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Period and Some Distribution Properties of a Nonlinear Filter
Generator with Dynamic Mapping
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SUMMARY This paper focuses on a pseudorandom number generator
called an NTU sequence for use in cryptography. The generator is defined
with an m-sequence and Legendre symbol over an odd characteristic field.
Since the previous researches have shown that the generator has maximum
complexity; however, its bit distribution property is not balanced. To address
this drawback, the author introduces dynamic mapping for the generation
process and evaluates the period and some distribution properties in this
paper.
key words: m-sequence, Legendre symbol, dynamic mapping, period,
distribution property

1. Introduction

Unpredictable behavior in a computer is an inevitable part
of developments in many fields such as simulation and com-
munication. In particular, random numbers are essential in
cryptographic applications for making information unpre-
dictable and unrecoverable without a key.

A pseudorandom number generator (PRNG) is a typi-
cal approach to mimicking the random-looking behavior of
some phenomena in the real world using deterministic cal-
culation on a computer. Cryptographic applications also
utilize a type of PRNG as a ciphering system, and such an
encryption scheme is known as stream cipher [1].

Most stream ciphers are classified into two families; a
block cipher with counter mode, and generators that use a
nonlinear filter and a linear recurrence relation over a field
[2], [3]. The former case is preferred in practice owing to its
efficiency and the benefits of sharing a block cipher module
for random number generation and encryption. On the other
hand, the properties of a PRNG, such as period, correlation,
distribution, and complexity, are sometimes not ideal.

In this context, the latter approach, that is, the combi-
nation of a nonlinear filter and a linear recurrence relation,
cannot be ignored as an alternative or a generator for IoT
devices because of how lightweight it is. More precisely, a
linear recurrence relation is well-known as a PRNG called
maximum length sequence (m-sequence) [4], and a nonlinear
filter is often designed as a boolean function. Such genera-
tors defined with an m-sequence and a boolean function are
called nonlinear filter generators (NLFGs), and this paper fo-
cuses on a specific type of NLFG to improve its distribution

Manuscript received January 11, 2023.
Manuscript revised May 22, 2023.
Manuscript publicized August 8, 2023.
†The author is with Graduate School of Natural Science and

Technology, Okayama University, Okayama-shi, 700-8530 Japan.
a) E-mail: yuta_kodera@okayama-u.ac.jp
DOI: 10.1587/transfun.2023SDL0001

property.
As a natural extension of NLFGs, NTU sequence has

proposed by Nogami et al. in [5], [6]. According to the
results concerning the properties of a sequence [7]–[9], it was
discovered that theNTUsequence hasmaximumcomplexity;
however, it cannot provide uniform distribution even if one
observes a single bit in the period.

The paper investigates the drawback of the distribution
property with low computational costs. One approach the
author proposes is employing dynamic mapping in the filter.
It has been observed that the method improves the distribu-
tion property.

However, dynamic mapping induces a symmetricity in
the sequence that, while is useful for evaluating the sequence,
may also be a vulnerability as a cryptographic application.
Considering this, the author plans to modify the definition
with an additive operation and evaluate the generator in fu-
ture.

The remainder of this paper is organized as follows.
Section 2 introduces some basics about finite fields and
NLFGs, and Sect. 3 defines a generator. The period and
some distribution properties of the generator are theoreti-
cally discussed in Sect. 4, and Sect. 5 concludes this work.

2. Preliminaries

This section briefly reviews the fundamentals of fields and
some functions defined over a field [10]. Additionally, the
basic concept of an NLFG is introduced.

2.1 Polynomials over Finite Fields

Let Fp be a finite field of characteristic p, where p is a prime
number. Let Fp[x] denote the set of all polynomials over
Fp . A polynomial f ∈ Fp[x] of degree n is represented by a
linear combination of coefficients fi ∈ Fp for 0 ≤ i ≤ n and
a variable x over Fp as follows:

f (x) =
n∑
i=0

fi xi = f0 + f1x + . . . + fnxn. (1)

The polynomial f (x) ∈ Fp[x] is called a monic if the
leading coefficient is 1. SinceFp is a field, there always exists
the inverse of fn and every polynomial can be represented
as a monic polynomial over Fp . For convenience, the author
implicitly writes a polynomial as monic in what follows.
Thus, Eq. (1) is rewritten as Fp[x] 3 f (x) = xn+

∑n−1
i=0 fi xi .

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers



1512
IEICE TRANS. FUNDAMENTALS, VOL.E106–A, NO.12 DECEMBER 2023

A polynomial f (x) is called an irreducible polynomial
if there do not exist any smaller polynomials that divide
f (x), except for constant polynomials. Let g(x) ∈ Fp[x]
be an irreducible polynomial of degree n. If g(x) satisfies
g(x)|

(
xt − 1

)
and t = pn − 1, then the polynomial g(x) is

specially called a primitive polynomial. A root of g(x) can
be an element in the extension field of degree n over Fp ,
which is denoted by Fpn , and such an element can generate
every non-zero element in Fpn as its power.

2.2 Field Trace and Dual Bases

Let Fpn be an extension field of degree n over Fp . The trace
function Trp

n

p : Fpn → Fp is an Fp-linear map defined by
the sum of conjugates over Fpn , as shown in Eq. (2). It is
well-known that the conjugates of an element a ∈ Fpn can be
endowed by the Frobenius endomorphism φi : Fpn → Fpn ,
defined by φi(a) = ap

i .

Trp
n

p (a) =
n−1∑
i=0

φi (a) =
n−1∑
i=0

ap
i

. (2)

Since it is an Fp-linear map, the trace function holds the
following property:

Trp
n

p (a1b1 + a2b2) = a1Trp
n

p (b1) + a2Trp
n

p (b2) , (3)

where a1,a2 ∈ Fp and b1, b2 ∈ Fpn .
Let Fp be a field and Fpn be an extension field

of degree n over Fp . Let A = {α0, α1, . . . , αn−1} and
B = {β0, β1, . . . , βn−1} be bases of Fpn over Fp . These
bases are said to be dual bases if the following equality holds
for 0 ≤ i, j < n.

Trp
n

p

(
αiβj

)
=

{
1 if i = j,
0 if i , j .

(4)

2.3 Legendre Symbol

A. M. Legendre introduced a multiplicative function with
the values 0 and ±1 to evaluate the quadratic residuosity of
an element in Fp , where Fp is a field of characteristic p(≥ 3).
The symbol

(
a
p

)
for a ∈ Fp is called the Legendre symbol,

named after A. M. Legendre, and a is called a quadratic
residue (QR) if there exists an element b ∈ Fp such that
a = b2 (mod p). On the other hand, if there does not exist
a square root of a, then a is called a quadratic non-residue
(QNR).

According to the Fermat’s little theorem, since every
non-zero element a ∈ Fp satisfies ap−1 = 1 (mod p), the
Legendre symbol can be defined as follows:(

a
p

)
= a

p−1
2 (mod p) =


0 if a = 0,
1 if a is QR in Fp,
−1 otherwise.

Since it is multiplicative concerning the top argument, the

Fig. 1 A model of an NLFG.

following equality holds:(
a
p

) (
b
p

)
=

(
ab
p

)
, (5)

where a, b ∈ Fp .

2.4 Nonlinear Filter Generators

An NLFG is an instantiation of keystream generators for
an efficient symmetric-key ciphering system, and it is com-
monly composed of a shift register sequence [4], also known
as an m-sequence, and a boolean function as illustrated in
Fig. 1, where ri ∈ F2 in the figure.

An m-sequence is a typical PRNG generated by a lin-
ear recurrence relation over F2, and it is well-known that its
bit distribution property is ideally uniform. More formally,
let g(x) be a primitive polynomial of degree n over F2 and
let ω be a root of g(x). Then, an m-sequence S = {si} is
generated by si = Tr2n

2
(
ωi

)
. The above definition tells us

that the generation process of an m-sequence can be nat-
urally generalized to an arbitrary field Fq with a primitive
polynomial over Fq , where q is a prime power. Such an
m-sequence is called a q-ary m-sequence. For convenience,
the author simply refers to these m-sequences as m-sequence
hereinafter.

The boolean function, also referred to as a boolean filter,
of anNLFG is usually amulti-bit input and a single-bit output
function, as shown in Fig. 1. Since an m-sequence is linear
and vulnerable against the linear attack (e.g. Berlekamp-
Massey algorithm [11]), the security of an NLFG relies on
the toughness of the boolean function. In this context, many
cryptographic boolean functions have been proposed [2],
[3], and extended the concepts of an NLFG towards a more
generic model.

As a branch of those extensions, Sidelńinkov and Lem-
pel et al. independently introduced a generator known as
a Sidelńikov sequence [12] or Lempel-Cohn-Eastman se-
quence [13] with a primitive element over a field Fq and a
quadratic character of Fq , where q is a prime power. An-
other direction of those extensions is the cascaded-GMW
sequence (including GMW sequence) [14], [15] which is a
natural extension of an m-sequence. In addition, the NTU
sequence [5], [6] is said to be the combination of the above
sequences in the sense that it is defined with a trace function
and a Legendre symbol.

According to the previous research concerning NTU
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sequences, it has been theoretically proven that an NTU
sequence has the maximum complexity [7]; however, it is
also known that the bit distribution property is unbalanced
[8] due to the mapping function. To address this drawback,
the author, in this paper, introduces dynamic mapping for an
NTU sequence to improve its distribution property with less
degradation of its complexity.

3. Definition and Examples of the Sequence

This section briefly reviews the structure of anNTUsequence
and proposes a nonlinear filter with dynamic mapping.

3.1 Structure of an NTU Sequence

The concept of NTU sequence is primarily the same as the
traditional NLFGs; however, it differs from them in that its
linear generator is an m-sequence over Fp , and its mapping
function is defined with the Legendre symbol over Fp , where
p is an odd prime. More precisely, let ηNTU (x) be the map-
ping function that is defined as follows:

ηNTU (x) =

{
1 if x is a QR element in Fp ,
0 otherwise,

where x ∈ Fp .
Let ω be a primitive element in an extension field of

extension degree n over Fp . An NTU sequence SNTU = {si}
is generated by

si = ηNTU

(
Trp

n

p

(
ωi

))
.

Since p is an odd prime, the output of the trace function
is in the range {0,1, . . . , p−1} and themapping function ηNTU
cannot classify those elements into 0 or 1 evenly. In addition,
as the trace function provides each non-zero element pn−1

times and the 0’s
(
pn−1 − 1

)
times, the output of ηNTU can be

balanced if 0’s are classified into two sets (0 or 1) uniformly
and less intentionally.

3.2 Definition of the Filter and the Sequence

Let Fp and Fpn be a finite field of characteristic p and the
extension field of degree n over Fp , respectively. Since the
mapping function in the NTU sequence has an unbalanced
property, the author proposes to introduce dynamic mapping
with a lower computational cost. Let ω be a primitive ele-
ment in Fpn and η denotes a mapping function defined with
an element g ∈ Fp obtained by Eq. (7) as follows:

η (x) =


0 if x = 0 and gu+v is QR over Fp,
0 if x , 0 and x is QR over Fp,
1 if x = 0 and gu+v is QNR over Fp,
1 if x , 0 and x is QNR over Fp,

(6)

g =
Trp

n

p

(
ωκ+λ

)
Trp

n

p (ωκ)
, (7)

where κ is a positive integer such that Trp
n

p (ω
κ) , 0 and

λ =
pn−1
p−1 . In addition, it is noted that u = bi/λc and v = i

(mod λ) for λ and i = 0,1, . . . ,2λ − 1. As the evaluation
of gu+v whether QR or QNR can be conducted by u + v
(mod 2), implementation cost would not be expensive.

For the mapping function η, a sequence S = {si} is
generated by

si = η
(
Trp

n

p

(
ωi

))
.

As seen from the definition of the proposed generator, it can
take over the implementation tactics of NLFGs such as a
shift register and a lookup table.

4. Some Properties of the Sequence

In this section, the author shows some theoretic properties
of the proposed sequence.

4.1 Period of the Sequence

The period of the proposed sequence is the same as that of
the NTU sequence. Let S = {si} be a proposed sequence for
i = 0,1,2, . . . ,2λ − 1 and let si denote the bit reverse of si .
Since the sequence holds the symmetricity shown below, the
period of the proposed sequence is given by 2λ.

Lemma 4.1. The proposed sequence satisfies si+λ = si .

Proof. Let ω be a primitive element in Fpn and let g be
an Fp-element endowed by Eq. (7). Since every nonzero
element γ ∈ Fpn satisfies Euler’s totient theorem, we obtain

γp
n−1 ≡

(
γ

pn−1
p−1

)p−1
≡ 1 and can therefore induce that γ

pn−1
p−1

is an Fp-element. Here, let λ = pn−1
p−1 and let us consider

ω
pn−1
p−1 = ωλ ∈ Fp . Since Trp

n

p

(
γλ

)
= γλ according to

Eq. (3) and g is given by Eq. (7), we obtain the equation as
follows:

g =
ωλTrp

n

p (ω
κ)

Trp
n

p (ωκ)
= ωλ.

Therefore, Trp
n

p

(
ωi+λ

)
= gTrp

n

p

(
ωi

)
is held for every

i (0 ≤ i < λ).
Assume Trp

n

p

(
ωi

)
, 0. Because the mapping function

η involves Legendre symbol calculation in the process, the
trace values of phase shifted elements ωi and ωi+λ satisfy(

Trp
n

p

(
ωi

)
p

)
= −1 ×

(
gTrp

n

p

(
ωi

)
p

)
(∵ Eq. (5)) .

Assume Trp
n

p

(
ωi

)
= 0. Since η replaces the element

by gu+v ,
(
gu1+v

p

)
= −1 ×

(
gu2+v

p

)
holds, where u1 = bi/λc

and u2 = b(i + λ) /λc = bi/λc + 1. Therefore, si+λ = si . �

Theorem 4.2. The period of the proposed sequence is 2λ.
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Proof. Assume that the period of the proposed sequence
S = {si} is κ, where 0 < κ ≤ λ, and it endows the rela-
tion si+κ = si . If κ |λ, then si = si+λ, and this contradicts
Lem. 4.1. Therefore, κ is not a divisor of λ, and si+2λ = si
induces κ |2λ according to Lem. 4.1. This indicates that the
sequence S comprises one of the 2-bit patterns (00,01,10,
or 11). However, considering the distribution property of an
m-sequence over Fp , S must include the other 2-bit patterns.
Therefore, κ |2 contradicts this fact, and the period of S can
be given by 2λ. �

4.2 Distribution Property

This section shows some distribution properties of the pro-
posed sequence S. Let b(l) be an l-bit pattern in S and let
N

(
b(l)

)
be a function which returns the number of b(l) in S,

where 1 ≤ l ≤ n.

Theorem 4.3. The proposed sequence holds the following
distribution properties:

N
(
b(1) = 0

)
= N

(
b(1) = 1

)
= λ, (8)

N
(
b(l)

)
= N

(
b(l)

)
. (9)

Proof. According to Lem. 4.1 and Thm. 4.2, the properties
Eq. (8) and Eq. (9) are endowed. More formally, let us
discuss Eq. (8) first. Let T = ti be an auxiliary sequence
concerning a primitive element ω which is derived as

ti =

{
Trp

n

p

(
ωi

)
if Trp

n

p

(
ωi

)
, 0,

gu+v if Trp
n

p

(
ωi

)
= 0,

where u = bi/λc, v = bi/λc + 1 and g = ωλ for λ =
(pn − 1) /(p − 1).

Since the mapping function η classifies 0’s into QR
elements and QNR elements uniformly, the number of QR
elements and QNR elements in T of length pn − 1, denoted
by NQR and NQNR, respectively, can be derived by

NQR =
pn−1 − 1

2
+

p − 1
2
× pn−1 =

pn − 1
2

,

NQNR =
pn−1 − 1

2
+

p − 1
2
× pn−1 =

pn − 1
2

.

Because the proposed sequence S is obtained by apply-
ing Legendre symbol toT with mapping 1→ 0 and −1→ 1,
the number of QRs and QNRs in S is obtained as

N
(
b(1) = 0

)
=

2
p − 1

× NQR =
pn − 1
p − 1

,

N
(
b(1) = 1

)
=

2
p − 1

× NQNR =
pn − 1
p − 1

,

Therefore, Eq. (8) holds.
Next, let us focus on Eq. (9). Let ω be a primitive

element that is used to generate the proposed sequence S =
{si}. Let A = {α0, α1, . . . , αn−1} be a basis of Fpn and let
B = {β0, β1, . . . , βn−1} be a dual basis ofA, where 1 ≤ l ≤ n
and αj = ω

j for 0 ≤ j < l.
Assume that ωt (0 ≤ t < l ≤ n) and ωi(0 ≤ i < pn − 1)

are represented by the bases A and B, respectively. It is
noted that ωt (0 ≤ t < l ≤ n) is defined according to the
distribution property of an m-sequence, according to which
can have a uniform distribution less than or equal to n. Since
dual bases satisfy Eq. (4), Eq. (10) is obtained, and it tells
us that trace values can be represented by the coefficients of
ωi , where ai, j ∈ Fp denotes the j-th coefficient of ωi .

Trp
n

p

(
ωt × ωi

)
= Trp

n

p
©­«ωt

n−1∑
j=0

ai, jαj
ª®¬ = ai,t . (10)

Thus, continuous l-characters
(
Trp

n

p

(
ωi

)
, . . . ,Trp

n

p

(
ωi+l−1) )

of an m-sequence are given by
(
ai,0,ai,1, . . . ,ai,l−1

)
.

Since the auxiliary sequence T is obtained by replacing
the zeros in an m-sequence by a power of g, a discussion
whether Trp

n

p

(
ωi+j

)
= 0, where 0 ≤ j < l, should be

included in the tuple is required. First, assume that the tuple
is composed of non-zero elements. Since ω and g hold the
relation ωλ × ωi = gωi for 0 ≤ i < pn − 1, every element
in the tuple always satisfies g × ai, j , 0 and ai, j = ai+λ, j for
0 ≤ j < l, where ai+λ, j is the corresponding coefficient of
gωi .

Next, assume that some of elements in the tuple are 0
and replaced by gu j+vj with u j = b(i + j) /λc and vj = i + j
(mod λ). Considering the definition of vj , a(i+λ)+j = 0 is
replaced by gu j+vj+1. Therefore, every entries in the tuple
satisfies g × ai, j , 0 and ai, j = ai+λ, j for 0 ≤ j < l.

Since Legendre symbol holds Eq. (5), it can be ob-
served that Eq. (9) holds for the sequence S. �

5. Conclusion

In this paper, the author focused on the mapping function
of the NTU sequence and proposed a dynamic mapping
function to improve the distribution property. The map-
ping function was defined with a dynamic substitution and
Legendre symbol. The period and some distribution prop-
erties of the proposed sequence are discussed theoretically
throughout the paper. As a result, it can be observed that the
period using the proposed method is the same as the original
NTUsequence, and the proposed sequence has symmetricity,
which influences the distribution property. Though the goal
was successfully achieved by introducing dynamic mapping,
it induced a different characteristic, that is, symmetricity,
which is helpful in revealing the properties of the sequence;
however, this feature may lead to vulnerability as a crypto-
graphic PRNG. Considering this, the author plans to modify
the sequence furthermore by introducing an additive op-
eration based on the structure analysis and evaluating the
sequence in future works.
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