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Long Short-Team Memory for Forecasting Degradation Recovery
Process with Binary Maintenance Intervention Records

Katsuya KOSUKEGAWA†, Nonmember and Kazuhiko KAWAMOTO†a), Member

SUMMARY We considered the problem of forecasting the degradation
recovery process of civil structures for prognosis and health management.
In this process, structural health degrades over time but recovers when
a maintenance intervention is performed. Maintenance interventions are
typically recorded in terms of date and type. Such records can be represented
as binary time series. Using binary maintenance intervention records, we
forecast the process by using Long Short-Term Memory (LSTM). In this
study, we experimentally examined how to feed binary time series data into
LSTM. To this end, we compared the concatenation and reinitialization
methods. The former is used to concatenate maintenance intervention
records and health data and feed them into LSTM. The latter is used to
reinitialize the LSTM internal memory when maintenance intervention is
performed. The experimental results with the synthetic data revealed that
the concatenation method outperformed the reinitialization method.
key words: degradation recovery process, maintenance intervention, time
series forecasting, long short-term memory

1. Introduction

Civil structures, such as railroad tracks, degrade over time
owing to the wear, corrosion, rupture, and deformation of
components. To maintain such structures, human operators
monitor their health and repair them if necessary. Forecast-
ing the structure health is critical for project and health man-
agement [1], [2] rather than reactivemanagement because the
operators can determine whether maintenance interventions
are necessary, in advance.

For prognostics and health management, we consider
the problem of forecasting a degradation recovery process,
as shown in Fig. 1 (top). In this process, the structure health
degrades over time but recovers when maintenance inter-
vention is performed. Maintenance interventions are typ-
ically recorded in terms of date and type. In this study,
we represented such records as a binary time series such
as [0,0,1,0,0, . . .], indicating that maintenance intervention
was performed on the third day.

We propose a long short-term memory model (LSTM)
[3] to predict the degradation recovery process using binary
maintenance intervention records. There are several possible
ways to feed such binary time series data into LSTM. How-
ever, these inputmethods have not been sufficiently explored.
We experimentally compared two methods for inputting the
maintenance intervention records in LSTM using synthetic
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data. One is the concatenation of maintenance intervention
records and health data and feeding them into LSTM [4]. A
concatenation method is a straightforward approach to deep
learning. The other is to re-initialize the LSTM internal
memory when performing maintenance intervention. This
method re-initializes LSTM each time some maintenance
intervention is performed. Thus, LSTM can focus on fore-
casting degradation processes. Experimental results using
synthetic data exhibit that the first concatenationmethod out-
performed the second initializationmethod. Furthermore, an
ablation study with various observation noise levels revealed
that both methods provide better performance than LSTM
without the maintenance intervention records. The main
contributions of this study are summarized as follows:

• We revealed that the concatenationmethod outperforms
the initialization method in forecasting performance.

• We demonstrated that the binary maintenance interven-
tion records contribute to improving forecasting perfor-
mance. This result shows that LSTM can be learned
from binary time series data.

2. Method

In this section, we formulate the problem of forecasting the
degradation recovery process with maintenance interven-
tions. Then, we describe the proposed methods for inputting
maintenance intervention data into LSTM.

2.1 LSTM Model for Forecasting

We denote the health of the structure at time t as x∗t ∈
[0,1], where x∗t = 1 indicates the best health and a lower
x∗t indicates worse health. We assume that the operators
observe noisy health xt as xt = x∗t + εt , where x∗t is the
ground truth and εt is Gaussian noise with zero mean.

This study considered two maintenance interventions:
partial repair and replacement [5]. If either a partial repair
or replacement is performed, the health of the structure is
restored. The difference between the two interventions was
that the degradation rate after the replacement was lower
than that after partial repair because replacement refers to the
replacement of an entire structure with a new one. We denote
partial repair and replacement at time t as pt,rt ∈ {0,1},
respectively, where pt and rt take one exclusively, and pt = 1
or rt = 1 indicates that the intervention was performed.

We aimed to build an LSTM based forecasting model
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Fig. 1 Example of experimental results. The top figure shows a time series of observations for the
degradation recovery process. The other figures show the residuals between the ground truth and
the predictions by (second) the vanilla LSTM, (third) the reinitialization method, and (bottom) the
concatenation method, respectively.

x̂t+1 = f (xt−T+1:t, pt−T+1:t,rt−T+1:t ; θ), where we denote
xt−T+1:t = {xt−T+1, . . . , xt }, pt−T+1:t = {pt−T+1, . . . , pt },
and rt−T+1:t = {rt−T+1, . . . ,rt }, respectively, and θ is pa-
rameters of the LSTM. We set T = 10 during the experi-
ments. To determine the optimal parameter θ̂, we minimize
the squared loss function with respect to θ:

L(θ) =
1

N − T + 1

N∑
t=T

(xt+1 − x̂t+1)
2 → min, (1)

where N is the length of time series data.

2.2 Inputting Binary Maintenance Intervention Records

We examined two methods for inputting maintenance in-
tervention records pt,rt into the LSTM: concatenation and
reinitialization.
Concatenation: This method concatenates the health obser-
vation xt and maintenance records pt,rt as x̃t = (xt, pt,rt ).
The concatenated vector x̃t is inputted into the first layer of
LSTM. Although the LSTM is not explicitly trained to esti-
mate the recovery timing and the degradation rate, we expect
that the LSTM can capture degradation-recovery patterns as
part of its internal representations owing to its ability to learn
temporal dependencies.
Reinitialization: This method reinitializes the memory cell
ct and hidden state ht of LSTMwhen a partial repair (pt = 1)
or replacement (rt = 1 ) is performed as follows:

ht+1 =

{
h′
t+1(1 − pt ) + h(p)initpt for partial repair

h′
t+1(1 − rt ) + h(r)initrt for replacement

(2)

ct+1 =

{
c′
t+1(1 − pt ) + c(p)initpt for partial repair

c′
t+1(1 − rt ) + c(r)initrt for replacement

(3)

where h′
t+1, c

′
t+1 are the outputs of the vanilla LSTM cell,

and h(p)init, h
(r)
init, c

(p)
init, c

(r)
init are learnable reinitialization parame-

ters. These parameters are learned during back-propagation
for Eq. (1); the gradients ∂L/∂h(∗)init and ∂L/∂c(∗)init, where ∗
indicates either p and r, are used in back-propagation when
either intervention is performed. This reinitialization is in-
tended to initialize the LSTM model each time the mainte-
nance interventions were also administered. Thus, LSTM
focuses on forecasting the degradation process.

3. Experiments

We experimentally compared the two methods for inputting
maintenance intervention data into LSTM using the degra-
dation recovery process.

3.1 Experiments Setting

We independently generate 18 time series data with N =
500 lengths using a degradation-recovery process based on
geometric Brownian motion [6] described in Appendix. For
random noise εt , we use normal distributions N(0, σ2) with
σ = 0.01,0.03,0.05,0.07,0.09. We divide the 18 time series
data into six for training, two for validation, and ten for
testing. Figure 1 (top) shows a test time series data for
σ = 0.05. In the figure, the green and red vertical lines
indicate that partial repair and replacement were performed.

For training LSTMs, we used the Adam optimizer [7]
with hyperparameters (β1, β2) = (0.9,0.999). We set the
batch size to 16 and the number of epochs to 100. We use
themean squared error loss. UsingOptuna [8], we optimized
the following hyperparameters of LSTM: number of hidden
units, number of layers, dropout rate, and learning rate.
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Table 1 Comparison results of RMSE with the vanilla LSTM, the reinitialization method, and the
concatenation method. The best RMSEs for each noise level are highlighted in bold.

3.2 Evaluation Metrics

As the evaluation metric, we used the root mean squared
error (RMSE) as follows:

L =

√√√
1

(N − T)M

N∑
t=T+1

M∑
m=1

(
x∗(m)t − x̂(m)t

)2
, (4)

where M is the number of time series data for testing, set
to M = 10, and x∗(m)t and x̂(m)t are the ground truth and
predictionat time t of mth time series data, respectively.

3.3 Experiment Results

Table 1 lists the RMSEs for vanilla LSTM, LSTM with
reinitialization, and LSTM with concatenation. The vanilla
LSTM was trained using only the health time series, while
the other two methods use maintenance intervention records
of partial repairs and replacements. Their results indicated
that the concatenation method provided the best forecasting
performance. Figure 1 show example results for the noise
level σ = 0.05. The second, third, and bottom rows show
the residuals between the ground truth and predictions by
vanilla LSTM reinitialization and concatenation methods,
respectively.

From Fig. 1 (second), vanilla LSTM provides poor pre-
dictions, especially at and after the interventions, indicated
for green and red vertical lines, respectively; This was be-
cause the vanilla LSTM was not provided with maintenance
intervention records. Contrary, from Fig. 1 (third and bot-
tom), the other two methods provided better predictions than
the vanilla LSTM; This indicates that binary records are use-
ful for forecasting the jumps in the time series data. When
comparing the reinitializationmethodwith the concatenation
method, the latter had smaller RMSEs for all noise levels,
as shown in Table 1. From Fig. 1 (third and bottom), the
reinitialization method (third) yields worse predictions than
the concatenation method (bottom), especially after the re-
placement indicated by the red vertical lines, e.g. after time
300. Although the reinitialization method learns the initial
parameters, h(p)init, h

(r)
init, c

(p)
init, c

(r)
init, its LSTM always attempts to

forecast the degradation process similarly, thereby degrading
performance.

4. Conclusion

We considered the degradation recovery process and exam-
ined feeding binary maintenance intervention records into

LSTM. Experiments using synthetic data demonstrated the
following: a binary representation is learnable for forecasting
the process involving jumps through maintenance interven-
tion. Furthermore, the concatenation method is a promising
way to input such binary time series data into LSTM. This
finding is useful for the development of a deep model for
forecasting using data represented by binary time series.
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Appendix: Degradation Recovery Process

We define a degradation recovery process for structural
health as follows. During the degradation process, we
use the geometric Brownian motion (GBM) [6], which is
a stochastic process given by a stochastic differential equa-
tion as dxt = µxtdt + σxtdWt , where Wt is the Brownian
motion and µ,σ are drift and volatility parameters, respec-
tively. Using Ito’s formula, the solution of GBM is given
as xt = x0 exp (τt − σWt ), where τ = µ − σ2/2. Using the
solution, we define the health degradation process as follows:
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x∗t = x0 exp (−τ(t − s) − σWt−s) (A· 1)

where x0 denotes the initial health state, t is the current
time and s(< t) denotes the time of the last maintenance
intervention, where τ denotes the degradation rate. The
higher the τ, the faster the degradation. In addition, Gaussian
noise εt ∼ N(0, σ2) is added to x∗t as xt = x∗t + εt .

During the recovery process, we sampled x0 in
Eq. (A· 1) from the normal distribution N(1,0.032). The
recovery process occurs when either partial repair or re-
placement is performed. Partial repairs and replacements
had varying effects on the degradation rate τ. The partial
repair increases the degradation rate as τ′ = τ + τd + ετ , τd
is the incremental rate and ετ ∼ N(0,0.052). This increment
increases τ each time a partial repair is performed, resulting

in faster degradation. In contrast, replacement resets the in-
creased degradation rate as τ′ ∼ N(1.0,0.052). The choice
of partial repair or replacement and its timing were deter-
mined as follows. If xt < Ld and τ > 2.5, the replacement
is performed immediately because the structure is severely
degraded and in danger. If xt < Ld and τ < 2.5, we perform
partial repair because the degradation rate is not very high.
Conversely, if xt > Lm, we perform neither partial repair
nor replacement. This becomes slightly more complicated
when Ld ≤ xt ≤ Lm. In this case, the structure is degraded
but is not in severe danger. Therefore, we do not always per-
form maintenance interventions; instead, we decide whether
to perform them probabilistically. We selected partial repair
and replacement, each with a probability of 0.5.


