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A New Transformation for Costas Arrays
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SUMMARY A Costas array of size n is an n × n binary matrix such
that no two of the

(n
2
)
line segments connecting 1s have the same length and

slope. Costas arrays are found by finite-field-based construction methods
and their manipulations (systematically constructed) and exhaustive search
methods. The arrays found exhaustively, which are of completely unknown
origin, are called sporadic. Most studies in Costas arrays have tended
to focus on systematically constructed Costas arrays rather than sporadic
ones, which reveals the hardness of examining a link between systematically
constructed Costas arrays and sporadic ones. This paper introduces a new
transformation that preserves the Costas property for some Costas arrays,
but not all. We observed that this transformation could transform some
systematically constructed Costas arrays to sporadic ones and vice versa.
Moreover, we introduce a family of arrays with the property that the auto-
correlation of each array and the cross-correlation between any two arrays
in this family is bounded above by two.
key words: Costas arrays, auto-correlation, cross-correlation, almost
Costas arrays

1. Introduction

In 1965 in the context of sonar detection, J. P. Costas studied
a particular class of permutations of n elements to improve
the poor performance of radar and sonar systems [1]. These
classes are now known as Costas arrays. A Costas array of
size n is an n × n binary matrix such that there is precisely
a single 1 per each row and each column (i.e., it is a per-
mutation matrix) and such that the line segments formed by
joining pairs of 1s are all distinct.

There are two basic approaches currently being adopted
to study Costas arrays. One is the finite field-based construc-
tion approach, and the other is computer search. In their
investigation into algebraic construction for Costas arrays,
L. R. Welch and A. Lempel found constructions and appli-
cations for them, and SolomonW. Golomb provided both the
first proofs of the validity of theWelch and Lempel construc-
tions and also a new construction [2], [3]. After discover-
ing these two main algebraic techniques, together with some
construction techniques obtained bymanipulating these con-
structions [4], there have been no further discoveries of new
algebraic methods.

Although extensive research has been carried out on
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Costas arrays, many fundamental questions are not yet
answered, especially, do Costas arrays exist for all sizes?
This question was raised for the first time in a paper by S.
Golomb and H. Taylor in 1984, and it is still open [2]. Ac-
cording to the two main constructions for Costas arrays, they
can be generated for infinitely many but not for all sizes. To
the best of our knowledge, since 1984, the smallest sizes for
which no Costas array is currently known are 32 and 33. Re-
ferring to such difficulties, some authors have mainly been
interested in computer search for Costas arrays [4]–[8]. A
computer search for Costas arrays has provided a significant
opportunity to enhance our understanding of the possible
existence pattern for Costas arrays. However, the general-
isability of these methods is subject to certain limitations.
Notably, all Costas arrays have been found through exhaus-
tive search up to size 29, while many of them are sporadic
[9]. Sporadic Costas arrays for sizes 6 ≤ n ≤ 27 exist,
and the enumeration of sizes 28 and 29 showed no sporadic
Costas array for these sizes. Therefore, there is this possibil-
ity that sporadic Costas arrays will not exist from a specific
size onwards [9].

In this study, we took advantage of a database of all
known Costas arrays up to size n = 1030, provided by James
K. Beard. It is also uploaded to IEEE DataPort [10]. The
database root folder contains the subfolders \searches and
\generated. The \generated subfolder contains all system-
atically constructed Costas arrays, and we mean by non-
generated the Costas arrays in the \searches subfolder, which
are not in the \generated subfolder. The primary purpose
of this paper is to introduce a new transformation with the
property that, after applying this transformation on the ex-
isting Costas arrays, we always obtain permutation matrices
with the maximum auto-correlation functions value of two.
Surprisingly, this transformation leaves the Costas property
invariant for most of the generated Costas arrays and some
non-generated ones. There are examples of generated Costas
arrays with the property that the transformed matrices are
non-generated.

Families of arrays with good auto and cross-correlation
have practical applications in digital watermarking [11]. As
we will see, our new transformation has the potential to turn
a single permutation into a family of permutations. Using
our transformation, we construct a family of permutation
arrays constructed by applying the transformation on the
inverse mapping over a finite field with p elements. We
will see that this family contains arrays with aperiodic auto-
correlation and the pairwise aperiodic cross-correlation of
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any two arrays of this family bounded above by two.
This paper is divided into four sections, startingwith the

introductory section. Within the introduction, there will be a
subsection that provides a review of the relevant definitions
and theorems used in this study. Section 2 will present the
formal definition of the new transformation and also explore
its application to Welch and Lempel-Golomb Costas arrays.
Moving forward, Section 3 will delve into the impact of the
transformation on non-generated Costas arrays. Finally, the
last section will be dedicated to discussing the family of
inverse permutations.

1.1 Costas Arrays Definitions and Construction Tech-
niques

Throughout this text, we denote by [n] and [n] − 1 the set
of n elements of the set {1,2, . . . ,n} and {0,1, . . . ,n − 1}
respectively, for some n ∈ N.

Definition 1: Let f : [n] → [n], n ∈ N be a bijection,
that is a permutation of n elements, which we denote by
[ f (1), f (2), . . . , f (n)]. Then the corresponding permutation
matrix of f , say Af = (ai, j), i, j ∈ [n], is an n × n matrix
where the entries are given by

ai, j =

{
1 if i = f ( j)
0 otherwise.

Sometimes it will be more convenient to consider permuta-
tions as permutation matrices. Definition 1 also tells us how
to recover a permutation from a given permutation matrix.

Let A = (ai, j), i, j ∈ [n], be a permutation matrix of
size n. Then each column has a unique element equal to
1 and 0’s elsewhere. Now we can construct a permutation
σA : [n] → [n], n ∈ N, σA( j) = i, if ai, j = 1. This
means that each element of the permutation indicates the
position of the 1 in the corresponding column of the matrix.
The following remark will explicate the relation between a
permutation matrix and its corresponding permutation.

Remark 1: There is a bijection σ : Pn →

{ f : f is a bijection on n elements}, where Pn is the set of
all permutation matrices of size n. More precisely, σA =

[ f (1), . . . , f (n)], where f (i) is the position of the nonzero
entry in the ith column of A, counting from top to bottom.
It means f −1(i) = j ⇔ ai, j = 1.

It is worthwhile to mention that it is customary to depict
the 1’s and 0’s of a permutation matrix as dots and blanks,
respectively.

Note 1: Throughout this paper, the terms “permutation ma-
trix” and “permutation” will be used interchangeably, andwe
will not distinguish between A and σA.

Definition 2 (Displacement vectors): Consider the permu-
tation matrix A = (ai, j), i, j ∈ [n], and let ai1 , j1 and ai2 , j2 , be
two nonzero entries of A. Then if j1 < j2 we call the vector
( j2 − j1, i2 − i1) the displacement vector between ai1 , j1 and
ai2 , j2 .

Definition 3 (First definition of Costas array [2]): Let A =
(ai, j), i, j ∈ [n], be a permutation matrix of size n. Then
A = (ai, j) is a Costas array if and only if all displacement
vectors of the form {( j2 − j1, i2 − i1), j1 < j2, j1, j2 ∈ [n]}
are distinct.

Let us provide a brief overview of a finite field’s leading
properties, which will be required to define the systematic
constructions. Afinite (Galois) fieldwith q elements,GF(q),
exists if and only if q is a prime power. The multiplicative
group of a finite field, GF?(q), is cyclic, and a generator of
GF?(q) is called a primitive element, and every finite field
has a primitive element. For more details on the finite field’s
theory, one can refer to the literature [12].

Lemma 1 ([12]): If α is a primitive element of GF(q) then
αt is a primitive element of GF(q) if and only if gcd(t,q −
1) = 1.

Theorem 1 (Exponential Welch Construction [2]): Let α
be a primitive element of GF(p), with p a prime, and let c
be an element of the set [p−1]−1. Then the (p−1)× (p−1)
permutation matrix with ai, j = 1 if and only if i ≡ α j+c

(mod p), where 1 ≤ i ≤ p − 1, 0 ≤ j ≤ p − 2, is a Costas
array.

Theorem 2 (Logarithmic Welch array [13]): Let α be a
primitive element of GF(p), with p a prime and c be an
element of the set [p − 1] − 1. Then the (p − 1) × (p − 1)
permutation matrix with ai, j = 1 if and only if i ≡ c+ logα j
(mod p− 1), where 1 ≤ j ≤ p− 1, 0 ≤ i ≤ p− 2, is a Costas
array.

Note 2: One can easily verify that the transposed of an
exponential Welch Costas array is a logarithmicWelch array.

Theorem 3 (Lempel-Golomb Construction [2]): Let α and
β be two primitive elements of GF(q) with q > 2. Then the
(q−2)× (q−2) permutation matrix with ai, j = 1 if and only
if αi + β j = 1, 1 ≤ i, j ≤ q − 2, is a Costas array.

The difference triangle table provides an easy way to
check whether a given permutation is a Costas array.

Definition 4 (Difference Triangle Table): Let σA =

[ f (1), . . . , f (n)], where A is a permutation matrix of size
n and [ f (1), . . . , f (n)], n ∈ N, be its corresponding permu-
tation (according to remark 1). Then the ith row of the
difference triangle table, for 1 ≤ i ≤ n − 1, contains the
following n − i elements:

ti, j = f (i + j) − f ( j), for 1 ≤ j ≤ n − i.

Definition 5 (Second definition of Costas array): Let A be
a permutationmatrix of size n, n ∈ N, with the corresponding
permutation [ f (1), . . . , f (n)]. Then, A is a Costas array if the
entries of row i, for 1 ≤ i ≤ n − 1, of the difference triangle
table, as defined in Definition 4, are pairwise distinct.

1.2 Auto-Correlation Property

Definition 6 (cross-correlation function [14], [15]): For a
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binary matrix A = (ai, j) and B = (bi, j), with 1 ≤ i, j ≤ n,
for i, j ∈ Z let

a′i, j =

{
ai, j if 1 ≤ i, j ≤ n
0 otherwise

and

b′i, j =

{
bi, j if 1 ≤ i, j ≤ n
0 otherwise.

The aperiodic cross-correlation function value between A
and B at horizontal shift r and vertical shift s is given by

CA,B(r, s) =
∑
i, j

a′i, jb
′
i+s, j+r , f or r, s ∈ Z.

Equivalently, the cross-correlation can be defined on per-
mutations. Let f , g : [n] −→ [n] be the corresponding
permutations of the arrays A and B, respectively. Then, we
define

Cf ,g(r, s) = |{i ∈ [n] : i + r ∈ [n], f (i) + s = g(i + r)}| .

We regard the auto-correlation function of a given array A
as the cross-correlation of A with itself, and we denote it by
CA.

Definition 7 ([15]): Let F be a family of permutation ar-
rays of size n. We define the maximal cross-correlation of
the family F , denoted by C(F ), as follows

C(F ) = max
r ,s

max
f ,g∈F

f ,g if r=s

Cf ,g(r, s),

where the first maximum is taken over all possible shifts
(r, s) ∈ Z2.

Definition 8: (Third definition of Costas array) Let A be a
permutation matrix of size n, where n ∈ N. Then A is a
Costas array if for any pairs of integers (r, s) , (0,0), the
aperiodic auto-correlation function of A satisfies

CA(r, s) ≤ 1.

It can be observed that the three definitions of Costas arrays
are equivalent [14]. One can provide a relaxation of the
Costas property by allowing the occurrence of displacement
vectors with the same length and slope in a permutation
matrix of at most twice. These types of permutationmatrices
can be referred to as “Almost Costas arrays”.

Definition 9: (Almost Costas array) Let A be a permutation
matrix of size n, where n ∈ N. Then A is an Almost Costas
array if for any pairs of integers (r, s) , (0,0), the aperiodic
auto-correlation function of A satisfies

CA(r, s) ≤ 2.

To gain insights into the prevalence of Almost Costas arrays,
we conducted an exhaustive search to determine the total
number of such arrays among all permutation matrices of

Table 1 Total number of Almost Costas arrays up to size 13. ACn
denotes the total number of Almost Costas arrays of size n. The last
column shows the density of Almost Costas arrays among all permutation
matrices of size n.

Size n ACn Density
2 0 0
3 6 1
4 22 0.916
5 102 0.850
6 548 0.761
7 3262 0.647
8 23082 0.572
9 173402 0.477
10 1417736 0.390
11 12417078 0.311
12 115250636 0.240
13 1133465160 0.182

a given size n ≤ 13. Table 1 presents the result of this
computation.

2. A New Transformation

We introduce a new transformation, which enables us to
apply this transformation to an existing Costas array to obtain
Almost Costas arrays, as defined in Definition 9. What
follows is the definition of our new transformation, and we
will explain how this transformation is beneficial to construct
a Costas array from a given one in some cases.

Let X = [ f (1), f (2), . . . , f (n)] be a Costas array of size
n. We plan to construct another bijection g from f and
then examine the correlation properties of its corresponding
permutation matrix. Suppose that k is a positive integer such
that gcd(k,n + 1) = 1. We define g : [n] −→ [n], by

i 7−→ f (ki mod n + 1) .

We claim that g is a bijection. Note that f is a bijection and
ki mod (n + 1) is an integer in [n]. It is sufficient to show
that g is injective. To do so, if there are integers i1, i2 ∈ [n]
such that g(i1) = g(i2), then we have

f (ki1 mod n + 1) = f (ki2 mod n + 1) .

Since f is a bijection, then applying f −1 on both sides of the
above equation gives

ki1 mod (n + 1) = ki2 mod (n + 1).

Since gcd(k,n + 1) = 1, then i1 = i2 that shows g is an
injective map. Now we can state the formal definition of our
transformation.

Definition 10: Let X = [ f (1), f (2), . . . , f (n)] represent a
permutation matrix of size n, where n ∈ N, and k is a
positive integer such that gcd(k,n + 1) = 1. We define a
bijection g : [n] −→ [n], by

i 7−→ f (ki mod n + 1) .

We denote the corresponding permutation matrix of g by
Ak(X).
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Let us mention that the transformation Ak is reversible.
This can be demonstrated by considering the fact that the
inverse transformation can be obtained as Ak−1 , where k−1

represents the multiplicative inverse of k in Zn+1.

Example 1: Consider aCostas array X = [1,7,4,8,2,3,6,5]
of size 8. Since gcd(2,9) = gcd(4,9) = 1, we can construct
A2(X) and A4(X). Then, we have

A2(X) = [ f (2 · 1 mod 9) , . . . , f (2 · 8 mod 9)]
= [7,8,3,5,1,4,2,6].

Similarly,A4(X) = [8,5,4,6,7,3,1,2]. One can easily check
that A2(X) is Costas array, but A4(X) is not.

Let us define the concept of transferable arrays as
follows:

Definition 11: Let X be a Costas array of size n. We refer to
X as a transferable array if there exists an integer k such that
gcd(k,n + 1) = 1, and the application of the transformation
Ak to X , denoted as Ak(X), yields another Costas array.

Assume that Cn is the set of all Costas arrays of size n.
It is well-known that the dihedral group D8 (the group of
symmetries of a square) acts on Cn. Thus the orbit of D8
partitions Cn. Therefore, the equivalence class of a Costas
array X is the orbit of X under the action of D8, then this
equivalence class contains either eight Costas arrays or four
Costas arrays if the array is symmetric. We observed that
if an array is transferable, then some of the elements of its
equivalence class are also transferable, but not all.

Theorem 4: Let X be a transferable Costas array of size n.
Then the vertical reflection, horizontal reflection and 180◦
rotation of X are transferable.

Proof: Let us denote by Xv , Xh and Xr the Costas arrays
obtained by vertical reflection, horizontal reflection and 180◦
rotation of the Costas array X , respectively. The procedure
of proving a Costas array is transferable is to find a positive
integer t with the property that gcd(t,n + 1) = 1 and ap-
plying At gives a Costas array. We begin by proving Xv is
transferable. One can easily check that Xv = [ f (n + 1 − i)],
for 1 ≤ i ≤ n. Let us apply the transformation for t = −k.
Then for 1 ≤ i ≤ n we have

A−k(Xv) = [ f (−k(n + 1 − i) mod n + 1)]
= [ f (ki mod n + 1))]
= Ak(X).

Since X is transferable, then Ak(X) is a Costas array. Thus
Xv is transferable. We next prove that Xh is transferable.
One can see that the horizontal reflection of X is given by
Xh = [n+1− f (i)] for 1 ≤ i ≤ n. We apply the transformation
for t = k. Then we have for 1 ≤ i ≤ n

Ak(Xh) = [n + 1 − f (ki mod n + 1)] = (Ak(X))h .

We already know that [ f (ki mod n + 1)] for 1 ≤ i ≤ n is
a Costas array. Thus Xh is transferable. Similarly, we can

verify that 180◦ rotation of X is also transferable. The 180◦
rotation of X is given by Xr = [n + 1 − f (n + 1 − i)] for
1 ≤ i ≤ n. Let us take t = −k, then we have

A−k(Xr ) = [n + 1 − f (−k(n + 1 − i) mod n + 1)]
= [n + 1 − f (ki mod n + 1))]
= (Ak(X))h .

Similar to the latter case, we can conclude that Xr is trans-
ferable, which completes the proof. �

Corollary 1: Assume that X and its transpose, XT , are
transferable. Then all the elements of the equivalence class
of X are transferable.

Proof: The proof is straightforward. �

Theorem 5: Let X = [ f (1), f (2), . . . , f (n)] represent a
Costas array of size n, where n ∈ N, and k is a positive
integer such that gcd(k,n+ 1) = 1 and k , 1,n. Then for all
possible shifts (r, s) , (0,0), |r | ≤ n, |s | ≤ n, we have

CAk (X)(r, s) ≤ 2.

In other words, Ak(X) is almost Costas array.

Proof: By way of contradiction, we can assume that the
aperiodic auto-correlation function ofAk(X) for a non-zero
shift has a value of at least 3, meaning there is a row l in the
difference triangle table ofAk(X) in which there are at least
three equal entries, say g(i1 + l) − g(i1), g(i2 + l) − g(i2), and
g(i3 + l) − g(i3), where 1 ≤ i1, i2, i3, i1 + l, i2 + l, i3 + l ≤ n,
and i1, i2, and i3 are all distinct. As in Definition 10, for
t = 1,2,3, g(it + l) − g(it ) is equal to

f ((kit + kl) mod n + 1)) − f (kit mod n + 1). (1)

Let us assume that i′t = kit mod n + 1, where t = 1,2,3, and
l ′ = kl mod n + 1. Therefore, we have

g(it + l) − g(it ) = f ((i′t + l ′) mod n + 1) − f (i′t ). (2)

Clearly, 1 ≤ i′t ≤ n and 1 ≤ l ′ ≤ n, hence it follows that
2 ≤ i′t + l ′ ≤ 2n. Moreover, since 1 ≤ it + l ≤ n for t = 1,2,3
and gcd(k,n+1) = 1, it follows that i′t+l ′ , n+1. Therefore,
we can assume that i′t+l ′ < n+1 or i′t+l ′ > n+1. In the latter
case, we can conclude that ((i′t+l ′) mod n+1) = i′t+l ′−n−1.
We already assumed that the left-hand side of (2) are equal.
hence, we will use the fact that X is a Costas array to obtain
a contradiction. To do so, we need to consider four cases:

1. For all t ∈ {1,2,3}, we have i′t + l ′ < n + 1.
2. For all t ∈ {1,2,3}, we have i′t + l ′ > n + 1.
3. For two values of t, where t ∈ {1,2,3}, we have i′t + l ′ <

n + 1.
4. For two values of t, where t ∈ {1,2,3}, we have i′t + l ′ >

n + 1.

Case 1. According to (2), we have

f (i′1+ l ′)− f (i′1) = f (i′2+ l ′)− f (i′2) = f (i′3+ l ′)− f (i′3).
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Since X is a Costas array, i′1 = i′2 = i′3 or l ′ = 0. Define that
i′1 = i′2, then

ki1 mod n + 1 = ki2 mod n + 1.

Since gcd(k,n+1) = 1, then we can conclude that i1 mod n+
1 = i2 mod n + 1. This gives i1 = i2, because we assumed
1 ≤ i1, i2 ≤ n, which gives a contradiction with the fact that
i1 and i2 are distinct. Moreover, if l ′ = 0, then l = 0. This
finishes the proof of case 1.
Case 2. According to (2), we have

f (i′1 + l ′ − n − 1) − f (i′1) = f (i′2 + l ′ − n − 1) − f (i′2)
= f (i′3 + l ′ − n − 1) − f (i′3).

It follows that

f (i′1) − f (i′1 + l ′ − n − 1) = f (i′2) − f (i′2 + l ′ − n − 1).

Assume that i′′1 = i′1 + l ′ − n − 1 and i′′2 = i′2 + l ′ − n − 1.
Hence we have

f (i′′1 + (n + 1 − l ′)) − f (i′′1 ) = f (i′′2 + (n + 1 − l ′)) − f (i′′2 ).

Clearly, 1 ≤ i′′1 , i
′′
2 ≤ n. Assuming l ′′ = n + 1 − l ′, we can

conclude that i′′1 = i′′2 or l ′′ = 0, because X is a Costas array.
We know that l ′′ , 0, because 1 ≤ l ′ ≤ n. Thus i′′1 = i′′2 .
Therefore, we can conclude that i′1 = i′2. Now, by a similar
argument as in case 1, we can conclude that i1 = i2 which
gives a contradiction.
Case 3. There is no loss of generality in assuming i′1 + l ′ <
n+ 1 and i′2 + l ′ < n+ 1. With the same argument as in case
1, we can complete the proof of this case.
Case 4. Without loss of generality we can assume i′1 + l ′ >
n+ 1 and i′2 + l ′ > n+ 1. Then we can complete the proof of
this case by using the same argument as in case 2.
Therefore, in each row of the Ak(X)’s difference triangle
table, we do not have a repeated value more than twice,
which completes the proof. �

Having defined the transformation Ak , we will now dis-
cuss how this transformation operates onWelch and Lempel-
Golomb Costas arrays.

Theorem 6: Let X be a logarithmic Welch Costas array.
Then Ak(X), where Ak is the transformation introduced
in Definition 10, is also a logarithmic Welch Costas array,
obtained by a cyclic shift of the rows of X .

Proof: Assume that X is a logarithmic Welch Costas array,
as in Definition 2. Then X = [c + logα j mod p − 1] for
1 ≤ j ≤ p − 1. We know that the non-zero elements in
GF(p) form a cyclic group with respect to multiplication.
Moreover, according to the discrete logarithm’s definition, if
we have a cyclic group G of order n, then for any g1, g2 ∈ G
and a generator x we have

logx(g1g2) =
(
logx g1 + logx g2

)
mod n.

Therefore, we can conclude that

logα(k j mod p) = (logα k + logα j) mod p − 1 (3)

Table 2 Exponential Welch arrays’ parameters and integer k for which
Ak gives a non-generated Costas array.

GF(q) Exponential Welch information and k
11 α = 2, c = 3, k = 5
11 α = 2, c = 3, k = 6
11 α = 6, c = 8, k = 5
11 α = 6, c = 8, k = 6
23 α = 5, c = 5, k = 2
23 α = 5, c = 5, k = 21
23 α = 5, c = 16, k = 2
23 α = 5, c = 16, k = 21

It is known that a cyclic shift of the rows of a logarithmic
Welch Costas array is also a Costas array. Now, if we take a
look at the Ak(X) permutation, we can see

Ak(X) =
[ (

c + logα(k j mod p)
)

mod p − 1
]
.

Thus, equality (3) shows that

Ak(X) = [
(
c + logα k + logα j

)
mod p − 1],

which shows that Ak(X) is obtained by a cyclic shift of the
rows of a logarithmic Welch that completes the proof. �

It is worthwhile to mention that exponential Costas arrays
are not always transferable. In fact, what is surprising is that
in a few examples of exponential Welch Costas arrays, after
applying Ak , we obtain non-generated Costas arrays. We
did hope that we might find transferable exponential Welch
Costas arrays of size greater than or equal to 30, for which we
do not have a complete search to see whether we find a new
Costas array. We checked for all exponential Welch Costas
arrays up to size 1030 while none of them was transferable,
except a few cases of small sizes, collected in Table 2. Let us
discuss the transformation Ak’s effect on Lempel-Golomb
Costas arrays.

Theorem 7: Let X be a Lempel-Golomb Costas array of
size q − 2, where q is a prime power, see Definition 3.
Suppose that Ak is the transformation introduced in Defi-
nition 10. Then Ak(X) is again a Lempel-Golomb Costas
array.

Proof: Since X is a Lempel or Golomb Costas array, there
are primitive elementsα and β ofGF(q) such that in the array
X there is a dot at position (i, j) if and only if αi+β j = 1, 1 ≤
i, j ≤ q−2. It follows that in the matrixAk(X), there is a dot
at position (ki mod q−1, j) if and only if αki mod q−1+β j = 1,
1 ≤ i, j ≤ q − 2. According to the Lemma 1 and the fact
that gcd(k,q − 1) = 1, we can conclude thatAk(X) is again
a Lempel or Golomb Costas array because αk is a primitive
element as well. �

We have investigated the transferability of Costas arrays and
examined the values of k for which this transferability holds.
Our findings indicate that logarithmic Welch and Lempel-
Golomb Costas arrays exhibit transferability for all possible
k, while other transferable Costas arrays do not demonstrate
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the same property. It should be noted that the transferability
of a Costas array does not guarantee transferability for all
values of k. We have encountered cases where applying
the transformation Ak for some values of k yields another
Costas array, while the same array with different k values
may not result in another Costas array. These observations
highlight the need for further investigation into the properties
of transferable Costas arrays to determine the conditions
under which a Costas array is transferable.

3. Non-Generated Costas Arrays

Although a considerable amount of literature has been pub-
lished on Costas arrays, most of these studies have only
focused on systematically constructed Costas arrays. Not
much has been discovered about non-generated Costas ar-
rays’ properties, which indicates the difficulties of finding
any common property between generated Costas arrays and
non-generated ones [8].

Turning now to the experimental evidence, we went
through the database to identify transferable Costas arrays
up to size 29. Independent analyses were carried out on
generated and non-generated Costas arrays. Table 3 con-
tains all information about the number of transferable Costas
arrays of each size up to size 29. The previous section

Table 3 The total number of transferable Costas arrays per class up to
size 29. Cn stands for the total number of Costas arrays of size n; GT
and NGT stand for generated transferable Costas arrays and non-generated
transferable Costas arrays, respectively.

Size Cn GT NGT NGT from GT
6 116 60 0 0
7 200 16 0 0
8 444 32 76 24
9 760 24 48 0
10 2160 60 132 20
11 4368 32 48 8
12 7852 52 264 4
13 12828 4 88 4
14 17252 16 144 0
15 19612 80 24 0
16 21104 128 16 0
17 18278 48 0 0
18 15096 108 0 0
19 10240 0 0 0
20 6464 0 0 0
21 3536 120 0 0
22 2052 224 4 4
23 872 32 0 0
24 200 0 0 0
25 88 48 0 0
26 56 0 0 0
27 204 168 0 0
28 712 336 0 0
29 164 80 0 0

showed that logarithmic Welch and Lempel-Golomb Costas
arrays are transferable. Therefore, we have infinitely many
transferable Costas arrays because we have infinitely many
logarithmic Welch and Lempel-Golomb Costas arrays. An-
other interesting observation is that, in some cases, we can
obtain a non-generated Costas array by transforming a gen-
erated one. We saw examples of this type in Table 2. The
last column of Table 3 illustrates the total number of trans-
ferable generated Costas arrays with the property that the
transformed permutations are non-generated Costas arrays.

Let us mention, as experimental evidence, that we have
extensively examined all known Costas arrays ranging in
size from 30 up to 500. During our investigation, we specifi-
cally checkedwhether applying the transformationAk would
yield new Costas arrays. However, we found no instances of
transferable Costas arrays within this range, except for the
logarithmic Welch and Lempel-Golomb Costas arrays.

4. Family of Inverse Permutations

For a prime p ≥ 5, let f (x) = x−1 be the inverse mapping
over GF(p) and k be an integer relatively prime to p. We
define the family of Ip of inverse permutations of [p− 1], by

Ip =
{[
(k x)−1] : x ∈ GF(p) \ {0} and gcd(k, p) = 1

}
.

Then, the size of the family Ip is p − 1, where φ is the
Euler’s toitient function. It can be seen that the family Ip
is obtained by applying the transformation Ak on a given
inverse mapping over GF(p).

Theorem 8: For a prime p ≥ 5, let Ip be the family of
inverse permutations. Then, we have C(Ip) ≤ 2.

Proof: Consider two inverse permutations f1 and f2 in Ip ,
generated by f1(x) = (k1x)−1 and f2(x) = (k2x)−1 in GF(p),
where k1 and k2 are not necessarily distinct integers relatively
prime to p. To compute the cross-correlation at (r, s) ∈
Z2 between f1 and f2, we need to estimate the number of
solutions of the equation(

(k1x)−1 mod p
)
+ s =

(
(k2(x + r))−1 mod p

)
. (4)

We perform all computations in GF(p) and keep in mind
that we compute the aperiodic correlation, which means that
x and x + r will never be 0. We obtain an upper bound for
the number of solutions of the following equation(

(k1x)−1
)
+ s = (k2(x + r))−1. (5)

Multiplying both sides of (5) by k2x(x + r) yields

k−1
1 k2(x + r) + sk2x2 + sk2r x = x. (6)

Equivalently, we have

sk2x2 +
(
k−1

1 k2 + sk2r − 1
)

x + k−1
1 k2r = 0. (7)

Since (7) is a polynomial of degree 2 in GF(p), it can admit
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at most two solutions. Since k1 and k2 are not necessarily
distinct, we can conclude that both auto-correlation of each
member of the family Ip and the cross-correlation of any
two distinct elements of Ip is at most two, which completes
the proof. �

Let us note that if we consider the inverse mapping f (x) =
x−1 in GF(p), taking element 0 into account may increase
the aperiodic auto-correlation by 1. In other words, an in-
verse permutation f over GF(p) produces a permutation on
elements {0,1, . . . , p − 1} of size p with the property that
its corresponding p × p permutation array has the aperiodic
auto-correlation of at most three.
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