0? [8 ]
15: end for

16: A ← ( ⊗ One-HotSlot(J1K) ⊕ (′ ⊗ One-HotSlot(J1 − #K) ⊕
(′′ ⊗ {1 ⊖ (J1K ⊖ 2# )C−1 } ⊗ [ (1, 0, . . . , 0) ]︸                                                          ︷︷                                                          ︸

handling case of 1 = C − 1 (= 2# )
17: A ← EvalSum(A )
Output: A // corresponding to the ciphertext of 5 (0, 1)

In Algorithm 10, 51 (G) is a function that returns 5 (0, 1)
for the input 0. Since C = 2#+1 and the number of slots in one

ciphertext is # , we need three intermediate ciphertexts (, (′,
and (′′ to handle the cases of 0 ≤ 1 < # , # ≤ 1 < 2# , and

1 = C−1 (= 2#) separately, and these cases can be processed

in parallel.
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Table 3 Truth Table for X = (0
0
≥ 1′ )

U V W X = (0
0
≥ 1′ )

1 0 * 0

0 1 * 1

0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1

3.7.2 Addition

We compute the ciphertexts of two digits of � + � mod C2 =
(B

1
, B

0
)C in the base-C representation. This addition can be

represented in the following column addition (we note that
actually 0

0
, 0

1
, 1

0
, 1

1
∈ ZC are ciphertexts):

0
1

0
0

+ 1
1

1
0

∗
{
carry(0

0
, 1

0
)+

0
1
+ 1

1
mod C

}
︸                 ︷︷                 ︸

B
1

(00 + 10 mod C )︸               ︷︷               ︸
B
0

Here we can ignore the ∗ part because the computation

is done modulo C2, and (0
0
+ 1

0
mod C) and (0

1
+ 1

1
mod

C) can be computed simply by homomorphic addition in

ZC . Next we consider how to compute the addition carry

carry(0
0
, 1

0
) ∈ {0, 1}. This carry can be computed as

(00 ≥ 1′) where 1′ = C − 10 (= −10 mod C) by a bivariate

function evaluation of ZC ×ZC → ZC . However, we show that

the computation of this carry can be decomposed into more

lightweight univariate function evaluations as follows. First

we define the following bits U, V, W,

U =

(
00 ≤

C − 1

2

)
, V =

(
1′ ≤ C − 1

2

)
, and

W =

(
(00 − 1′ mod C) ≤ C − 1

2

)
∈ {0, 1}.

By employing the truth table from [26] shown in Table 3,

we observe that X = (0
0
≥ 1′) can be computed as

X = ŪV ∨ ŪV̄W ∨ UVW

= (1 − U)V + (1 − U)(1 − V)W + UVW
= V − UV + W + W(2UV − V − U),

and note that U, V, W can be computed (in parallel) by uni-

variate function evaluations of ZC → ZC in Algorithm 9.

Further in the typical setting where C = 2# + 1, we have

U =

(
00 ≤

C − 1

2

)
=

(
0 ≤ 00 ≤

C − 1

2

)
= (0 ≤ 00 ≤ #),

and U = (0 ≤ 0
0
≤ #) ∈ {0, 1} can be computed as

U = (0 ≤ 00 ≤ #) = ¬(# + 1 ≤ 00 ≤ C − 1)

= 1 − (# + 1 ≤ 00 ≤ C − 1︸︷︷︸
2#

).

Hence actually U can be computed from (#+1 ≤ 0
0
≤ C−1),

which can be viewed as a set-membership predicate† and

computed by Algorithm 5 (as mentioned in §3.3.3) that is

more lightweight than Algorithm 9. We can also compute

V, W similarly to U by Algorithm 5 (rather than Algorithm 9).

3.7.3 Multiplication

We compute the ciphertexts of two digits of �× � mod C2 =
(B

1
, B

0
)C in the base-C representation. This multiplication

can be represented in the following column multiplication:

0
1

0
0

× 1
1

1
0

mcarry(0
0
, 1

0
) (0

0
× 1

0
mod C )

∗ (0
1
× 1

0
mod C )

∗ (0
0
× 1

1
mod C )

∗ ∗

∗ ∗



mcarry(0
0
, 1

0
)

+0
1
× 1

0
+0

0
× 1

1
mod C


︸                   ︷︷                   ︸

B
1

(00 × 10 mod C )︸                ︷︷                ︸
B
0

Here we can ignore the ∗ part, and (0
0
× 1

0
mod

C), (0
1
× 1

0
mod C) and (0

0
× 1

1
mod C) can be computed

(in parallel) simply by homomorphic multiplication in ZC .

Next we consider how to compute the multiplication carry

mcarry(0
0
, 1

0
) ∈ ZC . This carry can be computed by a bi-

variate function evaluation of ZC × ZC → ZC in Algorithm

10. However, again we show that the computation of this

carry can be decomposed into more lightweight univariate

function evaluations thanks to a polynomial Ψ(G) given in

[18]. In Theorem 2 of [18], it was proved that†† for an odd

prime C,

mcarry(00, 10) ≡ 0010 × (Ψ(0010) − Ψ(00) − Ψ(10)
+ Ψ(1)) mod C (2)

where Ψ(G) is a degree-(C−2) polynomial determined solely

by C and can be represented concretely with the Bernoulli

numbers.

SinceΨ(G) can be viewed as a univariate functionZC →
ZC , we can use Algorithm 9 to computeΨ(0

0
1

0
), Ψ(0

0
), and

Ψ(1
0
) (in parallel) in Eq. (2)†††.
Further we can notice that mcarry(0

0
, 1

0
) = 0 if 0

0
= 0

†We note that the number of elements in the set of the set-
membership predicate is # here, so we can use (a variant of)
Algorithm 5 instead of Algorithm 9.
††In [18, Theorem 2], a more general multivariate version of

mcarry is given, but the bivariate version suffices for our purpose.
†††As a small optimization, the invocations of EvalSum(·) (Step

4 of Algorithm 9) to compute Ψ(0
0
1

0
), Ψ(0

0
), and Ψ(1

0
) can be

merged into one.
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or 1
0
= 0 because Eq. (2) has a factor 0

0
1

0
. Hence in com-

puting the intermediate result (Ψ(0
0
1

0
) −Ψ(0

0
) −Ψ(1

0
) +

Ψ(1)) in Eq. (2), we may assume that 0
0
≠ 0 and 1

0
≠ 0 be-

cause even if 0
0
= 0 or 1

0
= 0, we have mcarry(0

0
, 1

0
) = 0

correctly by multiplying the intermediate result by 0
0
1

0
last.

Thus actually we can use a slightly more lightweight vari-

ant of Algorithm 9 to compute Ψ(G) in which we need only

two packed plaintexts ) = [(Ψ(1), Ψ(2), . . . ,Ψ(#))] and

) ′ = [(Ψ(# + 1), Ψ(# + 2), . . . ,Ψ( C − 1︸︷︷︸
2#

))] and can go

without ) ′′†.

3.7.4 Comparison

We compute one (BFV) ciphertext representing the com-

parison result (� < �) ∈ {0, 1}. We note that with the

plaintext space ZC2 , the plaintext integers can be viewed as

both unsigned numbers in [0, C2 − 1] and signed numbers in

[− C2−1
2

, C2−1
2
]. We handle both cases.

(1) Case of Unsigned Number Encoding

In this encoding, we let ZC2 = {0, 1, . . . , C2 − 1}, and then we

can compute (� < �) simply by the digit-by-digit compari-

son as

(� < �) = (01 = 11) × (00 < 10) + (01 < 11), (3)

where (0
1
< 1

1
) and (0

0
< 1

0
) can be computed (in par-

allel) similarly to X = (0
0
≥ 1′) computed in §3.7.2††, and

(0
1
= 1

1
) can be computed as 1 − (0

1
− 1

1
)C−1 mod C with

repeated squaring.

(2) Case of Signed Number Encoding

In this encoding, {0, 1, . . . , C2 − 1} is viewed as

{0, 1, . . . , C
2−1
2

, − C2−1
2

, − C2−1
2
+ 1, . . . ,−2, −1}. Here we

can take the approach similar to that in §3.7.2. We note that if

� and � have the same sign, the final output is (� < �) com-

puted just by Eq. (3), but if � and � have the different signs,

the final output should be (� ≤ C2−1
2
) (i.e., (� < �) = 1

if and only if � is non-negative). Hence first we compute

_ = (� ≤ C2−1
2
), \ = (� ≤ C2−1

2
) and (� < �) (in parallel)

by using Eq. (3) where†††

_ =

(
� ≤ C2 − 1

2

)
= 1 −

(
C2 − 1

2
< �

)
∈ {0, 1}

†Accordingly we use One-HotSlot(J0−1K) and One-HotSlot(J0−
1 − #K) in Steps 1 and 2 of Algorithm 9 respectively.
††We note that, e.g., (01 < 11) = 1 − (01 ≥ 11).
†††Since C2−1

2
is a known value, we can compute, e.g., ( C2−1

2
<

�) as (
C2 − 1

2
< �

)
= (# = 01) × (# < 00) + (# < 01)

= (# = 01) × (# + 1 ≤ 00 ≤ C − 1)+
(# + 1 ≤ 01 ≤ C − 1)

by simplifying Eq. (3) with (a variant of) Algorithm 5 as in §3.7.2.

\ =

(
� ≤ C2 − 1

2

)
= 1 −

(
C2 − 1

2
< �

)
∈ {0, 1}

C2 − 1

2
= #C + # = (#, #)C .

Then we can compute the final output (� < �)final ∈ {0, 1}
by

(� < �)final = (_ = \)︸ ︷︷ ︸
�, � have same sign

×(� < �) + (_≠ \) × \

= (1 − (_ − \)2) × (� < �) + (_ − \)2 × \
= (1 − _ + 2_\ − \) × (� < �) − _\ + \

(∵ _, \ ∈ {0, 1}).

3.7.5 Subtraction

We compute the ciphertexts of two digits of �− � mod C2 =
(B

1
, B

0
)C in the base-C representation. Given the ciphertext of

�, it is usually easy to obtain the ciphretext of−� in FHE, but
in our setting of ZC2 , we need an additional task of obtaining

C2 − � before computing �− � mod C2. If 1
0
≠ 0, C2 − � can

be computed by column subtraction with C2 = (C − 1) × C + C
as

C − 1 C

− 1
1

1
0

(−1 − 1
1

mod C) (−1
0

mod C),

and if 1
0
= 0, with C2 = C × C + 0 as

C 0

− 1
1

0

(−1
1

mod C) 0.

As a result, we observe C2 − � = (−1
1
− 1C−1

0
, −1

0
)C

(where 1C−1
0
∈ {0, 1}), and can compute

(B1, B0)C = (� − � mod C2) = (� + C2 − �)
= (01, 00)C + (−11 − 1C−1

0 , −10)C mod C2

by using homomorphic (column) addition in §3.7.2.

3.7.6 Univariate Function Evaluation in ZC2

We can compute an arbitrary univariate function 5 : ZC2 →
ZC2 on � = (0

1
, 0

0
)C by performing bivariate function eval-

uation of ZC × ZC → ZC in Algorithm 10 twice (in parallel)

to obtain (B
1
, B

0
)C = 5 (�).

4. Implementation

We show the implementation results of (i) our algorithm in

§3.2 (referred to as Proposal 1), (ii) Algorithm 7 (referred to
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as Proposal 2), (iii) [27] where we adopt the division opera-

tion as a bivariate integer function, and (iv) basic operations

on ZC2 in §3.7.2, 3.7.3, 3.7.4, 3.7.5.

4.1 Implementation Details

Our implementation was done with C++ using multi-

threaded PALISADE [1]. The PC used for the experiment

was Ubuntu 20.04 OS with Ryzen 5 3600@3.6GHz CPU (6

cores, 12 threads) and 128 GB RAM. We note that the run-

time required for precomputation and the run-time required

to read the precomputation results from the file are not in-

cluded. The FHE scheme we use is PALISADE’s BFVrns,

and the securityLevel variable is set to HEStd 128 classic as

a security parameter. In the implementation of [27] without

a packing method, for each bit length ℓ of input integers,

i.e., for the input domain size 2ℓ , the smallest prime greater

than 2ℓ can be used as a plaintext modulus C. On the other

hand, since our scheme uses a packing method, the plain-

text modulus is fixed as C = 2# + 1 where # = 215 in our

implementation.

4.2 Experimental Result

Table 4 shows the results of our experiment (corresponding to

(i), (ii), and (iii)) where !0, !1 and !2 are the level parameter

required by [27], Proposal 1 and Proposal 2 respectively. The

level parameter should be at least the multiplicative depth the

underlying algorithm requires.

Table 5 shows the run-times of plaintext-ciphertext

multiplication (pt × ct), ciphertext-ciphertext addition (ct

+ ct), ciphertext-ciphertext multiplication (ct × ct), and

MakePackedPlaintext respectively where the plaintext mod-

ulus is C = 216 + 1 and ! is the level parameter.

Table 4 Run-Time (s) of Bivariate Function 5 : Z2ℓ × Z2ℓ → Z2ℓ

ℓ !0 !1 !2 [27] Proposal 1 Proposal 2

3 4 4 17 0.65 0.61 10.74

4 5 5 17 1.75 1.27 11.00

5 6 6 17 6.44 3.76 11.74

6 7 7 17 18.89 10.96 12.56

7 8 8 17 69.62 36.35 14.52

8 9 9 17 268.33 131.82 16.01

9 10 10 17 1083.41 537.65 20.79

10 11 11 17 4236.46 2140.61 25.90

11 12 12 17 43703.7 21499.1 38.86

12 - - 17 - - 57.49

13 - - 17 - - 98.72

14 - - 17 - - 163.28

15 - - 17 - - 306.93

Table 5 Run-Time (ms) of Each Basic Operation

! pt × ct ct + ct ct × ct MakePackedPlaintext

4 0.30 0.67 17.35 0.57

5 0.33 0.77 17.21 0.62

6 0.31 0.75 19.17 0.63

7 0.33 0.86 20.67 0.63

8 0.67 0.63 23.56 0.69

9 0.30 0.98 22.69 0.72

10 0.57 0.62 24.95 0.81

11 0.44 0.68 25.66 0.76

12 0.53 1.63 58.73 1.64

13 0.43 2.14 66.28 1.79

14 0.47 1.81 67.20 1.80

15 0.49 2.35 74.98 1.91

16 0.47 2.35 74.82 1.91

From Table 4, we can see that Proposal 1 (our improved

version of [27]) is faster than Proposal 2 when ℓ ≤ 6, †

but Proposal 2 outperforms Proposal 1 when ℓ ≥ 7. Al-

though Proposal 1 halves the number of polynomial eval-

uations compared to the prior work [27], the estimation††

based on Tables 2 and 5 indicates that the run-time of Pro-

posal 1 with ℓ = 15 (i.e., input domain size # = 215) is

about 58.7 days in our experimental environment and it also

means that the run-time of the prior work [27] is about 117.3

days, which can be prohibitively inefficient. The estimated

amortized run-time (corresponding to the run-time per slot)

is 154.8 seconds in Proposal 1 when ℓ = 15, and unless

the parallel computation needs more than about 16523 slots,

Proposal 2 can be more advantageous.
Table 6 shows the results of our experiment (corre-

sponding to (iv))††† of EvalAdd′ in §3.7.2, EvalMult′ in
§3.7.3, EvalUnsignedComp in §3.7.4 (1), EvalSignedComp
in §3.7.4 (2), and EvalSub′ in §3.7.5. Here ! is the multi-
plicative depth necessary for each operation.

Table 6 Run-Time (s) of Extended Operations in ZC2

Operation ! Time (s)

EvalAdd′ 18 14.57

EvalMult′ 18 17.76

EvalUnsignedComp 19 26.42

EvalSignedComp 20 49.15

EvalSub′ 18 15.96

5. Conclusion

In this work, we improved the efficiency of the prior work

†The reason for this comes from the difference in the key gen-
eration part. Proposal 2 requires additional key generation for au-
tomorphism mappings (equivalent to PALISADE’s EvalAutomor-
phismKeyGen). The automorphism keyGen always takes about 7.3
seconds in our experimental environment regardless of ℓ in Pro-
posal 2, whereas it takes only 0.1 seconds in Proposal 1 and [27].
Hence Proposal 1 is finished during the key generation in Proposal
2 in these cases.
††In our experimental environment, the estimated run-times tend

to be smaller than the real run-times.
†††Although there are several parts that can be computed in par-

allel, the computations are done sequentially as a baseline.
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[27] for homomorphically evaluating arbitrary bivariate in-

teger functions. We decreased the number of polynomial

evaluations, thereby halving the run-time of the prior work

[27]. We also proposed another algorithm for homomorphi-

cally evaluating arbitrary bivariate integer functions with a

relatively large input domain size (Z# × Z# → Z# ) by ex-

ploiting the packing technique instead of enabling the SIMD

operation. Further we showed that the input domain size

can be extended such that the bivariate function is of type

ZC×ZC → ZC and the univariate function is of typeZC2 → ZC2

(where C is the plaintext modulus) with a relatively moderate

overhead.
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[9] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homo-

morphic encryption in less than a second. In Eurocrypt, pages 617–

640. Springer, 2015.

[10] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully

homomorphic encryption. Cryptology ePrint Archive, Report

2012/144, 2012.

[11] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

STOC, pages 169–178. ACM, 2009.
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Appendix A: Applying Bootstrap Procedure

The limitation of our scheme is that it consumes a rela-

tively large multiplicative depth, and it is roughly log2 (C −1)
where C is a plaintext modulus. In our experiments with

PALISADE’s BFVrns, the maximal depth is 23 with the set-

ting (#, C) = (215, 216+1) and the maximal depth is 42 with

the setting (#, C) = (215, 3 × 218 + 1). To have the more re-

maining depth, one possible solution is of course to apply the

general bootstrap procedure [4], assuming that FHE appli-
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cations we deal with do not require real-time response. An-

other possibility is to apply the more lightweight TFHE-style

bootstrap procedure [7]†, assuming that the bootstrapped ci-

phertext has the plaintext in only one slot. The message

encoding method of BFV is essentially the same as TFHE,

i.e., the encoding of 0 ∈ Z# (⊂ ZC ) from the improved BFV

variant [20] is
⌊ @
C
· 0

⌉
∈ Z@ , so in general the TFHE-style

bootstrap procedure can be applied, but there is an issue we

need to address. When the input domain size is Z# , we

need to have a ciphertext space Z@ [-]/(-# ′ + 1) during the

TFHE-style bootstrap procedure where # ′ > # because # ′

needs to have “finer granularity” to tolerate and remove the

noise, but this can damage the efficiency of bootstrapping.

To keep # ′ = # , the plaintext in the bootstrapped ciphertext

should not be so large, so we homomorphically decompose

the plaintext into the base-3 representation where 3 ≪ # ,

and the ciphertext of each digit is bootstrapped to be com-

bined later. This digit decomposition can be done simultane-

ously in a univariate/bivariate function 5 we originally want

to compute. Now we briefly describe the procedure assum-

ing the reader’s familiarity with the TFHE-style bootstrap

procedure.

1. Let 5 (G, ~) : Z# × Z# → Z# be the bivariate function

we originally want to compute. Then we define func-

tions { 58 (G, ~)}0≤8≤ℓ−1
where ℓ = ⌊log3 (# − 1)⌋ + 1

such that if I = 5 (0, 1) and the base-3 representation

of I is (I
ℓ−1

, I
ℓ−2

, . . . , I8 , . . . , I1
, I

0
)
3
, then

58 (0, 1) = # ·

I′
8︷                        ︸︸                        ︷⌊

1

2
· 1

3
· C

2
+ 1

3
· C

2
· I8

⌉
︸                        ︷︷                        ︸

< C
2

mod C.

The reason why we have 58 (0, 1) = # ·I′8 mod C instead

of 58 (0, 1) = I′8 comes from the technicality of letting I′8
correspond to the constant term as in Eq. (1). The reason

why I′8 <
C
2

is necessary is that the TFHE-style bootstrap

procedure has the “negacyclicity” constraint. The value

58 (0, 1) is determined such that I8 ∈ {0, 1, . . . , 3 − 1}
is mapped to the center of the I8-th block of width 1

3
· C

2
.

2. After computing 58 with Algorithm 7 but without††

invoking EvalSum in Step 13, we obtain the ciphertext

ct
8,BFV

encrypting a polynomial whose constant term is

I′8 . Next by applying TFHE’s SampleExtract to ct
8,BFV

,

we obtain the LWE ciphertext ct
8,LWE

whose plaintext

is
⌊ @
C
· I′8

⌉
+ 4 where 4 is the noise to be removed.

3. To apply the TFHE-style bootstrap procedure called

“functional bootstrapping” to ct
8,LWE

with TFHE’s

BlindRotate, we use the following test polynomial†††

{8 (-),

†We note that this bootstrap procedure can also be used in the
setting different from the torus as in [22], [25].
††We avoid EvalSum for efficiency reason.
†††This is also known as a test vector.

{8 (-) =

coef. {
8,:

=
⌊ @
C
· 0 · 38

⌉
︷                          ︸︸                          ︷
{8,0 + {8,1- + {8,2-2 + · · ·︸                          ︷︷                          ︸

width #
3

+

coef. {
8,:

=
⌊ @
C
· 1 · 38

⌉
︷                   ︸︸                   ︷
· · · · · ·︸                   ︷︷                   ︸

width #
3

+ · · · +

coef. {
8,:

=
⌊ @
C
· (3 − 1) · 38

⌉
︷                  ︸︸                  ︷
+ {8,#−1-

#−1︸                  ︷︷                  ︸
width #

3

.

As a result, we obtain the BFV ciphertext ct′
8,BFV

en-

crypting a polynomial whose constant term is I8 · 38 ∈
Z# (⊂ ZC ) (corresponding to

⌊ @
C
· I8 · 38

⌉
∈ Z@).

4. We compute the BFV ciphertext ct′
BFV
← ∑ℓ−1

8=0 ct′
8,BFV

encrypting a polynomial whose constant term is the

result of 5 (G, ~) ∈ Z# .

5. We apply SampleExtract to ct′
BFV

and obtain the LWE

ciphertext ct′
LWE

whose plaintext is the result of 5 (G, ~).
Further by applying TFHE’s TLWE-to-T(R)LWE algo-

rithm [7] to ct′
LWE

, we obtain the BFV ciphertext ct′′
BFV

†††† encrypting a polynomial consisting of only a con-

stant term corresponding to the result of 5 (G, ~).
Implementing the above procedure in PALISADE [1] with

the instantiated parameters can be a challenging task, and

investigating the viability of implementing the combination

of our approach and the TFHE-style bootstrap procedure is

left as future work.
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