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PAPER
Quantized Gradient Descent Algorithm for Distributed Nonconvex
Optimization

Junya YOSHIDA†, Nonmember, Naoki HAYASHI††a), and Shigemasa TAKAI†, Members

SUMMARY This paper presents a quantized gradient descent algorithm
for distributed nonconvex optimization in multiagent systems that takes into
account the bandwidth limitation of communication channels. Each agent
encodes its estimation variable using a zoom-in parameter and sends the
quantized intermediate variable to the neighboring agents. Then, each agent
updates the estimation by decoding the received information. In this paper,
we show that all agents achieve consensus and their estimated variables
converge to a critical point in the optimization problem. A numerical
example of a nonconvex logistic regression shows that there is a trade-off
between the convergence rate of the estimation and the communication
bandwidth.
key words: multiagent system, distributed nonconvex optimization, coop-
erative control

1. Introduction

Recently, distributed optimization in multiagent systems has
attracted tremendous attention in various engineering fields
such as machine learning and sensor networks [1]. In multi-
agent systems, devices called agents attempt to find a global
solution by cooperatively communicating with each other
[2], [3]. In convex optimization, subgradient algorithms on
various types of network topologies have been proposed [4]–
[11]. For nonconvex problems, distributed algorithms have
also been explored in many research articles [12]–[18].

These studies implicitly assume that the communica-
tion bandwidth is sufficient for successful application of their
algorithms. In practice, however, the information between
agents is transmitted with limited bandwidths [19]–[22]. For
convex optimization, Yuan et al. proposed a distributed dual
averaging method with quantized communication [23]. Yi
and Hong proposed an encoding-decoding scheme using the
zoom-in technique on time-varying undirected graphs [24].
Pu et al. investigated a distributed proximal-gradient method
for multiagent systems whose communication channel has a
finite data rate [25]. Li et al. presented a distributed algo-
rithm on time-varying directed graphs with quantized com-
munication [26]. Kajiyama et al. proposed a distributed op-
timization method with quantized communication to achieve
linear convergence [27]. In [28]–[31], distributed optimiza-
tion algorithms with quantized and event-triggered commu-
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nication was proposed. Although the optimization method
with quantized communication has been extensively consid-
ered for the convex case, the essentially different approach is
required for the analysis of the algorithms for nonconvex op-
timization. The authors of [32]–[34] considered distributed
stochastic quantization algorithms with a sign coding func-
tion. The authors of [35] proposed a distributed nonconvex
optimization algorithm with compressed communication.

The main research contribution of this paper is to inves-
tigate a distributed quantized algorithm for a smooth noncon-
vex problem in an undirected time-invariant graph. The pro-
posed method uses an encode-decode scheme and a zoom-in
technique [24]. Each agent encodes the real-valued estima-
tion to the closest integer and decodes the received quantized
information to estimate the variables of other agents. After
the quantized communication, each agent updates its estima-
tion by a distributed gradient descent algorithm. We show
that the estimations of all the agents converge to a criti-
cal point in the nonconvex optimization problem. We also
consider a parameter setting that guarantees consensus be-
tween agents and convergence to a critical point even when
communication is performed at a lower quantization level.
To handle the nonconvexity of the local cost functions and
the quantization error of the local communication between
agents, we utilize the descent property of the cost functions
in [36] under the assumption of their smoothness property.
The proposed algorithm can be implemented in a distributed
manner without using a global communication or a worker-
server architecture in [32]–[34]. The quantized algorithms
for distributed nonconvex optimization have been considered
in [35]. Compared with this method, the proposed method
clarified the relation between the step-size parameter and the
possible quantization level of quantizers. In particular, we
show that the proposed algorithm can be implemented with
three-level quantizers.

This paper is organized as follows: Section 2 introduces
the problem setting and the distributed quantized algorithm.
Section 3 presents the convergence analysis of the proposed
algorithm. Section 4 shows a numerical example of a non-
convex logistic regression. Section 5 concludes this paper.

2. Problem Formulation

Let R, N, and Z be the sets of real numbers, non-negative in-
tegers, and integers, respectively. dae represents the smallest
integer greater than or equal to a ∈ R. For a vector x ∈ Rp ,
xq or [x]q shows the q-th element of x. The Euclidean
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norm and the infinity norm of a vector x ∈ Rp are given
by ‖x‖ =

√
xT x and ‖x‖∞ = max1≤q≤p |xq |, respectively.

For a matrix A ∈ Rn×n, ai j or [A]i j represents the (i, j)-th
element of A.

2.1 Nonconvex Optimization

We consider the following nonconvex optimization problem
with n agents:

minimize
w∈Rp

F(w) =
n∑
i=1

fi(w), (1)

where fi : Rp → R is a local differentiable objection func-
tion that is not necessarily convex (i ∈ V = {1,2, . . . ,n}).

Assumption 1: There exists a positive constant Cg such
that ‖∇ fi(x)‖ ≤ Cg for all i ∈ V and x ∈ Rp . Moreover, fi
is L-smooth for all i ∈ V.

Each agent communicates over a time-invariant undi-
rected graphG = (V,E), where E is the set of edges that rep-
resents communication between agents. The neighborhood
of an agent i is defined as Ni = { j ∈ V | {i, j} ∈ E} ∪ {i}.
The maximum number of neighboring agents is represented
by N̂ = maxi∈V |Ni |, where |Ni | is the number of elements
in Ni .

Assumption 2: The graph G is connected.

We consider a weight matrix A = [ai j] ∈ Rn×n whose
elements represent the weights on the communication link.

Assumption 3: There is a positive scalar θ ∈ (0,1) such
that

ai j =

{
aji (> θ) if j ∈ Ni,

0 otherwise.

Assumption 4: The elements of theweightmatrix A satisfy
that

∑n
j=1 ai j = 1 for all i ∈ V and

∑n
i=1 ai j = 1 for all j ∈ V.

Assumptions 3 and 4 show that the weight matrix is
doubly stochastic. In this paper, the maximum weight is
defined as â = maxi, j∈V ai j .

2.2 Distributed Quantized Algorithm

In this subsection, we consider a distributed quantized sub-
gradient algorithm for the nonconvex optimization problem
(1). At iteration k ∈ N, each agent i converts the real-valued
estimation wi[k] ∈ Rp to the quantized data yi[k] ∈ Zp

by its encoder Q. The quantized value with the encoder
Q = [q([x]1),q([x]2), . . . ,q([x]p)]T is given by

yi[k] = Q

(
wi[k] − w

Q
i [k − 1]

h[k]

)
(2)

with

q([x]q) =


0 if − 1

2 < [x]q ≤
1
2 ,

M if M − 1
2 < [x]q ≤ M + 1

2 ,

K if K − 1
2 < [x]q,

−q(−[x]q) if [x]q ≤ − 1
2 ,

where wQ
i [k] is the internal variable of agent i, h[k] is the

zoom-in parameter, and M = 1,2, . . . ,K − 1. Then, agent i
sends the encoded data yi[k] to the neighboring agents.

At the same time, agent i receives yj[k] from the neigh-
boring agent j ∈ Ni and decodes it with the zoom-in param-
eter as follows:

wQ
j [k] = h[k]yj[k] + w

Q
j [k − 1]. (3)

Let ei[k] be the quantization error of agent i at time k, that
is,

ei[k]

= Q

(
wi[k] − w

Q
i [k − 1]

h[k]

)
−
wi[k] − w

Q
i [k − 1]

h[k]
.

Then, we have

wQ
i [k] = wi[k] + h[k]ei[k]. (4)

We note that, if ‖(wi[k]−w
Q
i [k −1])/h[k]‖∞ ≤ K +1/2, the

encoder does not cause saturation, that is, ‖ei[k]‖∞ ≤ 1/2
holds.

After the quantized communication, agent i updates the
estimation by

wi[k + 1] = wi[k] − d
n∑
j=1

ai j(w
Q
i [k] − w

Q
j [k])

− α[k]∇ fi(wi[k]), (5)

where d > 0 is a gain parameter. We make the following as-
sumption about the step size α[k] and the zoom-in parameter
h[k].

Assumption 5: The step-size satisfies limk→∞ α[k] = 0,∑∞
k=0 α[k] = ∞, and

∑∞
k=0 α

2[k] < ∞. The zoom-in param-
eter h[k] satisfies limk→∞ h[k] = 0 and

∑∞
k=0 h2[k] < ∞.

3. Convergence Analysis

First, we introduce the preliminary lemmas describing the
convergence property of nonnegative sequences [6].

Lemma 1: Let {µ[k]} be a positive scalar sequence. If
limk→∞ µ[k] = 0, then we have limk→∞

∑k
`=1 λ

k−`µ[`] = 0,
where 0 < λ < 1. Moreover, if

∑∞
k=1 µ[k] < ∞, then∑∞

`=1
∑`

r=1 λ
`−r µ[r] < ∞.

Lemma 2: Suppose that {X[k]}, {Y [k]}, and {Z[k]} are
the sequences of the nonnegative scalars. Suppose also that
Y [k+1] ≤ Y [k]−X[k]+Z[k] for all k ∈ N and

∑∞
k=1 Z[k] <

∞. Then, {Y [k]} converges to a finite value and
∑∞

k=1 X[k] <
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∞.

The next lemma shows that the estimations of the agents
converge to their average.

Lemma 3: Under Assumptions 1–5, if agents update their
estimations by (5) and ‖ei[k]‖∞ ≤ 1/2 for all i ∈ V and
k ∈ N, then we have

lim
k→∞
‖wi[k] − w̄[k]‖ = 0, (6)

where w̄[k] = (1/n)
∑n

i=1 wi[k].

Lemma 3 can be proven in the same way as Lemma 8
in [4], and the proof is omitted in this paper.

The next theorem presents the convergence of the esti-
mation of each agent to a critical point.

Theorem 1: Under Assumptions 1–5, if ‖ei[k]‖∞ ≤ 1/2
for all i ∈ V and k ∈ N, then lim infk→∞

∑n
i=1 ∇ fi(w̄[k])

 =
0. Moreover, if each fi is twice differentiable and
‖∇2 fi(ξ) − ∇2 fi(ζ)‖ ≤ γ‖ξ − ζ ‖ for all ξ, ζ ∈ Rp , we
have limk→∞

∑n
i=1 ∇ fi(w̄[k])

 = 0, where γ is a positive
constant.

Proof : We consider the weight matrix B = [bi j] ∈ Rn×n

such that

bi j =

{
dai j if i , j,
1 − d

∑
`∈V\{i } ai` if i = j .

We note that the weight matrix B is also doubly stochastic.
Therefore, under Assumptions 2–4, for all i, j ∈ V and
k,r ∈ N with k ≥ r , we have[Bk−r+1]

i j
−

1
n

 ≤ Cβk−r , (7)

where β = 1 − θ/(4n2) and C = 1/β [4].
From (4) and (5), we have

wi[k + 1]

= wi[k] − d
n∑
j=1

ai j(wi[k] − wj[k])

+ dh[k]
n∑
j=1

ai j(ej[k] − ei[k]) − α[k]∇ fi(wi[k])

=

n∑
j=1

bi jwj[k] + dh[k]
n∑
j=1

ai j(ej[k] − ei[k])

− α[k]∇ fi(wi[k]). (8)

If ‖ei[k]‖∞ ≤ 1/2, we have ‖ei[k]‖ ≤
√

p‖ei[k]‖∞ ≤
√

p/2.
Thus, from Assumptions 1, 4, and 5, we have

‖εi[k]‖ ≤
√

pdh[k] +
√

pCgα[k], ∀i ∈ V, ∀k ∈ N,

(9)

lim
k→∞

εi[k] = 0,
∞∑
k=1
‖εi[k]‖2 < ∞, ∀i ∈ V, (10)

where εi[k] = dh[k]
∑n

j=1 ai j(ej[k]−ei[k])−α[k]∇ fi(wi[k]).
From (8), we have w̄[k + 1] = w̄[k]+ (1/n)

∑n
i=1 εi[k] for all

k ∈ N. Thus, from (7), we obtain

‖wi[k + 1] − w̄[k + 1]‖

≤ Cβk
n∑
j=1

wj[0]
 + nC

k−1∑
r=0

βk−r−1 max
i∈V
‖εi[r]‖

+ 2 max
i∈V
‖εi[k]‖ . (11)

Since
∑n

i=1
∑n

j=1 ai j(ej[k] − ei[k]) = 0 from Assumption 2,
we have

∑n
i=1 εi[k] = −α[k]

∑n
i=1 ∇ fi(wi[k]). Then, from

Assumption 1 and the descent lemma (Lemma 2.1 in [36]),
we have

1
n

n∑
i=1

fi(w̄[k + 1])

≤
1
n

n∑
i=1

fi(w̄[k])

+

(
1
n

n∑
i=1
∇ fi(w̄[k])

)T (
1
n

n∑
i=1

εi[k]

)
+

1
2

L

1
n

n∑
i=1

εi[k]

2

≤
1
n

n∑
i=1

fi(w̄[k])

−

(
1
n

n∑
i=1
∇ fi(w̄[k])

)T (
α[k]

n

n∑
i=1
∇ fi(w̄[k])

)
−

(
1
n

n∑
i=1
∇ fi(w̄[k])

)T

(
α[k]

n

n∑
i=1
(∇ fi(wi[k]) − ∇ fi(w̄[k]))

)
+ S[k],

where S[k] = c1α
2[k] + c2h2[k] with positive constants c1

and c2. From Assumption 5, we have
∑∞

k=1 S[k] < ∞. Then,
from Assumption 1, we have

1
n

n∑
i=1

fi(w̄[k + 1])

≤
1
n

n∑
i=1

fi(w̄[k]) −
α[k]
n2

 n∑
i=1
∇ fi(w̄[k])

2

+
α[k]LCg

n

n∑
i=1
‖wi[k] − w̄[k]‖ + S[k].

From Lemmas 1 and 2, and (11), (1/n)
∑n

i=1 fi(w̄[k]) con-
verges to a finite value and

∞∑
k=1

α[k]

 n∑
i=1
∇ fi(w̄[k])

 < ∞. (12)
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Then, it follows from Assumption 5 that

lim inf
k→∞

 n∑
i=1
∇ fi(w̄[k])

 = 0. (13)

Moreover, from the assumption about the Lipschitz con-
tinuity of the Hessian of fi , for k ≥ 2, we have

1
n

n∑
i=1
∇ fi(w̄[k + 1])

≤
1
n

n∑
i=1
∇ fi(w̄[k])

+

(
1
n

n∑
i=1
∇2 fi(w̄[k])

) (
1
n

n∑
i=1

εi[k]

)
+

1
2
γ

1
n

n∑
i=1

εi[k]

2

≤
1
n

n∑
i=1
∇ fi(w̄[k]) +

α[k]L
n

 n∑
i=1
∇ fi(wi[k])


+

1
2
γ

1
n

n∑
i=1

εi[k]

2

≤
1
n

n∑
i=1
∇ fi(w̄[k])

+
α[k]L

n

n∑
i=1
‖∇ fi(wi[k]) − ∇ fi(w̄[k])‖

+
α[k]L

n

n∑
i=1
‖∇ fi(w̄[k])‖ +

1
2
γ

1
n

n∑
i=1

εi[k]

2

≤
1
n

n∑
i=1
∇ fi(w̄[k])

+
α[k]L2

n

n∑
i=1

Cβk−1
n∑
j=1

wj[0]


+nC
k−2∑
r=0

βk−r−2 max
i∈V
‖εi[r]‖ + 2 max

i∈V
‖εi[k − 1]‖

}
+
α[k]L

n

n∑
i=1
‖∇ fi(w̄[k])‖ +

1
2
γ

1
n

n∑
i=1

εi[k]

2

,

where the last inequality follows from Assumptions 1 and
(11). Therefore, it follows from (12) and (13) and Lemmas 1
and 2 that limk→∞

∑n
i=1 ∇ fi(w̄[k])

 = 0. �
In Theorem 1, it is assumed that the quantizer does

not cause saturation. The next lemma shows a sufficient
condition for avoiding saturation of the quantizer. To this
end, we introduce a lemma that shows the boundedness of
the sum of a series.

Lemma 4: ForG[k] =
∑k−2

r=0 β
k−r−2

(
k+2
r+1

)δ
with δ > 0 and

k ≥ 2, we have

G[k] ≤

{
β

(
5
4

)δ}k−2 (
6δ − 20δβ
4δ − 5δβ

)
+

10δ

4δ − 5δβ
.

Lemma 4 can be proven in the same way as Lemma A.3
in [24], and the proof is omitted in this paper.

Theorem 2: Suppose that the zoom-in parameter h[k] and
the step-size α[k] are given by h[k] = H

(k+1)δh and α[k] =
A

(k+1)δα for k ∈ N, where H and A are positive constants,
1/2 < δh ≤ δα < 1, and β(5/4)δh ≤ 1. Under Assumptions
1–5 with wi[0] = 0 for all i ∈ V, if K ≥ Ω, we have
‖ei[k]‖∞ ≤ 1/2 for all i ∈ V and k ∈ N, where

Ω = max
{(

d +
1
2
+

ACg
H

)
2δh −

1
2
,

4 · 3δh√pdâN̂
H

(
ACg + dH

)
+

(
d +

1
2
+

ACg
H

) (
3
2

)δh
−

1
2
,

2√p (4nC + 2) dâN̂
H

(
ACg + dH

)
+

(
d +

1
2
+

ACg
H

) (
4
3

)δh
−

1
2

}
. (14)

Proof : We provide the proof by a mathematical induction
on k. For k = 1, we havewi[1] − wQ

i [0]
h[1]


∞

≤
2dâN̂
h[1]

max
i∈V
{wi[0] − w̄[0]}

+

(
d +

1
2

)
h[0]
h[1]

+
α[0]
h[1]
∇ fi(wi[0])

≤

(
d +

1
2
+

ACg
H

)
2δh .

Similarly, for k = 2, we havewi[2] − wQ
i [1]

h[2]


∞

≤
4 · 3δh√pdâN̂

H
(
ACg + dH

)
+

(
d +

1
2
+

ACg
H

) (
3
2

)δh
.

Thus, the statement holds for k = 1,2.
Next, we assume that ‖ei[s]‖∞ ≤ 1/2 for s ≥ 2. Then,

we obtainwi[s + 1] − wQ
i [s]

h[s + 1]


∞

=

wi[s + 1] − wi[s] − h[s]ei[s]
h[s + 1]


∞
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≤

d
∑n

j=1 ai j(wi[s] − wj[s])

h[s + 1]


∞

+

 h[s]ei[s]
h[s + 1]


∞

+

α[s]∇ fi(wi[s])
h[s + 1]


∞

+

dh[s]
∑n

j=1 ai j(ej[s] − ei[s])

h[s + 1]


∞

≤
2dâN̂

h[s + 1]
max
i∈V
‖wi[s] − w̄[s]‖

+

(
d +

1
2

)
h[s]

h[s + 1]
+
α[s]Cg
h[s + 1]

≤
2dâN̂

h[s + 1]

{
nC

s−2∑
r=0

βs−r−2(
√

p(Cgα[r] + dh[r]))

+2
(√

p(Cgα[s] + dh[s])
)}

+

(
d +

1
2
+

ACg
H

) (
4
3

)δh
, (15)

where the last inequality follows from (9) and (11).
From Lemma 4, the first term of the right-hand side of

(15) is given by∑s−2
r=0 β

s−r−2(α[r]Cg + dh[r])
h[s + 1]

≤

∑s−2
r=0 β

s−r−2(ACg + dH)
H

(
s + 2
r + 1

)δh
≤

ACg + dH
H


{
β

(
5
4

)δh}s−2 (
6δh − 20δh β
4δh − 5δh β

)
+

10δh
4δh − 5δh β

]
≤ 4

ACg + dH
H

.

We also have
α[s]Cg + dh[s]

h[s + 1]
=
(s + 1)δh

H

{
ACg
(s + 1)δα

+
dH

(s + 1)δh

}
≤

ACg + dH
H

.

Then, we obtainwi[s + 1] − wQ
i [s]

h[s + 1]


∞

≤
2√p (4nC + 2) dâN̂

H
(
ACg + dH

)
+

(
d +

1
2
+

ACg
H

) (
4
3

)δh
.

This concludes the proof. �
Theorem 2 shows the relation between the step-size pa-

rameter A and the quantization level K . The smaller quan-
tization level can be achieved for the smaller value of A.

However, the smaller value of A results in the slower conver-
gence. Therefore, there is a trade-off between the step-size
parameter A and the quantization level K . Now, we consider
the minimum quantization level. From (14), we have

lim
d→+0

Ω = max
{(

1
2
+

ACg
H

)
2δh −

1
2
,(

1
2
+

ACg
H

) (
3
2

)δh
−

1
2
,(

1
2
+

ACg
H

) (
4
3

)δh
−

1
2

}
=

(
1
2
+

ACg
H

)
2δh −

1
2
.

It follows that, for sufficiently small d and A, K = 1 ≥ Ω
holds. Thus, with the appropriate parameter settings, agents
can find a critical point of the nonconvex optimization prob-
lem by sending only the three integers −1, 0, and 1 for each
element of the estimation value. In this case, the required
communication bandwidth can be reduced to dp log2 3e bits.

Remark 1: In [14], [37], the authors established the global
convergence of distributed optimization algorithms under
the Polyak-Łojasiewicz condition, which guarantees that all
critical points are global optimizers [38]. To show the global
convergence of the proposed algorithm is a future direction
of this paper.

Remark 2: The authors in [39], [40] have exploited the
design of the optimal encoder for the stability of linear and
nonlinear systems. The investigation of the design of the
optimal quantizer is also a future direction.

4. Numerical Example

This section presents a numerical example of the proposed
quantized algorithm over the multiagent system with four
agents (n = 4). We consider a nonconvex logistic regression
[14] for binary classification to divide the dataset into two
classes through a one-layer neural network. Each agent has
different partial data of the a9a dataset, which is a binary
dataset with 32,561 observations and 123 features [41]. In
this problem, the local objective function is given by

fi(w) =
1
p

p∑
q=1

log
(
1 + e−([w]q [µi ]q )[νi ]q

)
+ R(w),

where p = 124, µi is the feature vector, νi is the correspond-
ing binary label, and R(w) =

∑p
q=1

ri [w]
2
q

1+[w]2q
is a nonconvex

regularizer with ri = 10−4.
We compare the convergence performance with differ-

ent quantization levels K = 1,2,3. In all cases, we set d = 1,
h[k] = 1/(k + 1)0.55, and wi[0] = 0 for all i ∈ V. The
step-size is given by α[k] = 0.3/(k + 1)0.55 for K = 1,
α[k] = 1.5/(k + 1)0.55 for K = 2, and α[k] = 2.5/(k + 1)0.55
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Fig. 1 D[k] with different quantized levels.

Fig. 2 E[k] with different quantized levels.

for K = 3. The parameters of the step-sizes are set to satisfy
the conditions of Theorem 2. In this example, we use the fol-
lowing two values to evaluate the convergence performance
to a critical point and the degree of the consensus:

D[k] =

 n∑
i=1
∇ fi(wi[k])


∞

,

E[k] =
1
n

n∑
i=1
‖wi[k] − w̄[k]‖2.

Figure 1 shows the sum of the gradients of the local
objective functions D[k]. We see that the gradient of the
local objective function of each agent converges to 0 for all
cases. The convergence rate, however, depends on the value
of the quantization levelK . A larger quantization level allows
agents to convey more information. Thus, the convergence
rate is better for a larger quantization level. Figure 2 shows
the consensus error E[k]. It can be observed from Fig. 2 that
the estimations of the agents achieve consensus. Moreover,
there is no saturation in all cases. From these results, we see
that the estimations of the agents converge to a critical point.

Finally, we compare the proposed subgradient-based al-

Fig. 3 Comparison with the compressed communication algorithm in
[35].

gorithmwith the compressed communication algorithm (Al-
gorithm 1 in [35]). Figure 3 shows the sum of the gradients
D[k] for the subgradient algorithm without quantization, the
proposed algorithm with the different values of the quantiza-
tion level K , and the compressed communication algorithm
(CCA) with the different values of the step-size η. From this
figure, we see that the compressed communication algorithm
can achieve faster convergence. However, for an appropriate
quantization level, the proposed algorithm has a similar con-
vergence performance with the compressed communication
algorithm.

5. Conclusions

In this paper, we presented a quantization scheme for non-
convex optimization on multiagent networks. We proposed
a distributed gradient descent algorithm by which the esti-
mation of every agent reaches consensus and the sum of the
gradients of the local objective functions converges to 0. We
also considered a sufficient condition for avoiding the satu-
ration of the quantizer and showed that the quantization level
can be set as K = 1 by appropriately setting the step-size and
the zoom-in parameters. A numerical example of the appli-
cation to a nonconvex logistic regression showed the validity
of the proposed method. The communication network of
the proposed method was assumed to be represented by an
undirected graph. An extension to a more general network
topology is one of our future research directions.

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant
Number JP21K04121.

References

[1] A. Nedić, A. Olshevsky, and M.G. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimiza-
tion,” Proc. IEEE, vol.106, no.5, pp.953–976, 2018.

http://dx.doi.org/10.1109/jproc.2018.2817461
http://dx.doi.org/10.1109/jproc.2018.2817461
http://dx.doi.org/10.1109/jproc.2018.2817461


YOSHIDA et al.: QUANTIZED GRADIENT DESCENT ALGORITHM FOR DISTRIBUTED NONCONVEX OPTIMIZATION
1303

[2] N. Hayashi, T. Ushio, F. Harada, and A. Ohno, “Consensus prob-
lem of multi-agent systems with non-linear performance functions,”
IEICE Trans. Fundamentals, vol.E90-A, no.10, pp.2261–2264, Oct.
2007.

[3] R. Adachi, Y. Yamashita, and K. Kobayashi, “Distributed optimal
estimation with scalable communication cost,” IEICE Trans. Funda-
mentals, vol.E104-A, no.11, pp.1470–1476, Nov. 2021.

[4] A. Nedić, A. Ozdaglar, and P.A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol.55, no.4, pp.922–938, 2010.

[5] M. Zhu and S. Martínez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control,
vol.57, no.1, pp.151–164, 2012.

[6] A. Nedić and A. Olshevsky, “Distributed optimization over time-
varying directed graphs,” IEEE Trans. Autom. Control, vol.60, no.3,
pp.601–615, 2015.

[7] P. Xie, K. You, R. Tempo, S. Song, and C. Wu, “Distributed con-
vex optimization with inequality constraints over time-varying un-
balanced digraphs,” IEEE Trans. Autom. Control, vol.63, no.12,
pp.4331–4337, 2018.

[8] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang,
Z. Lin, and K.H. Johansson, “A survey of distributed optimization,”
Annual Reviews in Control, vol.47, pp.278–305, 2019.

[9] L.T.H. Nguyen, T. Wada, I. Masubuchi, T. Asai, and Y. Fujisaki,
“Bounded confidence gossip algorithms for opinion formation and
data clustering,” IEEETrans. Autom. Control, vol.64, no.3, pp.1150–
1155, 2019.

[10] N. Hayashi, T. Sugiura, Y. Kajiyama, and S. Takai, “Distributed
event-triggered algorithm for unconstrained convex optimization
over weight-balanced directed networks,” IET Control Theory &
Applications, vol.14, no.2, pp.253–261, 2020.

[11] X. Huo and M. Liu, “Two-facet scalable cooperative optimization
of multi-agent systems in the networked environment,” IEEE Trans.
Control Syst. Technol., vol.30, no.6, pp.2317–2332, 2022.

[12] Y. Wakasa and S. Nakaya, “Distributed particle swarm optimization
using an average consensus algorithm,” Proc. 54th IEEE Conference
on Decision and Control, pp.2661–2666, 2015.

[13] P.D. Lorenzo and G. Scutari, “NEXT: In-network nonconvex opti-
mization,” IEEE Trans. Signal Inf. Process. over Netw., vol.2, no.2,
pp.120–136, 2016.

[14] R. Xin, U.A. Khan, and S. Kar, “An improved convergence analysis
for decentralized online stochastic non-convex optimization,” IEEE
Trans. Signal Process., vol.69, pp.1842–1858, 2021.

[15] S. Vlaski and A.H. Sayed, “Distributed learning in non-convex envi-
ronments—Part I: Agreement at a linear rate,” IEEE Trans. Signal
Process., vol.69, pp.1242–1256, 2021.

[16] T. Adachi, N. Hayashi, and S. Takai, “Distributed gradient descent
methodwith edge-based event-driven communication for non-convex
optimization,” IET Control Theory & Applications, vol.15, no.12,
pp.1588–1598, 2021.

[17] R. Xin, U.A. Khan, and S. Kar, “Fast decentralized nonconvex finite-
sum optimization with recursive variance reduction,” SIAM J. Op-
tim., vol.32, no.1, pp.1–28, 2022.

[18] L. Jin, L.Wei, and S. Li, “Gradient-based differential neural-solution
to time-dependent nonlinear optimization,” IEEE Trans. Autom.
Control, vol.68, no.1, pp.620–627, 2023.

[19] T. Li and L. Xie, “Distributed consensus over digital networks with
limited bandwidth and time-varying topologies,” Automatica, vol.47,
no.9, pp.2006–2015, 2011.

[20] K. Okano and H. Ishii, “Stabilization of uncertain systems with finite
data rates and Markovian packet losses,” IEEE Trans. Control Netw.
Syst., vol.1, no.4, pp.298–307, 2014.

[21] N. Hayashi and S. Takai, “GTS-based communication task schedul-
ing for quantized output consensus over IEEE 802.15.4 wireless
networks,” Automatica, vol.55, pp.6–11, 2015.

[22] S. Yoshikawa, K. Kobayashi, and Y. Yamashita, “Quantized event-
triggered control of discrete-time linear systems with switching trig-

gering conditions,” IEICE Trans. Fundamentals, vol.E101-A, no.2,
pp.322–327, Feb. 2018.

[23] D. Yuan, S. Xu, H. Zhao, and L. Rong, “Distributed dual averag-
ing method for multi-agent optimization with quantized communi-
cation,” Systems & Control Letters, vol.61, no.11, pp.1053–1061,
2012.

[24] P. Yi and Y. Hong, “Quantized subgradient algorithm and data-rate
analysis for distributed optimization,” IEEE Trans. Control Netw.
Syst., vol.1, no.4, pp.380–392, 2014.

[25] Y. Pu, M.N. Zeilinger, and C.N. Jones, “Quantization design for
distributed optimization,” IEEE Trans. Autom. Control, vol.62, no.5,
pp.2107–2120, 2017.

[26] H. Li, C. Huang, Z. Wang, G. Chen, and H.G.A. Umar,
“Computation-efficient distributed algorithm for convex optimiza-
tion over time-varying networks with limited bandwidth communi-
cation,” IEEE Trans. Signal Inf. Process. over Netw., vol.6, pp.140–
151, 2020.

[27] Y. Kajiyama, N. Hayashi, and S. Takai, “Linear convergence of
consensus-based quantized optimization for smooth and strongly
convex cost functions,” IEEE Trans. Autom. Control, vol.66, no.3,
pp.1254–1261, 2021.

[28] S. Liu, L. Xie, and D.E. Quevedo, “Event-triggered quantized
communication-based distributed convex optimization,” IEEETrans.
Control Netw. Syst., vol.5, no.1, pp.167–178, 2018.

[29] N. Hayashi, K. Ishikawa, and S. Takai, “Distributed subgradi-
ent method for constrained convex optimization with quantized
and event-triggered communication,” IEICE Trans. Fundamentals,
vol.E103-A, no.2, pp.428–434, Feb. 2020.

[30] K. Li, Q. Liu, and Z. Zeng, “Quantized event-triggered communi-
cation based multi-agent system for distributed resource allocation
optimization,” Information Sciences, vol.577, pp.336–352, 2021.

[31] N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-
triggered and compressed communication in decentralized optimiza-
tion,” IEEE Trans. Autom. Control, vol.68, no.2, pp.721–736, 2023.

[32] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovi, “QSGD:
Communication-efficient SGD via gradient quantization and encod-
ing,” Advances in Neural Information Processing Systems, vol.30,
2017.

[33] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandku-
mar, “signSGD: Compressed optimisation for non-convex prob-
lems,” Proc. 35th International Conference on Machine Learning,
vol.80, pp.560–569, 2018.

[34] T. Sun and D. Li, “Sign stochastic gradient descents without bounded
gradient assumption for the finite sum minimization,” Neural Net-
works, vol.149, pp.195–203, 2022.

[35] X. Yi, S. Zhang, T. Yang, T. Chai, and K.H. Johansson, “Com-
munication compression for decentralized nonconvex optimization,”
arXiv preprint, 2022. [Online]. Available: https://doi.org/10.48550/
arXiv.2201.03930

[36] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Athena Scientic, 1997.

[37] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms
for nonconvex multiagent optimization,” IEEE Trans. Control Netw.
Syst., vol.8, no.1, pp.269–281, 2021.

[38] B.T. Polyak, Introduction to Optimization, Optimization Software,
1987.

[39] S. Azuma and T. Sugie, “Optimal dynamic quantizers for discrete-
valued input control,” Automatica, vol.44, no.2, pp.396–406, 2008.

[40] S. Azuma and T. Sugie, “Dynamic quantization of nonlinear control
systems,” IEEE Trans. Autom. Control, vol.57, no.4, pp.875–888,
2012.

[41] “a9a binary dataset,” [Online]. Available: https://www.csie.ntu.edu.
tw/˜cjlin/libsvmtools/datasets/

http://dx.doi.org/10.1093/ietfec/e90-a.10.2261
http://dx.doi.org/10.1093/ietfec/e90-a.10.2261
http://dx.doi.org/10.1093/ietfec/e90-a.10.2261
http://dx.doi.org/10.1093/ietfec/e90-a.10.2261
http://dx.doi.org/10.1587/transfun.2020kep0002
http://dx.doi.org/10.1587/transfun.2020kep0002
http://dx.doi.org/10.1587/transfun.2020kep0002
http://dx.doi.org/10.1109/tac.2010.2041686
http://dx.doi.org/10.1109/tac.2010.2041686
http://dx.doi.org/10.1109/tac.2010.2041686
http://dx.doi.org/10.1109/tac.2011.2167817
http://dx.doi.org/10.1109/tac.2011.2167817
http://dx.doi.org/10.1109/tac.2011.2167817
http://dx.doi.org/10.1109/tac.2014.2364096
http://dx.doi.org/10.1109/tac.2014.2364096
http://dx.doi.org/10.1109/tac.2014.2364096
http://dx.doi.org/10.1109/tac.2018.2816104
http://dx.doi.org/10.1109/tac.2018.2816104
http://dx.doi.org/10.1109/tac.2018.2816104
http://dx.doi.org/10.1109/tac.2018.2816104
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1016/j.arcontrol.2019.05.006
http://dx.doi.org/10.1109/tac.2018.2843294
http://dx.doi.org/10.1109/tac.2018.2843294
http://dx.doi.org/10.1109/tac.2018.2843294
http://dx.doi.org/10.1109/tac.2018.2843294
http://dx.doi.org/10.1049/iet-cta.2019.0377
http://dx.doi.org/10.1049/iet-cta.2019.0377
http://dx.doi.org/10.1049/iet-cta.2019.0377
http://dx.doi.org/10.1049/iet-cta.2019.0377
http://dx.doi.org/10.1109/tcst.2022.3143115
http://dx.doi.org/10.1109/tcst.2022.3143115
http://dx.doi.org/10.1109/tcst.2022.3143115
http://dx.doi.org/10.1109/cdc.2015.7402617
http://dx.doi.org/10.1109/cdc.2015.7402617
http://dx.doi.org/10.1109/cdc.2015.7402617
http://dx.doi.org/10.1109/tsipn.2016.2524588
http://dx.doi.org/10.1109/tsipn.2016.2524588
http://dx.doi.org/10.1109/tsipn.2016.2524588
http://dx.doi.org/10.1109/tsp.2021.3062553
http://dx.doi.org/10.1109/tsp.2021.3062553
http://dx.doi.org/10.1109/tsp.2021.3062553
http://dx.doi.org/10.1109/tsp.2021.3050858
http://dx.doi.org/10.1109/tsp.2021.3050858
http://dx.doi.org/10.1109/tsp.2021.3050858
http://dx.doi.org/10.1049/cth2.12127
http://dx.doi.org/10.1049/cth2.12127
http://dx.doi.org/10.1049/cth2.12127
http://dx.doi.org/10.1049/cth2.12127
http://dx.doi.org/10.1137/20m1361158
http://dx.doi.org/10.1137/20m1361158
http://dx.doi.org/10.1137/20m1361158
http://dx.doi.org/10.1109/tac.2022.3144135
http://dx.doi.org/10.1109/tac.2022.3144135
http://dx.doi.org/10.1109/tac.2022.3144135
http://dx.doi.org/10.1016/j.automatica.2011.05.017
http://dx.doi.org/10.1016/j.automatica.2011.05.017
http://dx.doi.org/10.1016/j.automatica.2011.05.017
https://doi.org/10.1109/TCNS.2014.2338572
https://doi.org/10.1109/TCNS.2014.2338572
https://doi.org/10.1109/TCNS.2014.2338572
http://dx.doi.org/10.1016/j.automatica.2015.02.028
http://dx.doi.org/10.1016/j.automatica.2015.02.028
http://dx.doi.org/10.1016/j.automatica.2015.02.028
http://dx.doi.org/10.1587/transfun.e101.a.322
http://dx.doi.org/10.1587/transfun.e101.a.322
http://dx.doi.org/10.1587/transfun.e101.a.322
http://dx.doi.org/10.1587/transfun.e101.a.322
http://dx.doi.org/10.1016/j.sysconle.2012.06.004
http://dx.doi.org/10.1016/j.sysconle.2012.06.004
http://dx.doi.org/10.1016/j.sysconle.2012.06.004
http://dx.doi.org/10.1016/j.sysconle.2012.06.004
http://dx.doi.org/10.1109/tcns.2014.2357513
http://dx.doi.org/10.1109/tcns.2014.2357513
http://dx.doi.org/10.1109/tcns.2014.2357513
http://dx.doi.org/10.1109/tac.2016.2600597
http://dx.doi.org/10.1109/tac.2016.2600597
http://dx.doi.org/10.1109/tac.2016.2600597
http://dx.doi.org/10.1109/tsipn.2020.2967143
http://dx.doi.org/10.1109/tsipn.2020.2967143
http://dx.doi.org/10.1109/tsipn.2020.2967143
http://dx.doi.org/10.1109/tsipn.2020.2967143
http://dx.doi.org/10.1109/tsipn.2020.2967143
http://dx.doi.org/10.1109/tac.2020.2989281
http://dx.doi.org/10.1109/tac.2020.2989281
http://dx.doi.org/10.1109/tac.2020.2989281
http://dx.doi.org/10.1109/tac.2020.2989281
http://dx.doi.org/10.1109/tcns.2016.2585305
http://dx.doi.org/10.1109/tcns.2016.2585305
http://dx.doi.org/10.1109/tcns.2016.2585305
http://dx.doi.org/10.1587/transfun.2019map0007
http://dx.doi.org/10.1587/transfun.2019map0007
http://dx.doi.org/10.1587/transfun.2019map0007
http://dx.doi.org/10.1587/transfun.2019map0007
http://dx.doi.org/10.1016/j.ins.2021.07.022
http://dx.doi.org/10.1016/j.ins.2021.07.022
http://dx.doi.org/10.1016/j.ins.2021.07.022
http://dx.doi.org/10.1109/tac.2022.3145576
http://dx.doi.org/10.1109/tac.2022.3145576
http://dx.doi.org/10.1109/tac.2022.3145576
http://dx.doi.org/10.1016/j.neunet.2022.02.012
http://dx.doi.org/10.1016/j.neunet.2022.02.012
http://dx.doi.org/10.1016/j.neunet.2022.02.012
https://doi.org/10.48550/arXiv.2201.03930
https://doi.org/10.48550/arXiv.2201.03930
https://doi.org/10.48550/arXiv.2201.03930
https://doi.org/10.48550/arXiv.2201.03930
http://dx.doi.org/10.1109/tcns.2020.3024321
http://dx.doi.org/10.1109/tcns.2020.3024321
http://dx.doi.org/10.1109/tcns.2020.3024321
http://dx.doi.org/10.1016/j.automatica.2007.06.012
http://dx.doi.org/10.1016/j.automatica.2007.06.012
http://dx.doi.org/10.1109/tac.2011.2167824
http://dx.doi.org/10.1109/tac.2011.2167824
http://dx.doi.org/10.1109/tac.2011.2167824
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


1304
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.10 OCTOBER 2023

Junya Yoshida received the B.E. and M.E.
fromOsakaUniversity in 2020 and 2022. His re-
search interest includes distributed optimization
in multiagent systems.

Naoki Hayashi received the B.E., M.E., and
Ph.D. degrees from Osaka University in 2006,
2008, and 2011, respectively. He was a Re-
search Assistant at Kyoto University in 2011.
From 2012 to 2020, he was an Assistant Pro-
fessor at Osaka University. He is currently an
Associate Professor at Osaka University. His re-
search interests include cooperative control and
distributed optimization. He is a member of
ISCIE, SICE, and IEEE.

Shigemasa Takai received the B.E. and
M.E. degrees from Kobe University in 1989 and
1991, respectively, and the Ph.D. degree from
Osaka University in 1995. From 1992 to 1998,
hewas a ResearchAssociate at OsakaUniversity.
He joined Wakayama University as a Lecturer
in 1998, and became an Associate Professor in
1999. From 2004 to 2009, he was an Associate
Professor at Kyoto Institute of Technology. Since
2009, he has been a Professor at Osaka Univer-
sity. His research interests include supervisory

control and fault diagnosis of discrete event systems. He is a member of
ISCIE, SICE, and IEEE.


