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Probability Propagation
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SUMMARY Technological devices have become deeply embedded in
people’s lives, and their demand is growing every year. It has been indi-
cated that outsourcing the design and manufacturing of integrated circuits,
which are essential for technological devices, may lead to the insertion of
malicious circuitry, called hardware Trojans (HTs). This paper proposes
an HT detection method at gate-level netlists based on XGBoost, one of
the best gradient boosting decision tree models. We first propose the op-
timal set of HT features among many feature candidates at a netlist level
through thorough evaluations. Then, we construct an XGBoost-based HT
detection method with its optimized hyperparameters. Evaluation exper-
iments were conducted on the netlists from Trust-HUB benchmarks and
showed the average F-measure of 0.842 using the proposed method. Also,
we newly propose a Trojan probability propagation method that effectively
corrects the HT detection results and apply it to the results obtained by
XGBoost-based HT detection. Evaluation experiments showed that the av-
erage F-measure is improved to 0.861. This value is 0.194 points higher
than that of the existing best method proposed so far.
key words: hardware Trojan, hardware security, netlist, machine learning,
gradient boosting tree, XGBoost

1. Introduction

Technological devices have become deeply embedded in
people’s lives, and their demand is growing every year.
The design and manufacturing of integrated circuits (ICs),
which are essential for those technological devices, becomes
a large-scale business, and companies often outsource them.
While outsourcing IC design and manufacturing to third par-
ties has the benefit of reducing costs, it is also indicated the
risk of inserting hardware Trojans (HTs) due to unreliable
vendors involved [1]. An HT is a malicious circuit inserted
into hardware, whose behavior includes leaking encrypted
information, degrading the performance of the device, de-
stroying the device itself, or modifying its functionality.

Considering the current widespread use of ICs such
as in washing machines, transportation systems for trains
and airplanes, medical instruments, and military equipment
intended for military operations, HTs have the potential to
affect our daily lives and cause life-threatening situations. In
addition, even if countermeasures against a specific HT are
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Fig. 1 HT circuit model.

taken, a new HT may be developed to counter them. To re-
duce the threats posed by such HTs, machine-learning-based
HT detection methods have been actively researched, espe-
cially for detectingHTs introduced at the design stage [2], [3].

Figure 1 shows the general model of an HT circuit [4].
The trigger circuit generates a trigger signal to activate the
HT when the circuit meets certain conditions. The payload
circuit uses the trigger signal to activate the HT. The nets
constituting an entire circuit can be divided into two classes,
Trojan nets and normal nets, depending on whether or not
they are included in HTs.

Now, we focus on the design stage of ICs and use ma-
chine learning to identify HTs using gate-level netlist fea-
tures. Detecting HTs at the design stage can save time and
cost compared to inspecting all products after manufactur-
ing. Many methods have been proposed for HT detection
based on machine learning at a netlist level. In [5], a support
vector machine and a neural network are used for detecting
HTs, where five HT features for every net are utilized. In
[6] and [7], a multi-layer neural network and a random forest
model are used, respectively, where 11 HT features for ev-
ery net are utilized. Among those presented so far, ensemble
learning models such as a random forest model give good re-
sults for HT detection. Although these methods have shown
relatively high accuracy in HT detection, they may not al-
ways use the best-known learning model for HT detection,
and they do not always optimize the netlist features, either.

In this paper, we focus on the gradient boosting decision
treemodel [8], one of the effective ensemble learningmodels
proposed recently. Particularly, we utilize XGBoost and pro-
pose the optimal HT feature set composed of the 24 features
for it, among many HT feature candidates. We then propose
an HT detection method based on XGBoost with optimized
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hyperparameters. The proposed method achieved the aver-
age F-measure of 0.842 in the evaluation experiments.

Also, we newly propose a Trojan probability propaga-
tionmethod that effectively corrects the HT detection results.
An HT detection method should satisfy the two targets (See
Sect. 2 in detail): (T1) it should detect nets that constitute
HTs; (T2) it should detect as many HT parts in the netlist
as possible. (T1) can be achieved with XGBoost-based
HT detection. The proposed Trojan probability propaga-
tion method is more capable of satisfying (T2). We apply it
to the results obtained by XGBoost-based HT detection.

Evaluation experiments showed that the average F-
measure is improved to 0.861. This value is 0.194 points
higher than that of the existing best method†.

The contributions of this paper are summarized as fol-
lows:

1. We propose the optimal HT feature set composed of
the 24 features for XGBoost by extracting feature im-
portance from the existing 51 HT features and 25 HT
features.

2. We optimize the hyperparameters for XGBoost and pro-
pose an HT detectionmethod based on hyperparameter-
tuned XGBoost.

3. We propose a Trojan probability propagation method
that effectively corrects the HT detection results.
Hyperparameter-tuned XGBoost with Trojan probabil-
ity propagation method achieved an average F-measure
of 0.861 in HT detection. This is an improvement of
0.194 points compared to the best-known F-measure of
0.667 [10].

The rest of this paper is organized as follows. Sec-
tion 2 overviews machine-learning-based HT detection and
discusses the best models for HT detection. In Sect. 3, we
first propose optimal Trojan net features for HT detection
using XGBoost, one of the best gradient boosting decision
tree models, and then propose an HT detection method based
on hyperparameter-tuned XGBoost. After that, we demon-
strate its evaluation results. In Sect. 4, we propose a Trojan
probability propagation method and apply it to the result of
hyperparameter-tuned XGBoost. In Sect. 5, we discuss the
validity of our proposed method. Section 6 concludes this
paper.

2. HT Detection Using Machine Learning

2.1 Flow of HT Detection

The overall flow of machine learning for HT detection at
gate-level netlists is shown in Fig. 2. In HT detection based
on machine learning using gate-level netlist features, the
learning process extracts HT features for every net in a given
†The preliminary version of this paper appeared in [9]. The

main extensions are summarized as follows: We propose a Trojan
probability propagation method and its evaluation results in Sect. 4.
Furthermore, we deepen the explanation and discussion in this
paper.

netlist in which each net has a label indicating whether it is
a normal net or a Trojan net, and a classifier is generated
from the extracted features by a machine learning algorithm.
Then, the features extracted from the netlist to be tested are
input to the classifier generated in the learning process to
identify whether each net in the tested netlist is a normal net
or a Trojan net.

2.2 Measures for Detection Method

The metrics shown in Table 1 can be used as a measure of
the performance of the classifier generated by the machine
learning algorithm. In HT detection, TPR (True Positive
Rate), which indicates the percentage of Trojan nets that are
correctly identified as Trojan nets, and the precision, which
indicates the percentage of nets classified as Trojan nets that
are truly Trojan nets, are important from the viewpoint of ac-
curately detecting Trojan nets fromHT-infected circuits [11].
The F-measure is a metric that shows the balance between
the TPR and the precision. Since there is a trade-off rela-
tionship between the TPR and the precision, we can evaluate
the TPR and the precision in a balanced manner by using the
F-measure as an evaluationmetric. In this paper, we focus on
maximizing the F-measure to evaluate the detection method.

2.3 Machine Learning Models and Features for HT Detec-
tion

There have been proposed several HT detection methods us-
ing machine learning models, such as in [5]–[7], [10], [13].
In [5], a support vector machine and a neural network are
used as machine learning models. The method using a sup-
port vector machine achieved the average TPR of 83%, the
average TNR (True Negative Rate) of 49%, and the aver-
age accuracy of 51%. The neural network-based method
achieved the average TPR of 81%, the average TNR of 69%,
and the average accuracy of 69%. In [6], amulti-layer neural-
network-based method is proposed which achieved the av-
erage TPR of 85%, and the average TNR of 70%. In [7],
a random-forest-based method is proposed, which achieved
the average TPR of 70.3%, the average TNR of 99.7%, and
the average accuracy of 99.2%. In [13], a bagged-tree-based
method is proposed, which achieved the average TPR of
82.46%, the average TNR of 98.99%, and the average ac-
curacy of 98.26%. These methods achieved relatively high
classification results but they all used a limited set of bench-
marks from Trust-HUB [12]. In [10], a random-forest-based

Fig. 2 Machine learning flow for HT detection.
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Table 1 Definition of metrics.
Metrics Definition
TP The number of Trojan nets correctly classified as Trojan nets.
TN The number of normal nets correctly classified as normal nets.
FP The number of normal nets incorrectly classified as Trojan nets.
FN The number of Trojan nets incorrectly classified as normal nets.
TPR The percentage of Trojan nets that are correctly classified as Trojan nets, which is defined by TP/(TP + FN)
TNR The percentage of normal nets that are correctly classified as normal nets, which is defined by TN/(TN + FP)
Precision The percentage of nets that are truly Trojan nets out of those determined to be Trojan nets, which is defined by TP/(TP + FP)
F-measure Harmonic mean of TPR and Precision, which is defined by 2/(1/TPR + 1/Precision)
Accuracy The percentage of all nets that are correctly classified, which is defined by (TP + TN)/(TP + TN + FP + FN)

Table 2 The HT features for HT detection (1 ≤ x, y ≤ 5) [7], [10].
Feature Description
fan_in_x The number of logic-gate fanins up to x-

level away from the input side of the net.
in_flipflop_x The number of flip-flops up to x-level away

from the input side of the net.
out_flipflop_x The number of flip-flops up to x-level away

from the output side of the net.
in_multiplexer_x The number of multiplexers up to x-level

away from the input side of the net.
out_multiplexer_x The number of multiplexers up to x-level

away from the output side of the net.
in_loop_x The number of up to x-level loops on the

input side.
out_loop_x The number of up to x-level loops on the

input side.
in_const_x The number of constants up to x-level away

from the input side of the net.
out_const_x The number of constants up to x-level away

from the output side of the net.
in_nearest_pin The minimum level to the primary input

from the net.
out_nearest_pout The minimum level to the primary output

from the net.
{in, out}_nearest_flipflop The minimum level to any flip-flop from

the input or output side of the net.
{in, out}_nearest_multiplexer Theminimum level to anymultiplexer from

the input or output side of the net.
fan_in_uxdy Starting from the target net n, we firstly go

down by x gates to the output side. Then
we go up by y gates to the input side and
count the number of all the fanins there.
This count gives fan_in_uxdy for the net
n.

method is also proposed using the different HT feature sets
for the netlists in Table 2, which achieved the average TPR of
63.6%, and the average TNR of 100.0%. This method [10]
evaluated various netlists with a maximum of 100K nets and
achieved the best classification results. As far as we know,
the method [10] realized the best F-measure for the netlists
in Table 3.

From the above results, we can see that an ensemble
learning model such as the random forest and the bagged
tree is particularly effective in HT detection. This is mainly
because, many features must relate to identifying HTs, such
as the number of fan-ins to every gate and the distance to
flip-flops, but we cannot say which one of them definitely
determines HTs. In such cases, ensemble learning models
can effectively identify HTs by using various decision trees
based on HT features.

Furthermore, many HT features for a signal net have

Table 3 Netlists from Trust-HUB [12].
Netlist # of normal nets # of Trojan nets

RS232-T1000 309 10
RS232-T1100 309 11
RS232-T1200 310 13
RS232-T1300 309 7
RS232-T1400 306 12
RS232-T1500 311 11
RS232-T1600 311 10
s15850-T100 2,420 26
s35932-T100 6,408 14
s35932-T200 6,405 12
s35932-T300 6,405 37
s38417-T100 5,799 11
s38417-T200 5,802 11
s38417-T300 5,801 44
s38584-T100 7,343 19
s38584-T200 7,373 97
s38584-T300 7,615 873

EthernetMAC10GE-T700 102,969 12
EthernetMAC10GE-T710 102,969 12
EthernetMAC10GE-T720 102,969 12
EthernetMAC10GE-T730 102,969 12

B19-T100 70,649 96
B19-T200 70,649 96

wb_conmax-T100 22,186 11
RS232-free 303 0
s15850-free 2,419 0
s35932-free 6,405 0
s38417-free 5,798 0
s38584-free 7,343 0

EthernetMAC10GE-free 102,967 0
B19-free 70,618 0

wb_conmax-free 22,182 0

been proposed to identify HTs [7], [10]. In [7], a total of
51 HT-related features are proposed. In [10], additional 25
HT features are proposed focusing on the structure of trig-
ger circuits (See Table 2. The details will be discussed in
Sect. 3). These features have been evaluated under differ-
ent conditions, and the optimal ones for ensemble learning
models have not been discussed so far.

Recently, a gradient boosting decision tree model has
been proposed as an ensemble learning model, which gener-
ally achieves high accuracy in classification [8]. The gradi-
ent boosting decision treemodel is a machine learningmodel
that combines a gradient descent method, ensemble learn-
ing, and decision trees. Ensemble learning is a model that
improves prediction performance by using multiple simple
weak classifiers to build a linear combination. In the gra-
dient boosting decision tree model, decision trees are used
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as weak learners for boosting. XGBoost is one of the best
gradient boosting decision tree models [8], which must be
well applied to HT detection due to the previous discussions.

When we use an HT detection method at gate-level
netlists, we want to detect HT included in the netlist. Then
an HT detection method should satisfy the two targets below:

(T1) An HT detection method should detect nets that con-
stitute HTs.

(T2) An HT detection method should detect as many HT
parts in the netlist as possible.

(T1) can be achieved with machine-learning-based HT
detection. In this paper, we achieve it with the XGBoost-
based method. However, we do not consider that we can
use all the circuit information related to hardware Trojans in
the machine learning phase. There must still remain circuit
information that we can take into account after the machine-
learning-based HT detection phase (e.g., whether a nearby
net is Trojan or normal). Finding more Trojan nets using
machine-learning-based HT detection results together with
additional circuit information can more satisfy the target
(T2). Therefore, we propose a Trojan probability propaga-
tion method to satisfy the target (T2).

Hereafter, this paper assumes the use of XGBoost for
HT detection and aims at optimizing the HT features for
every signal net and the structure of the gradient boosting
decision trees for this purpose. Furthermore, we make the
correction method, called a Trojan probability propagation
method, available to the machine learning results, allowing
more HT locations to be detected.

3. HT Detection Using XGBoost

In this section, we propose an HT detection method using
XGBoost. First, we propose the optimal set of the HT fea-
tures for a signal net, referring to the HT features proposed so
far (Sect. 3.1). Second, we perform the detailed hyperparam-
eter optimization on XGBoost (Sect. 3.2). Finally, we con-
struct the proposed hyperparameter-tuned XGBoost-based
method and show the results of HT detection comparing to
the existing best results (Sect. 3.3).

The evaluation environment for this section is summa-
rized as follows. A computer with 1.0TB of memory, Intel
Xeon Platinum 8180M, Python 3.9.2 and xgboost 1.4.2 were
used. The netlists to be evaluated were the 32 different
netlists from Trust-HUB [12], as shown in Table 3. The
first 24 netlists are Trojan netlists with HTs inserted, and
the remaining eight netlists are normal netlists with no HTs
inserted.

According to [9], we evaluate the machine learning
model by leave-one-out cross validation. In other words,
when evaluating a netlist N in Table 3, we train the machine
learning model on the remaining 31 netlists, and then for
each net in N , we identify whether the net is a Trojan net
or a normal net. For each netlist, the metrics in Table 1 are
calculated, and the average of the metrics over the 32 netlists
is used as the evaluation metrics. For each validation, the

training data are compared, and if there are nets with the
same feature values, the nets are excluded from the training
data. The threshold for classification is set to 0.5.

3.1 Feature Importance Extraction and HT Feature Set Op-
timization

ManyHT features for a signal net n have been proposed by [7]
and [10]. Table 2 summarizes them. In Table 2, the 51 fea-
tures from fan_in_x to {in, out}_nearest_multiplexer are the
features proposed in [7], and the 25 features of fan_in_uxdy
are the features proposed in [10]†.

We now use all the HT features proposed in [7], [10].
The function included in theXGBoost librarywas used to ex-
tract the feature importance (See Appendix in detail). Here,
the importance refers to the degree to which the node in
the decision tree containing the feature contributes to the
improvement of the objective function in the entire model
when training. In this evaluation, we used the default values
[14] of the hyperparameters from the XGBoost library. This
is because it is difficult to extract a feature set with vary-
ing hyperparameter values and it is uncertain how to setup
the hyperparameter values at this phase. We performed the
leave-one-out cross validation for each netlist in Table 3 and
obtained the importance for every feature in Table 2. We
averaged the importance for every feature over all the netlists
and obtained the importance values.

Table 4 shows the results of the evaluations. Among the
76 features, fan_in_u4d1 and fan_in_u5d1 have particularly
high importance. This is because, the trigger circuits in HTs
have the structure as in Fig. 3, which is included in s15850-
T100 from Table 3. When we focus on the net Tg1_OUT1
in the HT in Fig. 3(a), its fan_in_u4d1 value becomes two,
which is relatively small compared to normal nets. The trig-
ger circuit often has the pyramidal structure in which the
large fan-ins make a trigger condition and its signal is in-
put to the payload circuit. Then the value of fan_in_u4d1
tends to become small. In a similar way, Fig. 3(b) shows an
example of fan_in_u5d1, which also becomes small. These
values well characterize the HT structure and thus its impor-
tance becomes large in Table 4. In addition, out_const_x,
in_loop_1, and out_loop_1 have no importance, indicating
that they are not useful for HT detection. This is because,
HTs do not include short-length loop structures nor constant
inputs and hence these values do not contribute to identifying
HTs at all.

Next, the optimal number of features is measured using
the extracted importance. We extract the top k HT features
from Table 4 and classify all the nets in Table 3. Then,
we measure the five metrics of Table 1. Figure 4 summa-
rizes the results. All the five metrics decrease sharply when
k < 25. The average F-measure is highest when 54 features
†In [7], the number of features was narrowed down to 11 out

of 51 based on the feature importance. However, Ref. [7] only
discusses the importance of the 51 features for 16 netlists, and no
evaluation of importance has been made for the entire 76 features
including those proposed in [10].
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Table 4 Feature importance.
# Feature Importance # Feature Importance
1 fan_in_u4d1 8146.61 39 out_multiplexer_1 195.91
2 fan_in_u5d1 6714.52 40 fan_in_u5d4 185.80
3 fan_in_u5d5 2480.82 41 in_flipflop_5 170.64
4 out_nearest_pout 2292.50 42 fan_in_u3d4 121.67
5 out_nearest_multiplexer 1625.44 43 out_multiplexer_4 121.48
6 out_flipflop_3 1479.41 44 fan_in_u1d2 107.25
7 out_nearest_flipflop 1278.23 45 fan_in_u4d5 104.90
8 fan_in_u3d5 786.76 46 fan_in_5 102.50
9 fan_in_u1d3 775.88 47 fan_in_u3d3 100.58
10 fan_in_u2d3 751.77 48 out_flipflop_1 91.99
11 fan_in_u2d5 733.82 49 out_multiplexer_3 91.33
12 in_nearest_flipflop 705.91 50 fan_in_u3d1 79.24
13 out_flipflop_5 620.97 51 in_flipflop_4 63.08
14 fan_in_u1d4 602.15 52 out_loop_3 56.81
15 fan_in_u2d1 584.88 53 fan_in_1 48.32
16 fan_in_u2d2 567.07 54 in_loop_3 47.63
17 in_const_4 565.62 55 out_loop_5 43.54
18 fan_in_3 540.46 56 fan_in_u2d4 36.49
19 in_loop_2 506.67 57 out_multiplexer_2 30.16
20 fan_in_u4d2 503.01 58 fan_in_4 28.99
21 fan_in_u1d5 433.83 59 in_const_3 23.52
22 fan_in_u1d1 409.01 60 in_flipflop_1 22.77
23 out_flipflop_4 392.62 61 in_loop_5 18.53
24 out_multiplexer_5 390.86 62 out_loop_4 14.69
25 in_multiplexer_5 374.56 63 in_const_1 2.15
26 in_loop_4 372.87 64 in_multiplexer_2 1.71
27 in_nearest_pin 354.28 65 in_const_2 1.51
28 fan_in_u3d2 346.16 66 in_multiplexer_3 0.76
29 in_flipflop_3 324.25 67 out_loop_2 0.73
30 fan_in_u5d2 303.86 68 in_multiplexer_1 0.37
31 fan_in_u5d3 273.86 69 in_multiplexer_4 0.29
32 fan_in_u4d4 265.36 70 in_loop_1 0
33 in_flipflop_2 241.87 71 out_loop_1 0
34 fan_in_2 233.05 72 out_const_1 0
35 in_const_5 219.22 73 out_const_2 0
36 out_flipflop_2 216.16 74 out_const_3 0
37 in_nearest_multiplexer 212.79 75 out_const_4 0
38 fan_in_u4d3 211.87 76 out_const_5 0

are used, reaching 0.601. However, the average F-measure
also peaks at 0.592 when the 28 features are used, which
is almost the same as the highest F-measure value. In gen-
eral, using too many features in machine learning causes
overfitting, which may result in degrading the classification
performance. Hence, the 28 HT features from #1–#28 in
Table 4 are determined to be optimal for XGBoost†.

3.2 XGBoost Hyperparameter Tuning

We tune the hyperparameters in XGBoost in detail. Firstly,
we focus on the hyperparameters of early_stopping_rounds,
num_boost_round, objective, and scale_post_weight. When
the validation error does not decrease at least ev-
ery early_stopping_rounds iterations, the model stops
learning to avoid overlearning. The default value of
early_stopping_rounds is 10. However, If we set
early_stopping_rounds to a small value, the model is likely
to stop learning due to a temporary increase in losses. Hence,
we set it to 20. num_boost_round is set to a large number,
2000, so that early stopping works at almost every valida-
tion. For HT detection at gate-level netlists, we want to see
whether the net is a normal net or a Trojan net, and hence
we set the objective to reg:logistic, i.e., logistic regression.

†If we select 54 features from #1 to #54 in Table 4, we cannot
achieve the F-measure of 0.842 discussed in Sect. 3.3, even after
we optimize the hyperparameters. We consider that this is because
overfitting occurs due to using too many features.

Fig. 3 HT in s15850-T100.

Fig. 4 The relationship between the number of features used and the five
metrics of the classifier.

In most HT netlists, the percentage of Trojan nets is much
small compared to the number of total nets. This causes
an imbalance between the number of normal nets and the
number of Trojan nets in the training data, which leads to
inaccurate learning. Setting scale_pos_weight to the ratio of
the number of normal nets to the number of Trojan nets in



68
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.1 JANUARY 2024

Table 5 Hyperparameters in XGBoost (Part 1).
Hyperparameter Value
num_boost_round 2000

early_stopping_rounds 20
objective reg:logistic

scale_pos_weight ratio of # of normal nets to # of Trojan nets

Table 6 Hyperparameters in XGBoost (Part 2).
Hyperparameter Candidate values Optimal value

eta [0.05, 0.10, 0.15, 0.20] 0.10
max_depth [4, 5, 6] 4

min_child_weight [1, 2, 3, 4, 5, 6] 1
gamma [0, 0.2, 0.4, 0.6, 0.8, 1.0] 0.2

subsample [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 1.0
colsample_bytree [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] 0.8

the training data corrects the balance of positive and negative
weights. Table 5 summarizes the hyperparameter setting in
XGBoost here.

After that, we optimize the hyperparameters thoroughly
enumerated in Table 6 by using a random search [15]. When
applying a random search, the cross validation using the 32
Trust-HUB netlists is performed and the F-measure is maxi-
mized. The results are summarized in the rightmost column
of Table 6. The other hyperparameters are set to the de-
fault values. By optimizing the hyperparameters, XGBoost
achieves the F-measure of 0.842 as discussed in the next
subsection.

3.3 Proposed Method and Its Evaluations

Based on the above discussion, the proposed HT detection
method is constructed such that we utilize XGBoost as a
machine learning model with the hyperparameters of Table 5
and Table 6, using the 28 HT features in Table 4. Then we
evaluate the proposed method. Table 7 shows the results of
the proposed method and those in [10] for comparison.

When comparing the proposed method to [10], the av-
erage TPR of the proposedmethod is 0.188 points higher and
its average precision is 0.025 points lower. This is because
the proposed method identifies slightly more normal nets as
Trojan nets than the existing method [10], but successfully
detects more Trojan nets. In terms of the average F-measure,
the proposed method achieves 0.175 points higher, indicat-
ing that the proposed method is superior when the average
TPR and the average precision are considered together.

Table 10 and Table 11 show the detailed results of the
proposed method and those of [10], respectively. In terms
of TPR, the proposed method shows higher values for those
netlists, such as s38584 series and wb_conmax-T100, where
the TPR values of these netlists are significantly lower than
the other netlists when using the existing method [10]. In
particular, the TPR value of s38417-T100 and wb_conmax-
T100 is improved by 0.727 points. In terms of precision,
the error of identifying normal nets as Trojan nets in nor-
mal netlists by the proposed method is remarkably low. In
the HT netlists such as RS232-T1600 and s38584-T100, up
to 0.189-point improvement is seen in the precision. In

Table 7 Comparison of the proposed method and the existing method
[10].

Method TPR TNR Precision F-measure Accuracy
Ours (tuned XGBoost) 0.824 0.999 0.932 0.842 0.996

[10] 0.636 1.000 0.957 0.667 0.994

terms of F-measure, there is an overall improvement. While
the F-measure of RS232-T1000 of the proposed method is
decreased by just 0.048 points, other netlists such as s35932-
T100 and s38417-T100 achieve the F-measure improvement
of 0.700 points or more. Overall, the proposed method
achieves the significantly higher F-measure than the existing
best method [10].

Note that, we require approximately 20 minutes to con-
struct the XGBoost model using 31 netlists and 0.1 seconds
to classify between Trojan nets and normal nets in every
netlist in Table 3.

4. Trojan Probability Propagation Method for HT De-
tection based on Machine Learning

4.1 Trojan Probability Propagation Method

HT detection methods based on machine learning indepen-
dently identify each net whether it is a Trojan net or a normal
net. However, the identification of each net cannot take into
account the identification information surrounding the net.
In general, HTs exist in a specific location in the netlist.
Therefore, we expect to improve the identification perfor-
mance by applying a correction method to the identification
results of HT obtained by machine learning.

We newly propose a Trojan probability propagation
method to improve the identification performance by prop-
agating the identification information to re-identify Trojan
nets. After applying a machine-learning-based HT detection
method, every net has a Trojan probability, which indicates
how likely the net is a Trojan net (See Appendix on how
to calculate the probability). As in Sect. 3, if the Trojan
probability is equal to or larger than the threshold value, we
identify it to be the Trojan net. The algorithm of the Trojan
probability propagation method and the conditions under
which the identification results are propagated are described
as follows:

Step 1. Obtain the Trojan probability of each net using an
After applying a machine-learning-based HT detection
method based on machine learning.

Step 2. Identify the nets with Trojan probability equal to or
larger than the threshold α0 (> 0) as Trojan nets. α0 is
set to 0.5 as in Sect. 3.

Step 3. Traverse the netlist from the input side to the output
side and check if either one of the following two con-
ditions is satisfied. If so, re-identify the net to be the
Trojan net.

(Condition 1) At a gate i, if all the nets on its input (out-
put) side are identified as Trojan nets, then all the
nets on the output (input) side of the gate i are
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Fig. 5 Comparison of the behavior whether or not the Trojan probability propagation method is
applied.

identified as Trojan nets.
(Condition 2) At a net n identified as a normal net, if n

is connected to a net identified as a Trojan net and
the Trojan probability of n is equal to or greater
than the threshold α1 (> α0), then we identify n
as the Trojan net.

Step 4. Repeat Step 3 until all the nets do not satisfy the
propagation conditions above.

Condition 1 shows that HTs exist locally in every netlist
and hence, if all the nets on the input (output) side of a
gate are Trojan nets, we can consider that all the nets on
its output (input) side are also Trojan nets. Condition 2
also shows that HTs exist locally in every netlist and hence,
when focusing on a normal net n with relatively high Trojan
probability, it is changed to a Trojan net if there exists a
Trojan net neighboring to it.

Figure 5 shows the behavior of “machine learning +
Trojan probability propagationmethod” and “machine learn-
ing” only.

4.2 Evaluations of Trojan Probability Propagation Method

We applied the Trojan probability propagation method to the
results from the hyperparameter-tuned XGBoost in Sect. 4.2.
The threshold α1 of Trojan probability propagation method
is 0.4†. Table 12 shows the evaluation results. By apply-
ing the Trojan probability propagation method, an average
TPR of 0.890, an average precision of 0.880, and an aver-
age F-measure of 0.861 were achieved. When comparing
before and after applying the Trojan probability propagation
method, the average precision slightly decreased by 0.052
points, but the average TPR increased by 0.066 points, result-
ing in a 0.019 point increase in the average F-measure. Fur-
thermore, the TPR for each benchmark remained unchanged
†We tried various α1 values and obtained the best results when

α1 is set to 0.4.

or improved, while the TNR almost remained unchanged.
This is because the Trojan probability propagation method
only propagates Trojan nets, so that what is identified as a
normal net is re-identified as a Trojan net. When comparing
to [10], the average F-measure increased by 0.194 points.

Note that the Trojan probability propagation method
requires approximately 20 seconds in each netlist of Table 3.

5. Discussion

5.1 Random Search

In this paper, we use random search to optimize the XGBoost
model for HT detection in Sect. 3.2. This is due to the
following reason.

In general, grid search and random search are often used
for hyperparameter tuning in machine learning models [15].
Grid search is a method that searches for all combinations
of candidate hyperparameter values. Grid search has the
advantage of always finding the optimal solution. Random
search is a method that randomly searches for a combination
of candidate hyperparameter values with an upper limit on
the number of times that the search can be performed and it
finds reasonably good hyperparameters.

In [15], Bergstra et al. found by computational experi-
ments that only a small fraction of the total hyperparameters
of a machine learning model are important with respect to
performance. They call such a property low effective dimen-
sionality (LED, in short). An important advantage of ran-
dom search is its robustness to LED compared to grid search.
Grid search searches for all combinations, regardless of the
impact of a hyperparameter on model performance. On the
other hand, random search always determines the values of
all hyperparameters randomly. Thus, random search does
not tend to produce useless objective function evaluations
due to the presence of ineffective hyperparameters.

As described above, random search has the advantage
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over grid search. Further, by using random search, we can
optimize the XGBoost model so that we can achieve the F-
measure that outperforms the previous results as in Table 7.
We consider that using random search is a good option to
optimize XGBoost for HT detection.

5.2 Hyperparameters of XGBoost

In Sect. 3.2, we tuned the hyperparameters in Table 6 with

Table 8 The result when setting the default values to the hyperparameters
in Table 5.

Method TPR TNR Precision F-measure Accuracy
Default tuned XGBoost 0.663 1.000 0.990 0.775 0.995

Table 9 Comparison of the proposed method and existing XGBoost-based methods [16]–[18].
Method # of Netlists TPR TNR Precision F-measure Accuracy

Ours (tuned XGBoost) 32 0.824 0.999 0.932 0.842 0.996
Ours (XGBoost + Propagation Method) 32 0.890 0.997 0.880 0.861 0.996

Ours (tuned XGBoost) 16* 0.768 0.998 0.931 0.796 0.993
Ours (XGBoost + Propagation Method) 16* 0.849 0.995 0.861 0.818 0.992

Ours (tuned XGBoost) 12* 0.819 0.999 0.970 0.843 0.999
Ours (XGBoost + Propagation Method) 12* 0.907 0.996 0.904 0.867 0.996

[16] 16** 0.990 0.990 0.989 0.988 0.990
[17] 12** 0.898 0.999 0.923 0.878 0.998
[18] 11** 0.940 0.993 0.800 0.849 0.990

* The results of the 12 netlists or 16 netlists are extracted from Table 10 and Table 12 and summarized.
** All of these netlists are included in the netlists in Table 3.

Table 10 The detailed results of the proposed method (tuned XGBoost).
Netlist TP TN FP FN TPR TNR Precision F-measure Accuracy
RS232-T1000 10 308 1 0 1.000 0.997 0.909 0.952 0.997
RS232-T1100 11 309 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1200 13 310 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1300 7 309 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1400 12 306 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1500 11 309 2 0 1.000 0.994 0.846 0.917 0.994
RS232-T1600 8 311 1 1 0.889 0.997 0.889 0.889 0.994
s15850-T100 18 2420 0 8 0.692 1.000 1.000 0.818 0.997
s35932-T100 11 6409 0 2 0.846 1.000 1.000 0.917 1.000
s35932-T200 1 6405 0 11 0.083 1.000 1.000 0.154 0.998
s35932-T300 34 6405 0 3 0.919 1.000 1.000 0.958 1.000
s38417-T100 9 5799 0 2 0.818 1.000 1.000 0.900 1.000
s38417-T200 3 5802 0 8 0.273 1.000 1.000 0.429 0.999
s38417-T300 44 5800 1 0 1.000 1.000 0.978 0.989 1.000
s38584-T100 3 7343 1 15 0.167 1.000 0.750 0.273 0.998
s38584-T200 104 7304 40 22 0.825 0.995 0.722 0.770 0.992
s38584-T300 540 7212 133 603 0.472 0.982 0.802 0.595 0.913
EthernetMAC10GE-T700 12 102968 1 0 1.000 1.000 0.923 0.960 1.000
EthernetMAC10GE-T710 12 102968 1 0 1.000 1.000 0.923 0.960 1.000
EthernetMAC10GE-T720 12 102968 1 0 1.000 1.000 0.923 0.960 1.000
EthernetMAC10GE-T730 12 102967 2 0 1.000 1.000 0.857 0.923 1.000
B19-T100 95 70645 4 1 0.990 1.000 0.960 0.974 1.000
B19-T200 95 70645 4 1 0.990 1.000 0.960 0.974 1.000
wb_conmax-T100 9 22186 0 2 0.818 1.000 1.000 0.900 1.000
B19-free 0 70612 6 0 - 1.000 - - 1.000
RS232-free 0 303 0 0 - 1.000 - - 1.000
s15850-free 0 2419 0 0 - 1.000 - - 1.000
s35932-free 0 6405 0 0 - 1.000 - - 1.000
s38417-free 0 5797 1 0 - 1.000 - - 1.000
s38584-free 0 7341 2 0 - 1.000 - - 1.000
wb_conmax-free 0 22182 0 0 - 1.000 - - 1.000
EthernetMAC10GE-free 0 102966 1 0 - 1.000 - - 1.000
Average - - - - 0.824 0.999 0.932 0.842 0.996

the hyperparameters in Table 5 fixed. This is because of the
following reasons:

First, we discuss why we tuned the hyperparameters in
Table 6. XGBoost has many hyperparameters that can be
set by the user. However, as discussed in Sect. 5.1, many
machine learning hyperparameters cannot affect model per-
formance very much. For example, an XGBoost-based HT
detectionmethod [18] trains themodel with its own hyperpa-
rameters including eta, max_depth, and min_child_weight.
Further, in [19], [20], the XGBoost models are tuned un-
der the hyperparameters of gamma, subsample, and colsam-
ple_bytree, though their target does notHTdetection. Hence,
we tuned in our XGBoost model the hyperparameters of eta,
max_depth, min_child_weight, gamma, subsample, and col-
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Table 11 The detailed results of the existing method [10].
Netlist TP TN FP FN TPR TNR Precision F-measure Accuracy
RS232-T1000 10 309 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1100 11 309 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1200 13 310 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1300 6 309 0 1 0.857 1.000 1.000 0.923 0.997
RS232-T1400 12 306 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1500 11 310 1 0 1.000 0.997 0.917 0.957 0.997
RS232-T1600 7 309 3 2 0.778 0.990 0.700 0.737 0.984
s15850-T100 2 2420 0 24 0.077 1.000 1.000 0.143 0.990
s35932-T100 1 6409 0 12 0.077 1.000 1.000 0.143 0.998
s35932-T200 1 6405 0 11 0.083 1.000 1.000 0.154 0.998
s35932-T300 34 6405 0 3 0.919 1.000 1.000 0.958 1.000
s38417-T100 1 5799 0 10 0.091 1.000 1.000 0.167 0.998
s38417-T200 1 5802 0 10 0.091 1.000 1.000 0.167 0.998
s38417-T300 44 5798 3 0 1.000 0.999 0.936 0.967 0.999
s38584-T100 3 7342 2 15 0.167 1.000 0.600 0.261 0.998
s38584-T200 22 7343 1 104 0.175 1.000 0.957 0.295 0.986
s38584-T300 37 7339 6 1106 0.032 0.999 0.860 0.062 0.869
EthernetMAC10GE-T700 12 102969 0 0 1.000 1.000 1.000 1.000 1.000
EthernetMAC10GE-T710 12 102969 0 0 1.000 1.000 1.000 1.000 1.000
EthernetMAC10GE-T720 12 102969 0 0 1.000 1.000 1.000 1.000 1.000
EthernetMAC10GE-T730 10 102969 0 2 0.833 1.000 1.000 0.909 1.000
B19-T100 96 70649 0 0 1.000 1.000 1.000 1.000 1.000
B19-T200 96 70649 0 0 1.000 1.000 1.000 1.000 1.000
wb_conmax-T100 1 22186 0 10 0.091 1.000 1.000 0.167 1.000
B19-free 0 70618 0 0 - 1.000 - - 1.000
RS232-free 0 303 0 0 - 1.000 - - 1.000
s15850-free 0 2419 0 0 - 1.000 - - 1.000
s35932-free 0 6405 0 0 - 1.000 - - 1.000
s38417-free 0 5798 0 0 - 1.000 - - 1.000
s38584-free 0 7338 5 0 - 0.999 - - 0.999
wb_conmax-free 0 22182 0 0 - 1.000 - - 1.000
EthernetMAC10GE-free 0 102967 0 0 - 1.000 - - 1.000
Average - - - - 0.636 1.000 0.957 0.667 0.994

sample_bytree as in Table 6.
Second, we discuss why we fixed the hyperparameter

values as in Table 5. A rough reason is shown in Sect. 3.2,
but we have also done several preliminary experiments and
determined the values as shown in Table 5. For example, as-
sume that we set the default values to all the hyperparameters
in Table 5 (the default values are shown in [14]). After that,
the hyperparameters in Table 6 are tuned using the random
search as discussed in Sect. 3.2. Then the results are obtained
as shown in Table 8. Table 8 shows that the F-measure is
0.775, which is 0.067 points less than the model tuned in
Sect. 3.2. The hyperparameter values shown in Table 5 are
the ones that give the best performance in our preliminary
experiments and that is whywe fix the hyperparameter values
as shown in Table 5.

5.3 Comparison of the Proposed Method and Existing
XGBoost-Based Methods

There have been several XGBoost-based HT detection meth-
ods proposed [16]–[18]. We compare and evaluate our pro-
posed method with these methods. Table 9 shows the results
of the proposed method and those in [16]–[18] for compar-
ison. Note that, some of the metrics are not available in
the original references, and then they were derived using the
other metrics and summarized in Table 9.

First, we compare the proposedmethodwith themethod

[16]. In [16], 16 netlists were used for evaluation, all of
which are included in the netlists in Table 3. However, all
netlists used for evaluation were small to medium size, and
the method [16] was not evaluated for the netlists with more
than 100K nets. Gate-level IP cores may include 100K or
more nets and it must be required to evaluate such large-sized
netlists in HT detection practically. On the contrary, the
proposed method has been evaluated including the netlists
exceeding 100K nets, such as EthernetMAC10GE, and even
on HT-free netlists. It is uncertain if the method [16] is ap-
plied to such large-sized netlists, but our proposed method
outperforms the method [16] in TNR at least. When we ex-
tract the results for the 16 netlists used in [16] from Table 10
and Table 12, the results are summarized in the 4th and 5th
rows of Table 9. Compared on the same netlists, both the
XGBoost-only method and the XGBoost + Trojan probabil-
ity propagation method outperform the method [16] in TNR
and accuracy.

Next, we compare the proposedmethodwith themethod
[17]. In [17], 12 netlistswere used for evaluation, all ofwhich
are included in the netlists in Table 3. This method does
not evaluate netlists containing more than 100K nets, either.
Our proposed method (2nd row) outperforms the method
[17] in precision at least. When we extract the results for
the 12 netlists used in [17] from Table 10 and Table 12, the
results are summarized in the 6th and 7th rows of Table 9.
Compared on the same netlists, the XGBoost-only method
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Table 12 The detailed results of the Trojan probability propagation method after applying XGBoost-
based HT detection.

Netlist TP TN FP FN TPR TNR Precision Fmeasure Accuracy
RS232-T1000 10 307 2 0 1.000 0.994 0.833 0.909 0.994
RS232-T1100 11 307 2 0 1.000 0.994 0.846 0.917 0.994
RS232-T1200 13 306 4 0 1.000 0.987 0.765 0.867 0.988
RS232-T1300 7 309 0 0 1.000 1.000 1.000 1.000 1.000
RS232-T1400 12 305 1 0 1.000 0.997 0.923 0.960 0.997
RS232-T1500 11 307 4 0 1.000 0.987 0.733 0.846 0.988
RS232-T1600 9 309 3 0 1.000 0.990 0.750 0.857 0.991
s15850-T100 24 2420 0 2 0.923 1.000 1.000 0.960 0.999
s35932-T100 12 6409 0 1 0.923 1.000 1.000 0.960 1.000
s35932-T200 1 6405 0 11 0.083 1.000 1.000 0.154 0.998
s35932-T300 36 6405 0 1 0.973 1.000 1.000 0.986 1.000
s38417-T100 11 5799 0 0 1.000 1.000 1.000 1.000 1.000
s38417-T200 10 5802 0 1 0.909 1.000 1.000 0.952 1.000
s38417-T300 44 5796 5 0 1.000 0.999 0.898 0.946 0.999
s38584-T100 3 7341 3 15 0.167 1.000 0.500 0.250 0.998
s38584-T200 104 7301 43 22 0.825 0.994 0.707 0.762 0.991
s38584-T300 747 7186 159 396 0.654 0.978 0.825 0.729 0.935
EthernetMAC10GE-T700 12 102968 1 0 1.000 1.000 0.923 0.960 1.000
EthernetMAC10GE-T710 12 102968 1 0 1.000 1.000 0.923 0.960 1.000
EthernetMAC10GE-T720 12 102967 2 0 1.000 1.000 0.857 0.923 1.000
EthernetMAC10GE-T730 12 102966 3 0 1.000 1.000 0.800 0.889 1.000
B19-T100 96 70641 8 0 1.000 1.000 0.923 0.960 1.000
B19-T200 96 70641 8 0 1.000 1.000 0.923 0.960 1.000
wb_conmax-T100 10 22186 0 1 0.909 1.000 1.000 0.952 1.000
B19-free 0 70604 14 0 - 1.000 - - 1.000
RS232-free 0 303 0 0 - 1.000 - - 1.000
s15850-free 0 2419 0 0 - 1.000 - - 1.000
s35932-free 0 6405 0 0 - 1.000 - - 1.000
s38417-free 0 5796 2 0 - 1.000 - - 1.000
s38584-free 0 7338 5 0 - 0.999 - - 0.999
wb_conmax-free 0 22182 0 0 - 1.000 - - 1.000
EthernetMAC10GE-free 0 102966 1 0 - 1.000 - - 1.000
Average - - - - 0.890 0.997 0.880 0.861 0.996

outperforms the method [17] in precision and the XGBoost
+ Trojan probability propagation method outperforms the
method [17] in TPR.

Lastly, we compare the proposed method with the
method [18]. In [18], 11 netlists were used for evaluation, all
of which are included in the netlists in Table 3. As with the
previous two methods, this method does not evaluate netlists
containing more than 100K nets. As in the 2nd and 3rd rows
of Table 9, even when our method takes into account all the
32 netlists, the XGBoost-only method is superior in terms
of TNR and precision, and the XGBoost + Trojan probabil-
ity propagation method is also superior in terms of TNR,
precision, and F-measure, compared to the method [18].

The comparison results above are not completely fair
since the used netlists are different from each other. How-
ever, the proposedmethod targets small to large-sized netlists
including 100K or more nets, and still demonstrates the su-
periority in several aspects over the methods in [16]–[18].

6. Conclusion

In this paper, we first proposed the optimal set of HT fea-
tures among many feature candidates at a netlist level for
HT detection using XGBoost, one of the best gradient boost-
ing decision tree models. Then we proposed an XGBoost-
based HT detection method with optimized hyperparame-
ters. The experimental results showed that the proposed

method achieves the average F-measure of 0.842 for HT
detection at Trust-HUB benchmark netlists. Furthermore,
we applied the Trojan probability propagation method to
the results of hyperparameter-tuned XGBoost. The results
showed that the hyperparameter-tuned XGBoost with the
Trojan probability propagation method achieves the average
F-measure of 0.861, which is 0.194 points higher than that
of the existing best method.

As in the netlists in Trust-HUB, HTs are located locally
in HT-infected circuits. By using these Trojan properties, we
will further improve the classification accuracy in the future.
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Appendix: XGBoost Algorithm and Feature Impor-
tance

The proposed HT detection method is based on XGBoost.
In this appendix, we summarize the XGBoost algorithm
and how it calculates the probability and feature importance
briefly. See [8], [21] in detail.

XGBoost is one of the gradient boosting decision trees,
amodel that generates a number of decision trees and predicts
a label [8], [21]. The level-wise tree growth is employed in
XGBoost as a branch growth algorithm, where the branches
grow in a breadth-first manner to a specified depth and the
depth of all the leaf nodes becomes the same in the generated
decision tree. Specifically, the branches grow as follows:

First, the objective function of XGBoost is the sum of
the training loss and the regularization term, which can be
approximated by

Obj(t) '
n∑
i=1

[
giωq(xi ) +

1
2

hiω2
q(xi )

]
+ γT +

1
2
λ

T∑
j=1

ω2
j

=

T∑
j=1

©­«
∑
i∈Ij
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ª®¬ωj +

1
2

©­«
∑
i∈Ij
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ª®¬ω2

j

 + γT .

(A· 1)

In the above approximation,
∑n

i=1

[
giωq(xi ) +

1
2 hiω2

q(xi )

]
is

the term of training loss and γT + 1
2λ

∑T
j=1 ω

2
j is the regular-

ization term. The variables used in Eq. (A·1) are summarized
as follows:

• t shows the current iteration number when training the
XGBoost model.

• n is the number of input data.
• T is the number of leaves in the XGBoost model.
• ωj is the score of the leaf node j.
• q(xi) is a function assigning i-th data xi to the corre-
sponding leaf.

• Ij is the set of input data indices assigned to the j-th
leaf.

• γ and λ are user-configurable parameters.
• gi = ∂

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
,

where yi and ŷ
(t−1)
i are the objective value and the

predicted value of the i-th data after (t − 1)-th iteration,
respectively, and l is the loss function.

Equation (1) can be further simplified by setting G j =∑
i∈Ij gi and Hj =

∑
i∈Ij hi .

Obj(t) '
T∑
j=1

[
G jωj +

1
2

(
Hj + λ

)
ω2

j

]
+ γT (A· 2)

From the above equation, the derivative ofωj and the optimal
objective function are obtained as:
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ω∗j = −
G j

Hj + λ
(A· 3)

Obj∗ = −
1
2

T∑
j=1

G2
j

Hj + λ
+ γT (A· 4)

The above equation measures how good a tree structure in
the XGBoost model is. Minimizing the objective function
optimizes the tree structure.

In the case of binary classification, the sum of the scores
ωj of the terminal leaves of each tree to which the test data
belongs is calculated and then it is passed through a sigmoid
function to obtain the probability that the test data belongs
to one of the labels. In the XGBoost library, the probability
can be calculated by the function model.predict(test_data)
and it is mainly used in the proposed Trojan probability
propagation method.

In XGBoost, an optimal tree is generated by optimizing
one level of the tree at a time. When splitting a single leaf
in the current XGBoost model into two leaves (left leaf and
right leaf), the calculation of gain is as follows:

Gain =
1
2

[
G2

L

HL + λ
+

G2
R

HR + λ
−
(GL + GR)

2

HL + HR + λ

]
− γ

(A· 5)

whereGL and HL areG and H values in Eq. (A·2) of the new
left leaf, respectively, and GR and HR are G and H values
in Eq. (A·2) of the new right leaf, respectively. Gain is the
score used in training to split a single leaf into two leaves.
Among the possible new splits, the split with the maximum
gain is chosen and the tree is extended.

Gain is also used for the calculation of feature impor-
tance. Each leaf has a corresponding feature, and the leaves
retain the gain. In other words, the features have a corre-
sponding gain for each leaf. Feature importance is given
by the average gain across all the splits the feature is used
in. In the XGBoost library, feature importance can be calcu-
lated by model.get_score(importance_type="gain") and this
is used in Sect. 3.1.
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