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SUMMARY The frequency hopping sequence plays a crucial role in
determining the system’s anti-jamming performance, in frequency hopping
communication systems. If the adjacent frequency points of FHS can en-
sure wide-gap, it will better improve the anti-interference capability of the
FH communication system. Moreover, if the period of the sequence is ex-
panded, and each frequency point does not repeat in the same sequence,
the system’s ability to resist electromagnetic interference will be enhanced.
And a one-coincidence frequency-hopping sequence set consists of FHSs
with maximum Hamming autocorrelation 0 and cross-correlation 1. In this
paper, we present two constructions of wide-gap frequency-hopping se-
quence sets. One construction is a new class of wide-gap one-coincidence
FHS set, and the other is a WGFHS set with long period. These two
WGFHS sets are optimal with respect to WG-Peng-Fan bound. And each
sequence of these WGFHS sets is optimal with respect to WG-Lempel-
Greenberger bound.
key words: frequency-hopping sequence, wide-gap frequency-hopping se-
quence, one-coincidence frequency-hopping sequence, Hamming correla-
tion

1. Introduction

Frequency hopping (FH) spread spectrum, as one of the ba-
sic spread coding technologies in communication systems,
has been widely used in mobile communication, UWB com-
munication, radar system, Bluetooth, and so on, because of
its good anti-interference ability, low interception rate, mul-
tiple access networking ability, and anti-fading ability [1]–
[5].

FH is one of the most commonly used spread spectrum
methods. Its working principle refers to the communica-
tion method in which the carrier frequency of the transmit-
ted signals of both the transmitter and the receiver changes
discretely according to a predetermined rule, that is, the car-
rier frequency used in communication changes randomly
under the control of a pseudo-random change code [6]. This
pseudo-random code is called frequency hopping sequence
(FHS). At the same time, the performance of FHS has a de-
cisive impact on the performance of the FH communication
systems. In a system, each user is usually assigned an FHS.
When two or more users transmit at the same time, it will
cause signal interference. Hamming correlation is usually
used to measure the degree of interference. In general, the
smaller the number of FHS overlaps (the smaller the Ham-
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ming correlation), the better the FH Communication sys-
tem’s anti-multipath capability will be [7]–[9]. For instance,
multiple access systems need FHS sets with low Hamming
correlation and larger size, while radar system requires a
single FHS with low Hamming autocorrelation. Therefore,
constructing FHSs or FHS sets with good properties has at-
tracted more attention. The study of the periodic Hamming
autocorrelation of FHSs can be traced back to the seminal
work of Lempel-Greenberger, which is used to measure the
optimality of a single FHS [10]. Later, Peng and Fan made
a contribution by developing the Peng-Fan bound [11] on
FHS set which measures the optimality of FHS sets.

Since mutual interference is difficult to completely
eliminate, it’s important that we minimize collisions. Dur-
ing these decades, numerous research results of construc-
tions of FHSs have been reported (See [12]–[15]). In partic-
ular, one-coincidence FHS (OC-FHS) set consists of FHSs
which maximum Hamming cross-correlation of any two
FHS is no more than 1 and the maximum autocorrelation
of a sequence is 0. Firstly, the concept of the OC-FHS set
was first proposed by Shaar [16] in the early 1980s which is
exactly an OC-FHS set. then, Wang [17] et al. constructed
a class of OC-FHS by Cartesian product for the first time.
Later on, Lee [15] et al., proposed to construct an OC-FHS
set by a primitive element of the prime field. Moreover, Niu
[18] et al. used designed the direct product to obtain more
new OC-FHS sets with flexible parameters.

In addition, FH communication is a kind of evasive
anti-interference technology. If the radio station stays on
a certain frequency for a long time, it will be vulnerable to
all kinds of interference. This is especially true for slow
frequency hopping systems. However, if the adjacent time
slots of the FHS are greater than a given value. Such an
FHS is called wide-gap FHS (WGFHS) [19], [20]. In this
way, even if it is subject to strong single frequency interfer-
ence, it will only lose information in one time slot, but not in
several consecutive time slots. Information can be recovered
through interleaving and error correction coding.

Generally speaking, there are two main types of meth-
ods for generating WGFHSs is based on frequency alloca-
tion, such as removing mid-band and dual-band [21], and
the other is based on frequency point correction, taking ad-
jacent or related frequency points as references, and calcu-
lating the current to meet the wide-gap require. Later, Ren
[22] et al., proposed to construct sets of WGFHSs by way of
combinatorial algebraic construction. But these WGFHSs
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periods are short period, which has certain limitations. In
2022, Li [23] et al., proposed two construction of single
WGFHS with long period respectively. Compared with the
construction of FHS, there are few construction of WGFHSs
(refer to [21], [24], [25]), let alone a WGFHS set with a
longer period or hava good properties. These motivate us to
provide the optimal set of WGFHS with long period and the
optimal set of one-coincidence WGFHS.

This paper is organized as follows. In Sect. 2, we
will review some preliminaries. In Sect. 3, we will pro-
pose a construction of WGFHS set with long period which
is optimal with respect to WG-Lempel-Greenberger bound.
In Sect. 4, we will present a new class of optimal wide-
gap one-coincidence Frequency-hopping sequence, Then,
Sect. 5 gives two examples to prove our constructions. Fi-
nally, Sect. 6 concludes the paper.

2. Preliminaries

The following notations will be used throughout this paper.
• p is a prime and p ≥ 5;
• 〈x〉 the least nonnegative residue of x module p for

an integer x and a positive integer p;
• bxc the largest integer less than or equal to x;
• dxe the least integer greater than or equal to x.

2.1 Hamming Correlation Function

Throughout this paper, let F be the alphabet size F =

f0, f1, . . . , fl−1 and l is a positive integer. Assume S is a
set of length N which is defined over F. For any two FHSs
x = (x0, x1, . . . , xN−1), y = (y0, y1, . . . , yN−1) ∈ S , the pe-
riodic Hamming correlation function Hx,y(τ) of x and y at
time delay τ is defined as below:

Hx,y(τ) =

N−1∑
k=0

h(xk, yk+τ), 0 ≤ τ < N,

h(xk, yk+τ) = 1 if xk = yk+τ, h(xk = yk+τ) = 0 otherwise,
where all operations are performed module N among the
position indices. If x = y, Hx,y(τ) is called the Hamming
autocorrelation of x, denoted by Hx(τ) for simplicity. Let S
be an FHS set with M sequences of length N over F. For
any two distinct FHS x, y ∈ S , the following three measures
are defined by

Ha(S ) = max
1≤τ<N

Hx(τ),

Hc(S ) = max
0≤τ<N

Hx,y(τ),

H(S ) = max{Ha(S ),Hc(S )}.

2.2 Wide-Gap Frequency-Hopping Sequences and One-
Coincidence Frequency-Hopping Sequences

Definition 1 For any FHS x ∈ S and x = (xk)N−1
k=0 over a

frequency set F = {0, 1, . . . , l − 1}, and a positive integer D,
define

|xk+1 − xk | > D, k ≥ 0,

Then x is called a wide-gap FHS set with minimum FH gap
D.

Definition 2 If an FHS set satisfies the two following simul-
taneously, the FHS set is called an OC-FHS set.

(1) H(x) = 0, for all x ∈ S ;
(2) H(x, y) = 1, for any two distinct FHS x and y in S at any
time shift τ (0 ≤ τ ≤ N − 1).

2.3 Optimality

An FHS set basically contains four parameters: alphabet
size, sequence period, famliy size and the Hamming corre-
lation. These parameters are not independent of each other,
but mutually constrained. The relationship between these
parameters can be used to measure whether the construction
method is optimal. Throughout this paper, assume that an
FHS with parameters (N, l; λ) denoting the FHS of length
N over F of alphabet size l with H(x) = λ and an FHS set
S with parameters (N,M, l; λ) denoting the FHS set with M
sequences of length N over F and Hm(S ) = λ.

For every FHS y, Lempel and Greenberger established
the following well-known lower bound [10] for H(y)

Lemma 1 (Lempel-Greenberger Bound). For every FHS y
with length N over F with |F| = l, we have

Hc(y) ≥
⌈
(N − ε)(N + ε − l)

l(N − 1)

⌉
, (1)

where ε = N −
⌊

N
l

⌋
∗ l.

Based on the above bound, if a FHS y satisfies
Lemma 1, then y is called an optimal FHS with length N
over F.

In 2004, Peng and Fan developed the following bound
[11] is used to measure the optimality of a sequence set.

Lemma 2 (Peng-Fan Bound). Let S be a set of M se-
quences with period N over F, we have

H(S ) ≥
⌈
(NM − l)L
(NM − 1)l

⌉
, (2)

An FHS set S is said to be optimal with respect to
Peng-Fan bound if the Peng-Fan bound in Lemma 2 is met
with equality. The sequence set S is called the optimal fre-
quency hopping sequence set.

Later, in 2019, Li [26] et al. deduced WG-Lempel-
Greenberger Bound of Hc(y) for a WGFHS and the WG-
Peng-Fan Bound of H(S ) for a WGFHS set as follows.

Lemma 3 Let y be a WGFHS of period N over F with |F| =
l. Then one has

Hc(y) ≥
⌈
(N − ε)(N + ε − l)

l(N − 3)

⌉
, (3)

where ε is the least nonnegative residue of N modulo l.
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Lemma 4 Let S be a set of M WGFHSs of period N over
F, then

H(S ) ≥
⌈
(NM − l)L
(NM − 3)l

⌉
, (4)

Based on the bound above, we define the optimality of a
WGFHS y and a WGFHS set S in the following.

A WGFHS y is said to be an optimal frequency-
hopping sequence if y achieves the Lemma 3. And a
WGFHS set S is said to be an optimal frequency-hopping
sequence set if the the bound in Lemma 4 is met with equal-
ity.

3. An Optimal WGFHS Set with New Parameters

In this section, we present a construction of WGFHS set
with long period by algebraic means.

Construction 1 For a positive integer w with
√

1+8p+1
2 ≤

w ≤ p − 1, the FHS set C = {ck = ck
i , 1 ≤ k ≤ p − 1, 0 ≤ i ≤

p − 1}

ck
i =

{
〈i ∗ k〉 , 0 ≤ i ≤ p − 1∑i+w−1−p

j=i−p 〈 j ∗ k〉 , p ≤ i ≤ 2p − 1

Theorem 1 The set C in Construction 1 is an optimal set
with parameters (2p, p, w(p − w) + 1 + p; 2).

Proof We are going to proof this Theorem:
Obviously, there are p FHSs of length 2p in FHS set C.

Now, we consider the size of available frequency alphabet
|F|.

Firstly, we need to ensure that the frequency points of
0 ≤ i ≤ p − 1 and p ≤ i ≤ 2p − 1 are disjoint, so the
maximum frequency point of 0 ≤ i ≤ p − 1 is smaller than
the minimum frequency point of p ≤ i ≤ 2p − 1. It can be

seen that
√

1+8p+1
2 ≤ w ≤ p − 1. Thus, |F| is composed of

the sum of two frequency alphabet. When 0 ≤ i ≤ p − 1,
we record the available frequency point as |F1|, and when
p ≤ i ≤ 2p − 1, we record the available frequency point as
|F2|. So |F| = |F1| + |F2|.

For 0 ≤ i ≤ p − 1, ck
i = 〈i ∗ k〉, it is easily to know the

frequency alphabet of |F1| is p. For p ≤ i1 , i2 ≤ 2p − 1,
the frequency alphabet of ck

i =
∑i+w−1−p

j=i−p 〈 j ∗ k〉 needs to be
derived. When p ≤ i ≤ 2p − 1, the element ck

i satisfies the
following inequation,

w−1∑
j=0

j ≤
i+w−1−p∑

j=i−p

〈 jk〉 ≤
p−1∑

j=p−w

j,

which implies that

w(w − 1)
2

≤

i+w−1−p∑
j=i−p

〈 jk〉 ≤ wp −
w(w + 1)

2
.

Obviously, one has

|F2| = wp −
w(w + 1)

2
−
w(w − 1)

2
+ 1 = w(p − w) + 1.

From this we can see |F| = |F1| + |F2| = w(p − w) + 1 + p.
Then, we will show that H(C) = 2.
Firstly, for 1 ≤ k ≤ p − 1, according to Lemma 1 [24]

and Theorem 3.1 in [22], we know that every FHS in both
〈i ∗ k〉 and

∑i+w−1−p
j=i−p 〈 j ∗ k〉 are OC-FHSs. In addition, due

to
√

1+8p+1
2 ≤ w ≤ p − 1, the smallest frequency point in∑i+w−1−p

j=i−p 〈 j ∗ k〉 is greater than the largest frequency point
in 〈i ∗ k〉. Therefore, we have Ha(C) = 0 for 1 ≤ τ ≤ 2p− 1.
As for Hamming crosscorrelation, it is sufficient to discuss
the value Hk,y(τ) for 0 ≤ τ ≤ 2p − 1 and 1 ≤ k , y ≤ p − 1.
In the following, the discussion is divided into four cases:

• Case 1: When τ = 0, the Hamming crosscorrelation
of C is equal to

Hk,y(τ) =

2p−1∑
i=0

h[ck
i , c

y
i ]

=

p−1∑
i=0

h[〈i ∗ k〉 , 〈i ∗ y〉]

+

2p−1∑
i=p

h[
i+w−1∑

j=i

〈 j ∗ k〉 ,
i+w−1∑

j=i

〈 j ∗ y〉]

≤ 2

• Case 2: When τ = p,

Hk,y(τ) =

p−1∑
i=0

h[〈i ∗ k〉 ,
i+w−1∑

j=i

〈 j ∗ y〉]

+

2p−1∑
i=p

h[
i+w−1∑
j=i−p

〈 j ∗ k〉 , 〈i ∗ y〉]

= 0

• Case 3: When 1 ≤ τ ≤ p − 1

Hk,y(τ) =

p−1−τ∑
i=0

h[〈i ∗ k〉 , 〈i ∗ y〉]

+

p−1∑
i=p−1−τ

h[〈i ∗ y〉 ,
i+w−1−p∑

j=i−p

〈 j ∗ k〉]

+

2p−1−τ∑
i=p−1

h[
i+w−1−p∑

j=i−p

〈 j ∗ k〉 ,
i+w−1−p∑

j=i−p

〈 j ∗ y〉]

+

2p−1∑
i=2p−1−τ

h[
i+w−1−p∑

j=i−p

〈 j ∗ y〉 , 〈i ∗ k〉]

≤ 2

• Case 4: When p < τ ≤ 2p − 1

Hk,y(τ) =

τ−p+1∑
i=0

h[〈i ∗ k〉 , 〈i ∗ y〉]
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+

p−1∑
i=τ−p+1

h[〈i ∗ y〉 ,
i+w−1∑

j=i

〈 j ∗ k〉]

+

τ∑
i=p−1

h[
i+w−1−p∑

j=i−p

〈 j ∗ k〉 ,
i+w−1−p∑

j=i−p

〈 j ∗ y〉]

+

2p−1∑
i=τ

h[
i+w−1−p∑

j=i−p

〈 j ∗ y〉 , 〈i ∗ k〉]

≤ 2

It is obvious that the maximum Hamming crosscorre-
lation of C is 2. That is Hc(C) = 2.

Therefore, the maximum period Hamming correlation
H(C) = 2. Clearly, the set C with parameters (2p, p, w(p −
w) + 1 + p; 2).

Finally, we will show that C is an optimal FHS set with
respect to Peng-Fan bound.

Substituting the parameters (2p, p−1, w(p−w)+1+ p)
into Peng-Fan bound, the right side of Peng-Fan bound is⌈

(2p(p − 1) − (w(p − w) + 1 + p))2p
(2p(p − 1) − 1)(w(p − w) + 1 + p)

⌉
= 2.

This implies the desired result.

Then, we need to prove that the FHS set C has the prop-
erty of wide-gap. Before doing this, the definition of FHS
distance d(ck) of an FHS ck is given as follows:

d(ck) = min
0≤i≤2p−2

{
∣∣∣ck

i+1 − ck
i

∣∣∣}
And then we get the following Theorem.

Theorem 2 For any given minimum wide-gap D with 0 <

D ≤
p−1

2 and
√

1+8p+1
2 ≤ w ≤ p − 1, the FHS set

(2p,MW , w(p − w) + 1 + p; 2) is an optimal WGFHS set.

Proof For any given minimum wide-gap 0 < D ≤
p−1

2 ,
the number of sequence with the minimum wide-gap greater
than D is recorded as MW in the FHS set.

From Lemma 1 in [24], we can know |〈(i + 1)k〉 − 〈ik〉|
= min{k, p − k}, And for a given integer D with 0 < D ≤
P−1

2 . There are a total of p − 2D − 1 frequency hop-
ping sequences with period l = p and minimum gap is
greater than D. From Theorem 4.2 in [22], we know that∣∣∣∣∑i+w−1−p

j=i−p 〈( j + 1) ∗ k〉 −
∑i+w−1−p

j=i−p 〈 j ∗ k〉
∣∣∣∣ = min{〈wk〉 , p −

〈wk〉}. and according to Theorem 4.3 in [22], for a given
integer D with 0 < D ≤ P−1

2 , there are p − 2D − 1 FHS
with gap D. So, for a given integer D, the number of se-
quences with the minimum wide-gap greater than D in the
sequence set C is at least p − 4D − 1. From this we can see
that MW ≥ p − 4D − 1.

Obviously, for
√

1+8p+1
2 ≤ w ≤ p − 1, when 0 < D ≤

p−1
2 , the WGFHS set satisfies the WG-Lempel-Greenberger

bound and WG-Peng-Fan bound optimality. Based on
above situation, we can obtain a WGFHS set CD is a

(2p,MW , w(p − w) + 1 + p) FHS set for 0 < D ≤ P−1
2 .

Finally, we will show that CD is an optimal FHS
set with respect to WG-Peng-Fan bound and WG-Lempel-
Greenberger bound. Substituting L = 2p, l = w(p−w) + 1 +

p, (resp.L = p,MW , l = w(p− w) + 1 + p) into the right side
of the bound, one gets⌈

(2p − ε)(2p + ε − (w(p − w) + 1 + p))
(p − 3)(w(p − w) + 1 + p)

⌉
= 0

and ⌈
(2p(p − 4D − 1) − (w(p − w) + 1 + p))2p
(2p(p − 4D − 1) − 3)(w(p − w) + 1 + p)

⌉
= 2.

This finish the proof.

4. A New Class of Optimal WG-OC-FHS Sets

In this section, we present a class of OC-FHS sets with the
optimal Hamming correlation by algebraic means. Then,
given a range of D, we can obtain a new class of WG-OC-
FHS set, which satisfies the optimality of both WG-Peng-
Fan Bound and WG-Lempel-Greenberger Bound.

Construction 2 For a positive integer w with 2 ≤ w ≤ p−2,
where α is an primitive element of group GF(p) and where
the FHS set B = {bk = bk

i , 0 ≤ i ≤ p − 2, 0 ≤ k ≤ p − 1}

bk
i =

k+w−1∑
j=k

〈αi + j〉 + k, 0 ≤ i ≤ p − 2

Theorem 3 The set B in Construction 2 is an optimal (p −
1, p, wp − w2 + p − 1; 1) OC-FHS set.

Proof We are going to prove this theorem:
Firstly, we will show that the elements of each FHS are all
distinct. Suppose not, then there exist two different integer
0 ≤ i1 , i2 ≤ p − 2 such that

k+w−1∑
j=k

〈αi1 + j〉 + k =

k+w−1∑
j=k

〈αi2 + j〉 + k. (5)

Obviously, Eq. (5) also holds for module p, then we have

wαi1 ≡ wαi2 mod p,

which deduces that i1 ≡ i2 mod p.
Since 0 ≤ i1, i2 ≤ p − 2, it is easy to obtain that i1 = i2

which contradicts the hypothesis. Therefore, every FHS bk

is non-repeating that is Ha(B) = 0.
Then, we will show that Hc(B) = 1.
For 0 ≤ k ≤ p − 1, bk is non-repeating. On the other

hand, for 0 ≤ k , l ≤ p − 1, assume that bk
i = bl

i+τ, we can
easily obtain
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k+w−1∑
j=k

〈αi + j〉 + k =

l+w−1∑
j=l

〈αi+τ + j〉 + l.

Performing module p and simplifying the above equa-
tion, it yields

k − l ≡ (αi+τ − αi) = αi(ατ − 1). (6)

Note that 0 ≤ k , l ≤ p − 1, and by the knowledge of
linear congruence, Eq. (6) has only one solution. Therefore,
Hk,l(X,Y) = 1 for all 0 ≤ τ ≤ p − 2. Prove from the above
two steps that we can know that B is an OC-FHS set.

Next, we will illustrate that B is a (p − 1, p, wp − w2 +

p − 1) FHS set.
Obviously, B has p FHSs of length p − 1. Now, we

consider the size of available frequency alphabet |F|. For
0 ≤ i1 , i2 ≤ p − 2 and 0 ≤ j ≤ p − 1, it is clear that
〈αi1 + j〉 , 〈αi2 + j〉. Then, for 0 ≤ j ≤ p − 1, the elements
of bk(i) satisfie the following inequation,

w−1∑
j=0

j + 1 ≤
k+w−1∑

j=k

〈αi + j〉 + k ≤
p−1∑

j=p−w

〈 j〉 + p − 1,

which implies that

w(w − 1)
2

+1 ≤
k+w−1∑

j=k

〈αi+ j〉+k ≤ wp−
w(w + 1)

2
+ p−1.

Obviously, we can get

|F| = wp−
w(w + 1)

2
+p−1−

w(w − 1)
2

−1+1 = wp−w2+p−1.

Finally, we will show that B is an optimal OC-FHS set
with respect to Peng-Fan Bound.

Substituting the parameters (p − 1, p, wp − w2 + p − 1)
into Peng-Fan Bound, the right side of Peng-Fan Bound is⌈

(p(p − 1) − (wp − w2 + p − 1))(p − 1)
(p(p − 1) − 1)(wp − w2 + p − 1)

⌉
= 1. (7)

This implies the desired result. �

Remark 1 The range of values for w in the FHS set B

• When w = 1, B is the prime sequence set.
• When w = p, do not satisfy the properties of the se-

quence.
• When w = p − 1, the One-coincidence property is not

satisfied.
• When 2 ≤ w ≤ p − 2, this is what we discussed.

Then, we need to prove that the OC-FHS set has the
property of wide-gap. Before doing this, the definition of
FHS distance d(bk) of an FHS bk is given as follows:

d(bk) = min
0≤i≤p−3

{∣∣∣bk
i+1 − bk

i

∣∣∣} .
And then we get the following Lemma.

Lemma 5 For 0 ≤ ξ1, ξ2 ≤ p − 1, and 2 ≤ w ≤ p − 2, di
represent the gap between adjacent frequency points, then
the minimum wide-gap of each sequence can be expressed
as dξ = min {di}.

di =


|w(ξ1 − ξ2)| , 0 ≤ ξ1, ξ2 ≤ p − w
|(p − w)(ξ1 − ξ2)| , p − w < ξ1, ξ2 ≤ p − 1
|(p − w)(p − ξ1) − wξ2| , 0 ≤ ξ2 ≤ p − w < ξ1 ≤ p − 1

Proof According to the Construction2, we can easily see
that

〈
αi1 + j

〉
+ k ,

〈
αi2 + j

〉
+ k, for 0 ≤ i1 , i2 ≤ p−2, and

0 ≤ k ≤ p − 1. Therefore, we define the distance between
consecutive element bk

i+1 and bk
i of FHS bk. According to

the property of the structure, it can be known that the wide-
gap can be expressed in the form of arithmetic progression.
Hence, we have

d(bk) = min
0≤i≤p−2

{bk
i+1 − bk

i }

= (
k+w−1∑

j=k

〈
αi+1 + j

〉
+ k) − (

k+w−1∑
j=k

〈
αi + j

〉
+ k)

=

k+w−1∑
j=k

〈
αi+1 + j

〉
−

k+w−1∑
j=k

〈
αi + j

〉
(8)

Let
〈
αi + j

〉
= ξ1,

〈
αi+1 + j

〉
= ξ2. We can know that ξ1, ξ2

can traverse the number of 0, 1, 2, . . . , p−1. Then we should
discuss Eq. (8) in the following cases. It can be seen from
the structure that each bk

i can be expressed in the form of
arithmetic progression

Case 1): 0 ≤ ξ1, ξ2 ≤ p − w,

D1 =|
w(w − 1 + 2ξ1)

2
−
w(w − 1 + 2ξ2)

2
|

=| w(ξ1 − ξ2) |

Easily to know that the minimize value of D1 is w.
Case 2): p − w < ξ1, ξ2 ≤ p − 1, can be seen

D2 =|
(p − ξ1)(p + ξ1 − 1) + (ξ1 − p + w)(ξ1 − p + w − 1)

2

−
(p − ξ2)(p+ξ2 − 1) + (ξ2 − p+w)(ξ2 − p+w − 1)

2
|

=| (ξ1 − ξ2)(w − p) |
we can know that the minimize value of D2 is p − w.

Case 3): 0 ≤ ξ2 ≤ p − w < ξ1 ≤ p − 1, the result is:

D3 =|
(p − ξ1)(p + ξ1 − 1) + (ξ1 − p + w)(ξ1 − p + w − 1)

2

−
w(w − 1 + 2ξ2)

2
|

=| (p − w)(p − ξ1) − wξ2 |

Case 4): 0 ≤ ξ1 ≤ p − w < ξ2 ≤ p − 1,

D4 =|
(p − ξ2)(p + ξ2 − 1) + (ξ2 − p + w)(ξ2 − p + w − 1)

2

−
w(w − 1 + 2ξ1)

2
|

=| (p − w)(p − ξ2) − wξ1 |
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From the result of Case 4, it can be observed that when
0 ≤ ξ1 ≤ p−w < ξ2 ≤ p− 1 or 0 ≤ ξ2 ≤ p−w < ξ1 ≤ p− 1,
the obtained result is the same. Since ξ1 and ξ2 represent
two in the group p, we can combine Case 3 and Case 4 into
one case. Summarizing the above conclusion, we can easily
get

di =


|w(ξ1 − ξ2)| , 0 ≤ ξ1, ξ2 ≤ p − w
|(p − w)(ξ1 − ξ2)| , p − w < ξ1, ξ2 ≤ p − 1
|(p − w)(p − ξ1) − wξ2| , 0 ≤ ξ2 ≤ p − w < ξ1 ≤ p − 1

�

Theorem 4 For any given minimum wide-gap D with 2 ≤
D ≤

⌊
p
4

⌋
and D , min {w, p − w}, the set (p − 1,MWG, wp −

w2 + p − 1; 1) is an optimal WG-OC-FHS set.

Proof For any given minimum wide-gap (2 ≤ D ≤
⌊

p
4

⌋
), the

number of sequences with the minimum wide-gap greater
than D is recorded as MWG in the OC-FHS set.

According to Lemma 5, it can be observed that when
0 ≤ ξ1, ξ2 ≤ p − w, the minimum value of di occurs at
|ξ1 − ξ2| = 1, and in this case, the minimum value is w.
When p − w < ξ1, ξ2 ≤ p − 1, the minimum value of di
is achieved at |ξ1 − ξ2| = 1, resulting in a minimum value of
p − w. When D = w and D = p − w, there are very few fre-
quency hopping sequences with a minimum gap greater than
D. Therefore, we restrict the values of D , min {w, p − w}.

Since the range of w is 2 ≤ w ≤ p − 2, the situation
where the minimum interval is 1 only exist in case 3 and
case 4. According to mathematical knowledge, it is known
that there can be at most four sets of solutions that satisfy
the minimum gap of 1. By following the same reasoning,
there can be at most four sets of solutions that satisfy the
minimum gap of 2. Based on the maximum occurrence, we
can conclude that when the minimum gap is D, there can be
at most 4D sequences in the sequence set that have a min-
imum gap less than or equal to D. Furthermore, there must
be at least p-4D sequences that satisfy the wide gap prop-
erty. It can be concluded that when 2 ≤ D ≤

⌊
p
4

⌋
satisfies

MWG ≥ (p − 4D).

Based on above situations, we can obtain a WG-OC-
FHS set C is a (p − 1,MWG, 1;wp − w2 + p − 1) FHS set for
2 ≤ D ≤

⌊
p
4

⌋
.

At last we will show that C is optimal with respect to
bounds (3), (4). Substituting L = p − 1, l = wp − w2 + p − 1
into the right side of the bound (3), we get⌈

(p − 1 − ε)(p − 1 + ε − (wp − w2 + p − 1))
(p − 4)(wp − w2 + p − 1)

⌉
= 0,

Similarly, substituting L = p − 1, MWG, l = wp − w2 +

p− 1 into the right side of bounds (4). If the boundary value
of MWG can make the equation hold, then all the value of
MWG can make it true.⌈

((p − 1)(p − 4D) − (wp − w2 + p − 1))(p − 1)
((p − 1)(p − 4D) − 3)(wp − w2 + p − 1)

⌉
= 1,

The proof is finished. �

5. Example and Discussion

We will use two examples to illustrate the two constructions
in this paper. Example 1 is derived based on Sect. 3, while
Example 2 is obtained from Sect. 4.

Example 1. According to Construction 1, let p = 17,
D = 2 and w = 7, the FHS set C = ck, 1 ≤ k ≤ p−1 with pa-
rameters (34, 16, 88) is given in Table 1. And we know that
C is optimal with respect to Peng-Fan bound. (Lemma 2).

In addition, we take FHS gap D = 2, the sequences
with D > 2 are {c3, c4, c6, c8, c9, c11, c13, c14}, we get a
WGFHS set CD as shown in the following Table 2. It is
clear that CD = {c3, c4, c6, c8, c9, c11, c13, c14} is a (34, 8, 88)
WGFHS set with FHS gap D > 2. And we can ver-
ify to know that it is optimal with respect to WG-Lempel-
Greenberger bound (Lemma 3) and WG-Peng-Fan bound
(Lemma 4) as well.

Example 2. Based on Construction 2, let p = 19, α =

3 and w = 7, the OC-FHS set B = bk, 0 ≤ k ≤ 18 with

Table 1 The optimal set C.

ck Frequencies d(ck)
c1 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 81, 71, 61, 51, 41, 31) 1
c2 (0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 42, 56, 70, 67, 64, 61, 58, 55, 52, 49, 63, 60, 57, 54, 51, 48, 45) 2
c3 (0, 3, 6, 9, 12, 15, 1, 4, 7, 10, 13, 16, 2, 5, 8, 11, 14, 46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) 3
c4 (0, 4, 8, 12, 16, 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) 4
c5 (0, 5, 10, 15, 3, 8, 13, 1, 6, 11, 16, 4, 9, 14, 2, 7, 12, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 48, 49, 50, 51, 52, 53) 1
c6 (0, 6, 12, 1, 7, 13, 2, 8, 14, 3, 9, 15, 4, 10, 16, 5, 11, 41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) 6
c7 (0, 7, 14, 4, 11, 1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3, 10, 45, 60, 58, 56, 54, 52, 67, 65, 63, 61, 59, 57, 55, 53, 51, 49, 47) 2
c8 (0, 8, 16, 7, 15, 6, 14, 5, 13, 4, 12, 3, 11, 2, 10, 1, 9, 66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) 5
c9 (0, 9, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8, 36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) 5
c10 (0, 10, 3, 13, 6, 16, 9, 2, 12, 5, 15, 8, 1, 11, 4, 14, 7, 57, 59, 61, 63, 65, 67, 52, 54, 56, 58, 60, 45, 47, 49, 51, 53, 55) 2
c11 (0, 11, 5, 16, 10, 4, 15, 9, 3, 14, 8, 2, 13, 7, 1, 12, 6, 61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) 6
c12 (0, 12, 7, 2, 14, 9, 4, 16, 11, 6, 1, 13, 8, 3, 15, 10, 5, 48, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49) 1
c13 (0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3, 16, 12, 8, 4, 52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) 4
c14 (0, 14, 11, 8, 5, 2, 16, 13, 10, 7, 4, 1, 15, 12, 9, 6, 3, 56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) 3
c15 (0, 15, 13, 11, 9, 7, 5, 3, 1, 16, 14, 12, 10, 8, 6, 4, 2, 60, 63, 49, 52, 55, 58, 61, 64, 67, 70, 56, 42, 45, 48, 51, 54, 57) 2
c16 (0, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 81, 91, 84, 77, 70, 63, 56, 49, 42, 35, 28, 21, 31, 41, 51, 61, 71) 1
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Table 2 The optimal WGFHS set CD with FHS gap D > 2.

ck Frequencies d(ck)
c3 (0, 3, 6, 9, 12, 15, 1, 4, 7, 10, 13, 16, 2, 5, 8, 11, 14, 46, 50, 54, 58, 62, 66, 53, 57, 61, 65, 69, 56, 43, 47, 51, 55, 59) 3
c4 (0, 4, 8, 12, 16, 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 50, 61, 72, 66, 60, 54, 65, 59, 53, 47, 58, 52, 46, 40, 51, 62, 56) 4
c6 (0, 6, 12, 1, 7, 13, 2, 8, 14, 3, 9, 15, 4, 10, 16, 5, 11, 41, 49, 57, 48, 56, 64, 55, 63, 71, 62, 70, 61, 52, 60, 51, 42, 50) 6
c8 (0, 8, 16, 7, 15, 6, 14, 5, 13, 4, 12, 3, 11, 2, 10, 1, 9, 66, 71, 76, 64, 69, 57, 62, 50, 55, 43, 48, 36, 41, 46, 51, 56, 61) 5
c9 (0, 9, 1, 10, 2, 11, 3, 12, 4, 13, 5, 14, 6, 15, 7, 16, 8, 36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 66, 61, 56, 51, 46, 41) 5
c11 (0, 11, 5, 16, 10, 4, 15, 9, 3, 14, 8, 2, 13, 7, 1, 12, 6, 61, 70, 62, 71, 63, 55, 64, 56, 48, 57, 49, 41, 50, 42, 51, 60, 52) 6
c13 (0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3, 16, 12, 8, 4, 52, 58, 47, 53, 59, 65, 54, 60, 66, 72, 61, 50, 56, 62, 51, 40, 46) 4
c14 (0, 14, 11, 8, 5, 2, 16, 13, 10, 7, 4, 1, 15, 12, 9, 6, 3, 56, 69, 65, 61, 57, 53, 66, 62, 58, 54, 50, 46, 59, 55, 51, 47, 43) 3

Table 3 The optimal OC-FHS set.

bk Frequencies d(bk)
b0 (28, 42, 84, 77, 56, 69, 70, 35, 63, 33, 57, 91, 98, 81, 49, 105, 45, 93) 1
b1 (36, 50, 92, 85, 64, 58, 78, 43, 71, 22, 46, 99, 106, 70, 57, 94, 34, 82) 6
b2 (44, 58, 100, 93, 72, 47, 86, 51, 79, 30, 35, 107, 95, 59, 65, 83, 23, 71) 5
b3 (52, 66, 108, 101, 80, 36, 94, 59, 87, 38, 24, 96, 84, 48, 73, 72, 31, 60) 1
b4 (60, 74, 97, 109, 88, 25, 102, 67, 95, 46, 32, 85, 73, 37, 81, 61, 39, 49) 10
b5 (68, 82, 86, 98, 96, 33, 110, 75, 103, 54, 40, 74, 62, 26, 89, 50, 47, 38) 2
b6 (76, 90, 75, 87, 104, 41, 99, 83, 111, 62, 48, 63, 51, 34, 97, 39, 55, 27) 12
b7 (84, 98, 64, 76, 112, 49, 88, 91, 100, 70, 56, 52, 40, 42, 105, 28, 63, 35) 2
b8 (92, 106, 53, 65, 101, 57, 77, 99, 89, 78, 64, 41, 29, 50, 113, 36, 71, 43) 10
b9 (100, 114, 42, 54, 90, 65, 66, 107, 78, 86, 72, 30, 37, 58, 102, 44, 79, 51) 1
b10 (108, 103, 31, 43, 79, 73, 55, 115, 67, 94, 80, 38, 45, 66, 91, 52, 87, 59) 5
b11 (116, 92, 39, 32, 68, 81, 44, 104, 56, 102, 88, 46, 53, 74, 80, 60, 95, 67) 6
b12 (105, 81, 47, 40, 57, 89, 33, 93, 45, 110, 96, 54, 61, 82, 69, 68, 103, 75) 1
b13 (94, 70, 55, 48, 46, 97, 41, 82, 34, 118, 104, 62, 69, 90, 58, 76, 111, 83) 2
b14 (83, 59, 63, 56, 35, 105, 49, 71, 42, 107, 112, 70, 77, 98, 47, 84, 119, 91) 4
b15 (72, 48, 71, 64, 43, 113, 57, 60, 50, 96, 120, 78, 85, 106, 36, 92, 108, 99) 3
b16 (61, 37, 79, 72, 51, 121, 65, 49, 58, 85, 109, 86, 93, 114, 44, 100, 97, 107) 3
b17 (50, 45, 87, 80, 59, 110, 73, 38, 66, 74, 98, 94, 101, 122, 52, 108, 86, 115) 4
b18 (39, 53, 95, 88, 67, 99, 81, 46, 74, 63, 87, 102, 109, 111, 60, 116, 75, 123) 2

Table 4 The optimal WG-OC-FHS set C with gap D > 3.

bk Frequencies d(bk))
b1 (35, 49, 91, 84, 63, 57, 77, 42, 70, 21, 45, 98, 105, 69, 56, 93, 33, 81) 6
b2 (42, 56, 98, 91, 70, 45, 84, 49, 77, 28, 33, 105, 93, 57, 63, 81, 21, 69) 5
b4 (56, 70, 93, 105, 84, 21, 98, 63, 91, 42, 28, 81, 69, 33, 77, 57, 35, 45) 10
b6 (70, 84, 69, 81, 98, 35, 93, 77, 105, 56, 42, 57, 45, 28, 91, 33, 49, 21) 12
b8 (84, 98, 45, 57, 93, 49, 69, 91, 81, 70, 56, 33, 21, 42, 105, 28, 63, 35) 10
b10 (98, 93, 21, 33, 69, 63, 45, 105, 57, 84, 70, 28, 35, 56, 81, 42, 77, 49) 5
b11 (105, 81, 28, 21, 57, 70, 33, 93, 45, 91, 77, 35, 42, 63, 69, 49, 84, 56) 6
b14 (83, 59, 63, 56, 35, 105, 49, 71, 42, 107, 112, 70, 77, 98, 47, 84, 119, 91) 4
b17 (50, 45, 87, 80, 59, 110, 73, 38, 66, 74, 98, 94, 101, 122, 52, 108, 86, 115) 4

Table 5 Comparison of parameters with other result.
Parameters Optimality Reference(L,M,l;λ) Constraints L-G Bound P-F Bound WG-L-G Bound WG-P-F Bound

(p − 1, p, p; 1)
p is a prime

optimal optimal not not [27]
(p, p − 1, p; 1) optimal optimal not not [16], [27]

(p2 − p, p, p2; 1) optimal optimal not not [15]

(u, η, l; 1) n =
r∏

i=1
(qi − 1), l =

r∏
i=1

(qi), η = min{qi :

1 ≤ i ≤ r}

optimal optimal not not [18]

(p, p − 1 − 2D, w(p − w) + 1;1) 1 ≤ w ≤ p − 1 and p is a odd prime,
0 < D ≤ p−1

2

optimal optimal optimal optimal [22]

(p − 1,MWG , wp − w2 + p − 1; 1) 2 ≤ w ≤ p − 2, p is a prime and p > 4 optimal optimal optimal optimal Theorem 4

(2p, 1, p; 2) p is a positive integer optimal - optimal - [23](3p, 1, p; 3) optimal - optimal -

(2p,MW , w(p − w) + 1 + p;2)
√

1+8p+1
2 ≤ w ≤ p − 1, p is a prime and

p > 5
optimal optimal optimal optimal Theorem 2
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parameters (18, 19, 102) is given in Table 3.
Form Theorem 3 we know that Ha(B) = 0, and Hc(B) =

1. Therefore, B is optimal with respect to Peng-Fan Bound.
(Lemma 2) and Lempel-Greenberger Bound (Lemma 1). In
addition, we take FHS gap D = 3, the sequences with D >
3 are {b1, b2, b4, b6, b8, b10, b11, b14, b17}, we get a WG-OC-
FHS set C as shown in the following Table 4.

It is clear that C = {b1, b2, b4, b6, b8, b10, b11, b14, b17} is
a (18, 9, 102) WG-OC-FHS set with FHS gap D > 3. And
we can verify to know that it is optimal with respect to WG-
Lempel-Greenberger Bound (Lemma 3) and WG-Peng-Fan
Bound (Lemma 4) as well.

We compare the parameters obtained from the two con-
struction methods with the existing parameters and present
the results in Table 5. Compared to references [15], [16],
[18], [27], the Construction 2 exhibit the wide-gap prop-
erty and are optimal with respect to the WG-Lempel-
Greenberger bound and WG-Peng-Fan bound. In contrast to
reference [22], this construction methods obtain a sequence
set with different parameters that satisfies optimality. Ad-
ditionally, the resulting sequence set demonstrates random-
ness. The method in Construction 1 can generate a class
of long-period hopping sequence sets, which better satisfy
the requirement of having a larger number of sequences in
communication systems.

6. Conclusion

This paper mainly constructs two types of wide-gap fre-
quency hopping sequence sets. The first type is the
one-coincidence wide-gap frequency hopping sequence set,
which exhibits new parameters, good randomness, and op-
timality with respect to the WG-Peng-Fan bound. Within
this sequence set, each sequence is optimal with respect to
the WG-Lempel-Greenberger bound. The another type is
the long-period wide-gap frequency hopping sequence set.
Using the same parameters, multiple long-period wide-gap
frequency hopping sequences are generated using this con-
struction method. Each sequence within this set is optimal
with respect to the WG-Lempel-Greenberger bound, and the
set of these sequences is optimal with respect to the WG-
Peng-Fan bound.
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