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Logic Functions of Polyphase Complementary Sets

Shinya MATSUFUJI†a), Senior Member, Sho KURODA††b), Yuta IDA†c), Takahiro MATSUMOTO†††d), Members,
and Naoki SUEHIRO††††, Nonmember

SUMMARY A set consisting of K subsets of Msequences of length
L is called a complementary sequence set expressed by A(L, K ,M), if
the sum of the out-of-phase aperiodic autocorrelation functions of the se-
quences within a subset and the sum of the cross-correlation functions
between the corresponding sequences in any two subsets are zero at any
phase shift. Suehiro et al. first proposed complementary set A(Nn , N , N )
where N and n are positive integers greater than or equal to 2. Recently,
several complementary sets related to Suehiro’s construction, such as N
being a power of a prime number, have been proposed. However, there is
no discussion about their inclusion relation and properties of sequences.
This paper rigorously formulates and investigates the (generalized) logic
functions of the complementary sets by Suehiro et al. in order to understand
its construction method and the properties of sequences. As a result, it is
shown that there exists a case where the logic function is bent when n is
even. This means that each series can be guaranteed to have pseudo-random
properties to some extent. In other words, it means that the complementary
set can be successfully applied to communication on fluctuating channels.
The logic functions also allow simplification of sequence generators and
their matched filters.
key words: complementary sequence, aperiodic correlation function, se-
quence design, logic function, bent function

1. Introduction

Golay proposed a complementary pair, which is a pair of
bi-phase sequences with orthogonality such that the sum of
the aperiodic autocorrelation functions of each sequence at
the same phase shifts is zero except for the zero-phase shift
[1]. There have been discussions on their extensions and
related sequences [2]–[6]. The concept was extended to
the complementary set of two binary complementary pairs,
such that the sum of the aperiodic crosscorrelation functions
between the corresponding sequences in the pairs is zero for
any shift [7], and also to polyphase ones [8].
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Furthermore these were generalized by Suehiro et al.
on the concept of the complete complementary codes, ex-
pressed as A(L,K,M), where L denotes sequence length, K
the number of subsets, M the number of sequences in each
subset, and they gave a systematic construction method of
A(Nn,N,N)with N ≥ 2 and n ≥ 2 [9], [10]. In this paper, the
construction method will be called Suehiro’s method. The
complementary set can be given by multiplication or inter-
leaving with each row or each element in complex Hadamard
matrices including binary Hadamard matrices and the Dis-
crete Fourier Transform (DFT) matrices, in which each row
has orthogonal elements with an absolute value of one [11].

In general, many kinds of sequence sets with orthog-
onal properties are basically constructed using complex
Hadamard matrices, so the construction methods of com-
plementary sets, such as ZCZ codes [12]–[14] and the Reed-
Muller code [15], [16], are closely related. In particular, the
construction methods of complementary sequence sets were
discussed by using generalizedBoolean functions, which can
uniquely express the generated sequences, so that the differ-
ence between the sequence sets can be clarified and their
characteristics and relevance to ZCZ codes and Reed-Muller
codes were clarified [17], [19]. Previously, the authors also
derived the logic functions of some ZCZ codes and showed
their differences [20].

It was also shown that when A(L0,K0,M0) and
A(L1,K1,M1) are complementary sets, a new complemen-
tary set A(L0L1,K0K1,M0M1) is given by using the Kro-
necker Product, and the application of the DFT matrices of
order L0 = L1 including the binary Hadamard matrix of or-
der 2 can generate A(N,N,N) with N = L2

0 and generally
K = L is suitable for any application [21]. Recently com-
plementary sequence sets A(L,N,N) by applying the above
extension method [22] were discussed, and several methods
for L = Nn have been compared, where N is mostly primes
including 2. Not limited to this discussion, differences from
Suehiro’s method, inclusion relationships and the proper-
ties of sequence sets have not been discussed. Deriving
the generalized logic function of the target sequence set not
only clarifies the difference from the traditional construction
method [20], but also determines the number of sequences
that can be generated and the compactness of its generator
and matched filter bank [24].

In this paper, based on the above, the logic function of
the complementary sets including biphase and quadriphase
ones, which are given by Suehiro’s method, is derived and
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carefully observed. We previously discussed basics comple-
mentary sets by Suehiro’s method. [23]. The logic function
is the same as the generalized Boolean function except that it
allows mapping to the real numbers modulo integer q, since
even if the logic function includes real-valued functions and
irrational numbers, it can be handled well [25]–[28] This
discussion will be closely related to references [17]–[19].

In Sect. 2, the basic matters required in this paper such
as vectors and the (complex)Hadamardmatrix are explained,
and complementary sets are defined. In Sect. 3, it is shown
that the sequence elements in the complementary set can be
represented by the product of the elements of the Hadamard
matrices. In Sect. 4, the logic function from the above rep-
resentation in Sect. 3 and characteristic examples are de-
scribed concretely. In Sect. 5, it is investigated whether the
logic functions of the above complementary sets given by the
Kronecker product [21], [22] and Suehiro’s method is bent,
which can generate pseudo-random sequences with good
properties Finally, the results of the discussion are summa-
rized.

2. Basic Matters

This section describes the basics of complex Hadamard ma-
trices including the Discrete Fourier transform (DFT) matrix
and defines complementary sets.

2.1 Complex Hadamard Matrices

Let x be an m-dimensional vector consisting of elements xi
modulo q defined by

x = (x0, x1, · · · , xm−1) ∈ Vm
q (1)

whose elements are the coefficients of q-ary expansion of an
integer x(0 ≤ x ≤ qm − 1) expressed by

x = x0q0 + x1q1 + · · · + xm−1qm−1. (2)

Let

x · y = x y t

= x0y0 + x1y1 + · · · + xm−1ym−1 (mod q), (3)

where t is the transpose of a vector. The complex Sylvester-
type Hadamard matrix of order N = qm is given as

H = [hy,x]0≤x,y<N = [ω
y ·x
q ]y ,x∈Vm

q
, (4)

where ωq = exp(2π
√
−1/q). It satisfy

HH∗ = H∗H = NI, (5)

since ∑
x∈Vm

q

ω
y ·x−y ′ ·x
q =

∑
x∈Vm

q

ω
(y−y ′)x t

q

=

m−1∏
i=0
[
∑
xi ∈Vq

ω
(yi−y

′
i )xi

q ] =

{
N (y = y ′),
0 (y , y ′),

(6)

where I denotes the unitmatrix of order N , and ∗ the complex
conjugate transpose of a matrix. If m = 1, that is, x = x =
x0 and y = y = y0, Eq. (4) denotes the well-known DFT
(Discrete Fourier Transform) matrix of order q = N .

In general, an Hadamard matrix can be given by swap-
ping any rows or columns of the original Hadamard matrix
or multiplying any rows or columns by an element with a
magnitude of 1 (unit magnitude). Hereinafter, in order to
distinguish it from the Sylvester-type Hadamard matrix H,
an arbitrary Hadamard matrix of order N will be expressed
as

Bs = [bsy,x]0≤x,y<N , (7)

where s(≥ 0) indicates an identifier for any Hadamard ma-
trix, and Bs(Bs)∗ = (Bs)∗Bs = NI.

2.2 Complementary Sets

Let A be a set of K subsets Az of M polyphase sequences
az,y of length L defined by

A = {A0, · · · , Az, · · · , AK−1}
Az = {az,0, · · · , az,y, · · · , az,M−1}
az,y = (az,y,0, · · · ,az,y,x, · · · ,az,y,L−1)

 , (8)

where az,y,x denotes an complex element with a unit magni-
tude where |az,y,x | = 1. The aperiodic correlation function
between az,y and az′,y is defined by

Ra(z, z′, y, τ) =

L−1−τ∑
x=0

az′,y,x(az,y,x+τ)∗ (0 ≤ τ < L),

L−1+τ∑
x=0

az′,y,x−τ(az,y,x)∗ (−L < τ < 0),

0 (|τ | ≥ L).

(9)

If the size of the subset is 1, i.e. only y = 0, then y will be
ignored.

Consider the aperiodic correlation function between the
subsets of Az and Az′ defined by

R̂A(z, z′, τ) =
M−1∑
y=0

Ra(z, z′, y, τ). (10)

If the set A possesses the correlation properties

R̂A(z, z′, τ) =
{

ML (τ = 0, z = z′),
0 (otherwise), (11)

it is called a complementary sequence set which is expressed
by A(L,K,M).

Note that in general, A(2n,2,2) is well-known as a com-
plete binary complementary pair [7], [9].

3. Construction of Complementary Sets

In this section, the construction method of generalized com-
plementary sequence sets A(Nn,N,N) presented by Suehiro
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[9], [10] is clarified.

3.1 Suehiro’s Construction Method

For the clarity of deriving the logic function of A(Nn,N,N),
the construction method is summarized as follows. Let x
be an integer variable that takes a value from 0 to Nn − 1
determined by n, written as

x = xn−1Nn−1 + · · · + xkNk + · · · + x0, (12)

where 0 ≤ xk < N . The complementary set A(Nn,N,N)
with n ≥ 2 is rewritten as

An = {An
0 , · · · , A

n
z , · · · , A

n
N−1}

An
z = {an

z,0, · · · , a
n
z,y, · · · , a

n
z,N−1}

anz,y = (an
z,y,0, · · · ,a

n
z,y,x, · · · ,a

n
z,y,Nn−1)

 . (13)

Let b0
y be the yth row of the Hadamard matrix B0 with

s = 0, which is defined by Eq. (7), expressed by

b0
y = (b

0
y,0, · · · , b

0
y,x, · · · , b

0
y,N−1). (14)

Consider a set of N sequences of length N2 with n = 2
defined by

C = {c0, · · · , cz, · · · , cN−1}
cz = (cz,0, · · · , cz,x, · · · , cz,N2−1)

}
, (15)

where 0 ≤ x < N2. When

cz = (b1
z,0b

0
0, b

1
z,1b

0
1, · · · , b

1
z,N−1b

0
N−1), (16)

where b1
z,k

is an element of the Hadamard matrix B1, the set
C is referred to as the mate of N-shift orthogonal sequences
with each other, since these aperiodic auto/cross-correlation
functions takes zero at N shifts, that is,

Rc (z, z′, kN) =
{

N (k = 0, z = z′),
0 (otherwise). (17)

Use of the mate C of Eq. (15) and the Hadamard matrix B2

gives a complementary set A(N2,N,N) defined by

a2
z,y,x = (b

2
y,0cz,0, b2

y,1cz,1, · · · , b2
y,N−1cz,N−1,

b2
y,0cz,N , b2

y,1cz,N+1, · · · , b2
y,N−1cz,2N−1, · · · ,

b2
y,0cz,N2−N , b2

y,1cz,N2−N+1, · · · , b2
y,N−1cz,N2−1),

(18)

where 0 ≤ x < N2.
Let Dn be a set of N sequences of length Nn(n ≥ 3)

written as

Dn = {dn0 , · · · , d
n
z , · · · , d

n
N−1}

dnz = (dn
z,0, · · · , d

n
z,x, · · · , d

n
z,Nn−1)

}
. (19)

The set Dn of N-shift orthogonal sequences of length Nn

can be given by interleaving the sequences in An−1
z in order,

as shown in

dnz = (an−1
z,0,0,a

n−1
z,1,0, · · · ,a

n−1
z,N−1,0,

an−1
z,0,1,a

n−1
z,1,1, · · · ,a

n−1
z,N−1,1, · · · · · · ,

an−1
z,0,N−1,a

n−1
z,1,N−1, · · · ,a

n−1
z,N−1,N−1).

(20)

The use of D3 and B3 gives a complementary set A(N3,N,N)
defined by

a3
zy = (b

3
y,0dz,0, b3

y,1dz,1, · · · , b3
y,N−1dz,N−1,

b3
y,0dz,N , b3

y,1dz,N+1, · · · , b3
y,N−1dz,2N−1, · · · · · · ,

b3
y,0dz,N2−N , b3

y,1dz,N2−N+1, · · · , b3
y,N−1dz,N2−1).

(21)

Similarly, a complementary set A(Nn,N,N) whose length
is extended N times can be easily generated by using the
Hadamard set A(Nn−1,N,N), the mate of N-shift orthogonal
sequences Dn and the Hadamard matrix Bn.

3.2 Hadamard Matrix Representation

Consider expressing the elements an
z,y,x in An of Eq. (13).

From Eqs. (15) and (16), the elements cz,x of cz in C can be
written as

cz,x = b1
z,x1 b0

x1 ,x0, (22)

where x = x0 + x1N (0 ≤ x < N2). The complementary
set A(N2,N,N) can be expressed by the mate C and the
Hadamard matrix B2, which are expressed by

a2
z,y,x = b2

y,x0 cz,x = b2
y,x0 b1

z,x1 b0
x1 ,x0 . (23)

The elements in dz of Eq. (20) can be given as

d3
z,x = b2

x0 ,x1 b1
zx2 b0

x2 ,x1, (24)

where x = x0 + x1N + x2N2 (0 ≤ x < N3).
Generally speaking, interleaving the sequences

anz,y(0 ≤ y < N) in An−1
z means replacing y and

(x0, x1, · · · , xn−2)with x0 and (x1, x2, · · · , xn−1), respectively.
Therefore the complementary set A(N3,N,N) can be ob-
tained as

a3
z,y,x = b3

y,x0 dz,x = b3
y,x0 b2

z,x1 b1
x0 ,x2 b0

x2 ,x1 . (25)

From the above discussion, using D4, B4 and A(N4,N,N)
gives

a4
z,y,x = b4

y,x0 dz,x = b4
y,x0 b3

x0 ,x1 b2
z,x2 b1

x1 ,x3 b0
x3 ,x2 . (26)

Similarly, an
z,y,x can be derived using the same logic. Note

that the above argument is equivalent to induction. There-
fore, the complementary sets by Suehiro can be summarized
as the following theorem.

Theorem 1 The complementary sets A(Nn,N,N) defined
by Eq. (13) can be given as

an
z,y,x =


b2
y,x0 b1

z,x1 b0
x1 ,x0 (n = 2),

bny,x0 bn−1
x0 ,x1 · · · b

3
xn−4 ,xn−3 b2

z,xn−2
b1
xn−3 ,xn−1 b0

xn−1 ,xn−2 (n ≥ 3),
(27)

where bsy′,x′ denotes the N × N Hadamard matrix with 0 ≤
y′, x ′ < N in Eq. (7).

4. Logic Function of Complementary Sets

This section considers the (generalized) logic functions to
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represent a complementary sequence set A(Nn,N,N) with
n ≥ 2 and N = qm(m ≥ 1), which is an operation modulo
q and allows real-valued output values. The logic functions
mapping from Vn

q to Zq or Rq are formulated, where Rq

denotes the set of real numbers modulo q.

4.1 Formalization of Logic Function

Let x be a vector related to x(0 ≤ x < Nn) of Eq. (12), which
is defined by

x = (x0, · · · , xk, · · · , xn−1) ∈ Vmn
q

xk = (xk ,0, · · · , xk ,i, · · · , xk ,m−1) ∈ Vm
q

}
, (28)

where xk ,i = xkm+i . Let y be a vector that also includes xk
and z. These vectors are corresponding to y, xk and z with
0 ≤ y, xk, z < N), respectively.

Theorem 2 Let f nm(z, y, x) be the logic functions of the
complementary set A(Nn,N,N) with N = qm in Theorem 1,
written as

an
z,y,x = ω

f nm (z , y ,x)
q , (29)

where z, y ∈ Vm
q . Let hs(y, xk) be the logic function of the

Hadamard matrix of Eq. (7) is expressed as

Bs = [bsy,xk = ω
hs (y ,xk )
q ]0≤y,xk<N . (30)

The complementary set can be expressed as

f 2
m(z, y, x) = h2(y, x0) + h1(z, x1) + h0(x1, x0) (31)

for n = 2, and

f nm(z, y, x) = hn(y, x0) + hn−1(x0, x1) + · · ·

+ h3(xn−4, xn−3) + h2(z, xn−2) (32)
+ h1(xn−3, xn−1) + h0(xn−1, xn−2)

for n ≥ 3.

4.2 Representation for Different Hadamard Matrices

This section investigates the logic function of a complemen-
tary set A(Nn,N,N), which is generated by the different
Hadamard matrices Bs(0 ≤ s ≤ n) of order N , as shown in
Eq. (7).

Let Ps and Qs be non-singular matrices of order N
consisting N2 − N zero elements and N elements with an
absolute value of 1 (unit magnitude), written as

Ps = [psy,x]0≤y,x≤N−1, Qs = [qs
y,x]0≤y,x≤N−1, (33)

which play the role of swapping any rows or columns, re-
spectively. Let Ĝs and Gs be the diagonal complex matrices
of order N whose diagonal elements take any complex num-
bers with an absolute value of one. Any Hadamard matrix
of order N can be expressed by

Bs = [bsy,x]0≤y,x<N−1 = ĜsPsHQsGs, (34)

where H denotes the Hadamard matrix of Eq. (4).

Let psy,wy
represent the N elements that take the value

1 in the matrix Ps , where wy , wy′ for 0 ≤ y , y′ ≤ N − 1
and let qs

vx ,x
represent the N elements that take the value 1

in the matrix Qs , where vx , vx′ for 0 ≤ x , x ′ ≤ N − 1.
The element psy,wy

and qs
x,vx

represent replacing the y-th
row with the wy-th row and the x-th column with the vx-
th column, respectively, that is, wx and vx are the sorts of
y, x ∈ {0,1, · · · ,N − 1}, respectively. Since the matrices
Ps and Qs represent the operations of swapping rows and
columns respectively, they can be expressed as PsHQs =

[hs
wy ,vx
]. From the above discussion, the following lemma

can be given.

[Lemma 1] Let w and v be rearrangements of y and x with
0 ≤ x, y ≤ N − 1 in the Hadamard matrix Bs of Eq. (30)
written as(

y
ws

)
=

(
0 · · · y · · · N − 1
ws

0 · · · ws
y · · · ws

N−1

)
(
x
vs

)
=

(
0 · · · x · · · N − 1
vs0 · · · vsx · · · vs

N−1

)

, (35)

where ws
y , ws

y′ for y , y′ and vsx , vsx′ for x , x ′. If s
is obvious as shown below, it will be omitted because the
notation is confusing. Any Hadamard matrix of Eq. (34) can
be expressed as

Bs = diag[ps0,w0
, ps1,w1

, · · · , psN−1,wN−1
]︸                                     ︷︷                                     ︸

Ĝs

[hs
wy ,vx
]︸   ︷︷   ︸

PsHQs

s

diag[qs
x0 ,0,q

s
x1 ,1, · · · ,q

s
xN−1 ,N−1]︸                                   ︷︷                                   ︸

G

, (36)

where 0 ≤ y, x ≤ N − 1.

As shown in Lemma 1, if Ps and Qs transpose the rows
or columns of Bs , then the vectors y , let us discuss the
vectors xk and y with the superscript s for convenience.
[Theorem 3] The logic function of the Hadamard matrix
Bs in Theorem 2 can be written as

hs(y, xk) = y
s · xsk + ĝ

s(y) + gs(xk), (37)

where y also includes z and xk′ , and ĝs(·) and gs(·) denotes
logic functions giving the diagonal elements of diagonal
matrices Ĝs and Gs of Eq. (30), respectively. Note that ĝs(·)
and gs(·) are allowed to map to Rq .

4.3 Examples

The logic functions of complementary sequence sets in The-
orem 1 are illustrated as the following examples.

Example 1 Consider a three-phase complementary set
A2 = A(32,3,3)with N = 3 generated by the sameHadamard
matrices of order 3 corresponding to the DFTmatrix, Bs(0 ≤
s ≤ 2), which is expressed as
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Bs = H =

0 0 0
0 1 2
0 2 1

 , (38)

where 0,1,2 denote respectively sequence elements ω0 =
1,ω1

3,ω
2
3. The mate of N-shift orthogonal sequences of

length N2 defined by Eq. (15) is written as

C =

c0 = (000012021)
c1 = (000120210)
c2 = (000201102)

 . (39)

Therefore A2 = A(32,3,3) can be derived from Eq. (18) as

A2 = {A2
0, A

2
1, A

2
2},

A2
0 =


a2

0,0 = (000012021)
a2

0,1 = (012021000)
a2

0,2 = (021000012)

 ,
A2

1 =


a2

1,0 = (000120210)
a2

1,1 = (012102222)
a2

1,2 = (021111201)

 ,
A2

2 =


a2

2,0 = (000201102)
a2

2,1 = (012210111)
a2

2,2 = (021222120)

 .
(40)

Theorem 2 gives the logic function of A2 as

f 2
1 (z, y, x) = h2(y, x0) + h1(z, x1) + h0(x1, x0)

= zx1 + yx0 + x1x0, (41)

where z = z ∈ V1
3 , y = y ∈ V1

3 with 0 ≤ y, z ≤ 2,
x = (x0, x1) ∈ V2

3 with 0 ≤ x ≤ 8, and ĝs(·) = gs(·) =
0 (0 ≤ s ≤ 2).

Table 1 shows the truth table of a2
z,y for y = 0,1,2 on

z = 0,1 (omitted when z = 2) where a2
0,0 = x1x0 = c0, and

can confirm that the logic function of Eq. (41) is correct.
Example 2 Consider a three-phase complementary set A2 =
A(32,3,3) with N = 3 generated by using three different
Hadamard matrices, which are written as

B0 =


2 2 2
0 1 2
1 0 2

 ,B1 =


2 1 0
2 0 1
2 2 2

 ,
B2 =


0 2 1
2 2 2
1 2 0

 , (42)

Table 1 Truth table for Eq. (41).
x A2

0 = {a
2
0, y } A2

1 = {a
2
1, y }

x x1 x0 a2
0,0 a2

0,1 a2
0,2 a2

1,0 a2
1,1 a2

1,2
0 0 0 0 0 0 0 0 0
1 0 1 0 1 2 0 1 2
2 0 2 0 2 1 0 2 1
3 1 0 0 0 0 1 1 1
4 1 1 1 2 0 2 0 1
5 1 2 2 1 0 0 2 1
6 2 0 0 0 0 2 2 2
7 2 1 2 0 1 1 2 0
8 2 2 1 0 2 0 2 1

where 0,1 and 2 denote sequence elements ω0 = 1,ω1
3 and

ω2
3, respectively. The mate of N-shift orthogonal sequences

of length N2 defined by Eq. (15) is written as

C =

c0 = (111120102)
c1 = (111012210)
c2 = (111201021)

 . (43)

Therefore A2 = A(32,3,3) can be derived from Eq. (18) as

A2 = {A2
0, A

2
1, A

2
2},

A2
0 =


a2

0,0 = (102111120)
a2

0,1 = (000012021)
a2

0,2 = (201210222)

 ,
A2

1 =


a2

1,0 = (102111120)
a2

1,1 = (000012021)
a2

1,2 = (201102000)

 ,
A2

2 =


a2

2,0 = (102222012)
a2

2,1 = (000120210)
a2

2,2 = (201021111)

 .
(44)

As shown in Lemma 1, these can be represented by use
of DFT matrix H. The Hadamard matrix B0 can be written
as

B0 =


1

0
2

 H


1
0

2

 =

1

0
2


0

0
0

 H


0
0

0



2

1
0


=


1

0
2



2 0 1
1 0 2
0 0 0



2

1
0

 , (45)

where blank indicates 0. Similarly, B1 and B2 can be respec-
tively written as

B1 = H

2

0
1

 = H


0
0

0



2

1
0

 ,
B2 =


2

1
0

 H

1

0
2

 . (46)

Lemma 1 and Eqs. (45) and (46) give(
y
w0

)
=

(
0 1 2
1 2 0

)
,

(
x
v0

)
=

(
0 1 2
2 0 1

)
(
y
w1

)
=

(
0 1 2
0 1 2

)
,

(
x
v1

)
=

(
0 1 2
0 2 1

)
(
y
w2

)
=

(
0 1 2
0 1 2

)
,

(
x
v2

)
=

(
0 1 2
0 1 2

)

, (47)

and
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ĝ0(y) = (1,0,2), g0(x0) = (2,1,0)
ĝ1(y) = 0, g1(x0) = (2,1,0)
ĝ2(y) = (2,1,0), g2(x0) = (1,0,2)

 , (48)

where y = y ∈ V1
q , x0 = x0 ∈ V1

q , andws and vs respectively
indicate the sort of y and x0 in hs( , ) as shown in Lemma 1.

Theorems 2 and 3 give the logic function of A2 written
as

f 2
1 (z, y, x) = h2(y, x0) + h1(z, x1) + h0(x1, x0)

= zv1
x1 + ux1 ,x0 + gy,x0, (49)

and

ux1 ,x0 = w0
x1 v

0
x0 + g

2
x0 + g

1
x1 + g

0
x1 + g

0
x0

gy,x0 = yx0 + ĝ
2
y

}
, (50)

where gsxk and ĝ
s
y indicate gs(xk) and ĝs(y), respectively, so

that they fit in Table 2 derived from Eqs. (49) and (50).
In Table 2, (0), (1), (2) and (00), (01), (02) denote re-

spectively ux1 ,x0 of Eq. (50), (0) + vx1 , (0) + 2vx1 , and gy,x0
for 0 ≤ y ≤ 2, and w0v0 = w0

x1 v
0
x0 . Since a2

z,y = (z) + (1y),
the complementary set of Eq. (44) is obtained.

Note that if even one of gsxk ’s in Eq. (50) take a real
value modulo q, the complementary set has more phases.
For example, if even one of them has a term that is a multiple
0.5, it is a 2q-phase complementary set.

Example 3 Consider a biphase complementary set A4 =
A(24,2,2) generated by a logic function given as

f 4
1 (z, y, x) = h4(y, x0) + h3(x0, x1) + h2(z, x2)

+h1(x1, x3) + h0(x3, x2)

= x2x3 + x3x1 + x1x0 + yx0 + zx2, (51)

where gs(·) = 0 (0 ≤ s ≤ 4) and 0 ≤ y ≤ 3. According to
the truth table of f 4

1 (·), the set is given as

Table 2 Truth table of A2 of Eq. (41).
x x1 x0 w0

x1 v0
x0 g2

x0 g1
x1 g0

x1 g0
x0

0 0 0 1 2 1 2 1 2
1 0 1 1 0 0 2 1 1
2 0 2 1 1 2 2 1 0
3 1 0 2 2 1 1 0 2
4 1 1 2 0 0 1 0 1
5 1 2 2 1 2 1 0 0
6 2 0 0 2 1 0 2 2
7 2 1 0 0 0 0 2 1
8 2 2 0 1 2 0 2 0
x w0v0 (0) (00) (01) (02) vx1 (1) (2)
0 2 2 2 1 0 0 2 2
1 0 1 2 2 2 0 1 1
2 1 0 2 0 1 0 0 0
3 1 2 2 1 0 2 1 0
4 0 2 2 2 2 2 1 0
5 2 2 2 0 1 2 1 0
6 0 2 2 1 0 1 0 1
7 0 0 2 2 2 1 1 2
8 0 1 2 0 1 1 2 0

A4 = {A4
0, A

4
1},

A4
0 =

{
a4

0,0 = (0001000100101101)
a4

0,1 = (0100010001111000)

}
,

A4
1 =

{
a4

1,0 = (0001111000100010)
a4

1.1 = (0100101101110111)

}
,

(52)

where 0 and 1 denote sequence elements 1 and −1, respec-
tively. This set denotes well-discussed binary complemen-
tary pairs [1].

When gs(x1) = x1/2 and g0(x0) = x0/2, it is a quad-
riphase complementary set A(24,2,2) which is written as

A4 = {A4
0, A

4
1},

A4
0 =

{
a4

0,0 = (0110011001322310)
a4

0,1 = (0312031203302112)

}
,

A4
1 =

{
a4

1,0 = (0110233201320132)
a4

1.1 = (0312213003300330)

}
,

(53)

where 0,1,2 and 3 denote sequence elements 1, j,−1 and j,
respectively.

Example 4 Consider a biphase complementary set
A(24,22,22). Let x0

0 = x0 = (x0, x1), x1
1 = x1 = (x2, x3),

z = (z0, z1), y = (y0, y1) and gs(·) = ĝs(·) = 0. Substituting
them into Eq. (32) gives the logic function

f 4
2 (z, y, x) = x0x2 + x1x3

+y1x3 + y0x2 + z1x1 + z0x0. (54)

Therefore the biphase complementary set A is given as

A4 = {A4
0, A

4
1, A

4
2, A

4
3},

A4
0 =


a4

0,0 = (0000010100110110)
a4

0,1 = (0000101011001001)
a4

0,2 = (0000010111001001)
a4

0,3 = (0000101011000110)

 ,
A4

1 =


a4

1,0 = (0101000001100011)
a4

1,1 = (0101111101101100)
a4

1,2 = (0101000010011100)
a4

1,3 = (0101111110010011)

 ,
A4

2 =


a4

2,0 = (0011011000000101)
a4

2,1 = (0011100100001010)
a4

2,2 = (0011011011111010)
a4

2,3 = (0011100111110101)

 ,
A4

3 =


a4

3,0 = (0110001101010000)
a4

3,1 = (0110110001011111)
a4

3,2 = (0110001110101111)
a4

3,3 = (0110110010100000)

 ,

(55)

where 0 and 1 denote 1 and −1, respectively. As shown
in Example 2, it is possible to generate a large number of
complementary sets by swapping the rows and columns of
the Hadamard matrices.

Similarly, a large number of biphase or quadriphase
complementary sets A(2nm,2m,2m), and quadriphase com-
plementary sets A(4mn,4m,4m) can be generated.
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5. Consideration

In this section, the complementary sets discussed in the pre-
vious sections are considered from these logic functions.
First, in order to check whether each sequence in the com-
plementary sequence set has a high randomness property, it
is checked whether its logic function is bent.

The Fourier transform of Eq. (29) is defined by

F(z, y,λ) =
1
√

qm

∑
x∈V n

q

ω f nm (z , y ,x)−λx t

, (56)

where λ ∈ Vn
q . If the Fourier transform has the unit magni-

tude for all λ, i.e.,

|F(z, y,λ)| = 1 for all λ, (57)

the function f nm(·) is called bent for all z and y .

[Theorem 4] Assume that the Hadamard matrices in The-
orem 1 are all the same. If n is even, Eqs. (31) and (32) in
Theorem 2 are bent.

(Proof) To simplify the expression without loss of gener-
ality, s is negligible, and ĝs(·) = gs(·) = 0. the vectors z,
y , x and λ can be replaced by z, y, (x0, x1) and (λ0, λ1). The
Fourier transform of Eq. (31) can be simply written as

F(z, y,λ) =
1√
q2

∑
x1∈Vq

∑
x1∈Vq

ω
zx1+yx0+x0x1−λ0x0−λ1x1
q

=
1
q

∑
x0∈Vq

ω
x0(y−λ0)
q

∑
x1∈Vq

ω
x1(x0+z−λ1)
q

= ω
(λ1−z)(y−λ0)
q , (58)

since the second term in the above equation takes the value
q only when x0 = λ1 − z. Similarly the Fourier transform of
Eq. (32) for n = 2m can be calculated sequentially as

F(z, y,λ)

=
1

qm

∑
xn−1∈Vq

ω−xn−1λn−1
q

∑
xn−2∈Vq

ω
xn−2(xn−1+z−λn−2)
q∑

xn−3∈Vq

ω
xn−3(xn−1−λn−3)
q

∑
xn−4∈Vq

ω
xn−4(xn−3−λn−4)
q

· · ·
∑
x1∈Vq

ω
x1(x2−λ1)
q

∑
x0∈Vq

ω
x0(x1+y−λn−4)
q

=
1

qm−1ω
−λ̂0λ1

∑
xn−1∈Vq

ω−xn−1λn−1
q

· · ·
∑
x3∈Vq

ω
x3(x5−λ3)
q

∑
x2∈Vq

ω
x2(x3−λ2)
q

=
1

qm−2ω
−λ̂0λ1−λ̂2λ3∑

xn−1∈Vq

ω−xn−1λn−1
q · · ·

∑
x4∈Vq

ω
x4(x3−λ4)
q

= ω−λ̂0λ1−λ̂2λ3−···−λ̂n−2λn−1, (59)

where λ̂0 = λ0 − y, λ̂n−2 = λn−2 − λ̂n−4 − z, and λ̂2k =
λ2k − λ̂2k−2 for 1 ≤ k ≤ n

2 − 2. Since the above equation
satisfies Eq. (57), the function is bent.

All of the sequences generated by the bent function
will have good randomness. Since the sum of the generated
sequence elements can be written as

|
∑
x∈V n

q

ω f nm (z , y ,x) | =
√

qn |F(z, y,0)| =
√

qn, (60)

all sequences in all subsets are considered approximately
balanced, that is, the elements of each sequence will be
generated approximately evenly. It can be seen in Eqs. (40),
(52) and (55) in the examples in Sect. 4. In fact, as shown
in Eq. (44) of Example 2, each sequence seems to be nearly
balanced even if different Hadamard matrices are used.

On the other hand, when constructing a complementary
sequence by using the Kronecker product of matrices [21],
[22], the logic function seems not to be the bent function
as shown below. For ease of discussion, let A0 = [a0

y0 ,x0 ]

and A1 = [a1
y1 ,x1 ] be Hadamard matrices of order L0 and L1

respectively, where 0 ≤ y0, x0 < L0 and 0 ≤ y1, x1 < L0.
Let A = [ay,x] be an Hadamard matrix of order L = L0L1
by using the Kronecker product of the matrices A1 and A0,
that is, A = [ay,x] = A0 ⊗ A1 for 0 ≤ y, x < L. Let
f 0(y0, x0) and f 1(y1, x1) be the logic functions of A0 and A1

respectively, which are.expressed by a0
y0 ,x0 = ω

f 0(y0 ,x0)
q0 and

a1
y1 ,x1 = ω

f 1(y1 ,x1)
q1 . Let f (y, x) be a logic function of the

Hadamard matrix A of order L = L1L2. The elements of A
can be written as

ay,x = ω
f (y,x)
q0q1 = ω

f 0(y0 ,x0)
q0 ω

f 1(y1 ,x1)
q1 , (61)

where y = y1L0 + y0 and x = x1L0 + x0. Therefore the logic
function is written as

f (y, x) = q1 f 0(y0, x0) + q0 f 1(y1, x1). (62)
Since the product of x0 and x1 does not appear, a bent func-
tion cannot be derived.

6. Conclusions

The logic function of complementary sets of polyphase se-
quences proposed by Suehiro et al. have been rigorously for-
mulated, which includes binary and quadriphase ones. It has
been shown that there exists a casewhere the logic function is
a bent function which can generate good pseudo-random se-
quences. It seems that the logic functions of complementary
sets generated by using the Kronecker product of matrices
do not include bent functions. New complementary sets and
other related sequence sets may be constructed by further de-
riving generalized logic functions of several complementary
sets. By clarifying their differences and considering them,
additional insights and developments will be achieved.
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