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PAPER Special Section on Information Theory and Its Applications

A Fundamental Limit of Variable-Length Compression with
Worst-Case Criteria in Terms of Side Information∗

Sho HIGUCHI†a), Nonmember and Yuta SAKAI††b), Member

SUMMARY In this study, we consider the data compression with side
information available at both the encoder and the decoder. The information
source is assigned to a variable-length code that does not have to satisfy the
prefix-free constraints. We define several classes of codes whose codeword
lengths and error probabilities satisfy worse-case criteria in terms of side-
information. As a main result, we investigate the exact first-order asymptotics
with second-order bounds scaled as Θ(

√
n) as blocklength n increases under

the regime of nonvanishing error probabilities. To get this result, we also
derive its one-shot bounds by employing the cutoff operation.
key words: variable-length compression, one-shot formula, conditional
source coding, cutoff operation, second-order bounds

1. Introduction

In this article, we consider the variable-length compression
problem in noiseless communication channels without prefix-
free constraints. When the error probability is zero, the
problem becomes a naive zero-error version of variable-
length compression. Wyner [1] derived an upper bound the
average codeword length for the zero-error case; later Alon
and Orlitsky [2] derived a lower bound on that as follows:

H(X) − log(H(X) + 1) − log e ≤ L∗X (0) ≤ H(X), (1)

where log stands for the base-2 logarithm, L∗X (0) is the
minimum average codeword length for the source X in the
zero-error case, and H(X) is the Shannon entropy of X .

Classically, this problem is considered without errors,
but errors often occur in the practical communication channel.
Therefore, it is worthwhile to consider the variable-length
compression problem in the presence of errors. For the error
allowing case, Kostina, Polyanskiy, and Verdú [3] derived
the asymptotic analysis as shown in the following:

L∗Xn (ε) = n(1− ε)H(X) −
√

nV(X) fG(ε)+O(log n) (2)

as n → ∞, for every fixed 0 ≤ ε ≤ 1. Here L∗Xn (ε)
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is the minimum average codeword length for the source
Xn = (X1, . . . ,Xn) in which error probabilities are tolerated
to be positive but at most ε, the quantity V(X) is the variance
of the information density − log PX (X), and fG is defined as

fG(s) ,

{
φ(Φ−1(s)) if 0 < s < 1,
0 if s = 0 or s = 1,

(3)

φ(t) ,
1
√

2π
e−t

2/2, (4)

Φ(u) ,
∫ u

−∞

φ(t)dt . (5)

In [3], they first extended the one-shot bounds shown in (1)
from zero-error to allowing error settings by introducing the
cutoff operation: a kind of truncating a real-valued random
variable (r.v.). To obtain the second-order asymptotics shown
in (2), they examined an asymptotic analysis of the expecta-
tion of the cutoff operation for information densities. Later,
Sakai and Tan [4] called such information quantities the cutoff
entropies, and the one-shot bounds in [3, Theorem 2] is a
first instance of the operational characterization of cutoff
entropies. Operational characterizations of cutoff entropies
(including their variants) were successfully studied in several
other information-theoretic problems in [4], [5]. In these
studies [3]–[5], it is worth mentioning that operational char-
acterizations and asymptotic analyses of cutoff entropies can
be independently examined, and their combination readily
provides the second-order asymptotics of coding problems∗∗.

So far, we have introduced previous studies of the
variable-length compression mainly in the absence of side
information. Henceforth, we consider a communication chan-
nel in which side information Y exists in addition to the
source X . Slepian–Wolf coding [7] is a code such that for two
correlated information sources X and Y , encoding is done
independently of each other and decoding is done such that
the error probability of each X and Y is as small as possible.
This is an important distributed coding problem from both
practical and theoretical viewpoints. Asymptotic analysis of
variable-length Slepian–Wolf coding under vanishing error
probabilities conditions has been studied [8]. On the other
hand, to the best of our knowledge, its asymptotic analysis

∗∗Unfortunately, cutoff entropies are not useful to derive higher-
order asymptotics of some coding problems. Actually, Sakai, Yavas,
and Tan [6] refined the remainder term in (2) from O(log n) to
−((1− ε)/2) log n+O(1) not via analysis of cutoff entropies but via
Cramér-type strong large deviations of average codeword lengths.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Slepian–Wolf coding.

Fig. 2 conditional source coding.

under a fixed error probability conditions remains an open
problem. Whereas Slepian–Wolf coding uses side informa-
tion Y only for decoding, conditional source coding (see,
e.g., [9]) can use side information Y for both encoding and
decoding. Schemes of Slepian–Wolf coding and conditional
source coding are shown in Figs. 1 and 2, respectively. It is
clear that the latter is more compression efficient in general.
In other words, a converse result of conditional source coding
would immediately yield a hint to the fundamental limits of
Slepian–Wolf coding. Since the analysis of distributed coding
problems is generally difficult, some motivations of our study
considering variable-length conditional source coding are to
prevent such a difficulty and to establish insights for tackling
Slepian–Wolf coding with variable-rate.

In [4], variable-length conditional source coding was
studied under two formalisms: the average and maximum er-
ror probabilities. One-shot bounds of the fundamental limits
of these coding problems were then established by different
types of cutoff entropies. Especially, the latter formalism
was analyzed by the conditional cutoff operation, while the
former formalism was analyzed by the same cutoff operation
as in [3]. In this study, we introduce another performance
criterion to variable-length conditional source coding. Under
our setting, we investigate operational characterizations and
asymptotic expansions of a cutoff-operation-based entropy.

The rest of this paper is organized as follows: Section
2 introduces the notations and definitions treated in this article.
Section 3 shows our main result deriving a one-shot formula
and its second-order asymptotic analysis with remainder term
Θ(
√

n). Section 4 concludes this study.

2. Preliminaries

Consider a probability space (Ω,F ,P). Let E[Z | W] be the
conditional expectation of a real-valued r.v. Z given the σ-
algebra generated by another r.v. W , and P{E | W} = E[1E |
W] the conditional probability of an event E ∈ F . In addition,
we introduce some conditional information quantities.

Definition 1 ([4]). Let X be a discrete r.v. andY an arbitrary
r.v. Then

ι(X | Y ) = ιX |Y (X | Y ) , log
1

PX |Y (X | Y )
, (6)

where PX |Y (X | Y ) is the conditional probability of X given

Y . We define information measures of X given Y as follows:

H(X | Y ) , E[ι(X | Y ) | Y ], (7)
V(X | Y ) , E[(ι(X | Y ) − H(X | Y ))2 | Y ], (8)
T(X | Y ) , E[|ι(X | Y ) − H(X | Y )|3 | Y ], (9)
H(X | Y ) , E[H(X | Y )], (10)
Vc(X | Y ) , E[V(X | Y )], (11)
Vu(X | Y ) , E[(ι(X | Y ) − H(X | Y ))2], (12)

Vsup(X | Y ) , ess supV(X | Y ), (13)
Vinf(X | Y ) , ess inf V(X | Y ), (14)

where the essential supremum of a r.v. Z is defined as

ess sup Z , inf{z | P{Z > z} = 0}, (15)

and the essential infimum is ess inf Z = − ess sup(−Z).

Proposition 1 (essential supremum inequality relations). For
two real-valued r.v.’s X and Y , it holds that

ess sup X + ess sup Y ≥ ess sup (X + Y ), (16)
ess sup (X − Y ) ≥ ess sup X − ess sup Y . (17)

These inequalities are quite elementary, but the proof is
provided to make the paper self-contained.

Proof of Proposition 1: See Appendix A.
Kostina, Polyanskiy, and Verdú [3] introduced the cutoff

operation 〈·〉ε as follows:

Definition 2 (uncoditional cutoff operation [3]). Given a real
0 ≤ ε ≤ 1 and a real-valued r.v. A, define

〈A〉ε ,


A A < η,

η A = η (w.p. 1 − α),
0 A = η (w.p. α),
0 otherwise,

(18)

where η ∈ R and 0 ≤ α < 1 are chosen so that

P{A > η} + αP{A = η} = ε. (19)

To examine our problemof variable-length compressions
in the presence of side-information, we now introduce the
conditional cutoff operation as follows:

Definition 3 (conditional cutoff operation [4]). Given a real
0 ≤ ε ≤ 1, a real-valued r.v. Z , and an arbitrary r.v. W,

〈Z | W〉ε ,


Z Z < ηW ,

BW Z Z = ηW ,
0 Z > ηW ,

(20)

where BW denotes a Bernoulli r.v. in which the conditional
independence BW ⊥ Z | W holds and

P{BW = 0 | W} = βW (a.s.), (21)

where ηW ∈ R and 0 ≤ βW < 1 are σ(W)-measurable r.v.’s
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chosen so that

P{Z > ηW | W} + βWP{Z = ηW | W} = ε (a.s.).
(22)

The following proposition, presented in [4, Equation
31], will be used in the subsequent analysis.

Proposition 2. Let Z be a nonnegative-valued r.v. and W an
arbitrary r.v. It holds that

E[〈Z | W〉ε | W] = (1 − ε)E[Z | W] −
∫ ∞

ηW

P{Z > t | W}dt

− ε(ηW − E[Z | W]) (a.s.). (23)

Sakai and Tan [4] considered variable-length conditional
source coding under two error formalisms. Let n be a posi-
tive integer and (Xn,Yn) a sequence of independent copies
of (X,Y ), where Xn = (X1, . . . ,Xn) and Yn = (Y1, . . . ,Yn).
Denote by {0,1}∗ the set of finite-length binary strings con-
taining the empty string �. Given reals L ≥ 0 and 0 ≤ ε ≤ 1,
two types of variable-length (n, L, ε)-codes of the source X
in the presence of side information Y are defined as follows.

Definition 4 (Maximum Error Criterion [4]). The length of
a string Fn(Xn,Yn) ∈ {0,1}∗ is written by `(Fn(Xn,Yn)). A
variable-length (n, L, ε)avg,max-code for source X with side
information Y is defined as

E[`(Fn(Xn,Yn))] ≤ L, (24)
P {Xn , Gn(Fn(Xn,Yn),Yn)|Yn} ≤ ε (a.s.), (25)

The fundamental limit of (n, L, ε)avg,max-code is defined as

L∗avg,max(n, ε,X,Y ) , inf{L : an (n, L, ε)avg,max-code exist}.
(26)

Definition 5 (Average Error Criterion [4]). A variable-length
(n, L, ε)avg,avg-code for source X with side information Y is
defined to satisfy

E[`(Fn(Xn,Yn))] ≤ L, (27)
P {Xn , Gn(Fn(Xn,Yn),Yn)} ≤ ε, (28)

The fundamental limit of (n, L, ε)avg,avg-code is defined as

L∗avg,avg(n, ε,X,Y ) , inf{L : an (n, L, ε)avg,avg-code exists}.
(29)

Under somemild conditions, they [4] investigated asymp-
totic analyses of these fundamental limits and derived

L∗avg,avg(n, ε,X,Y )

= n(1 − ε)H(X |Y ) −
√

nVu(X |Y ) fG(ε) +O(log n),
(30)

L∗avg,max(n, ε,X,Y )

= n(1 − ε)H(X |Y ) −
√

nVc(X |Y ) fG(ε) +O(log n).
(31)

Table 1 Code subscript naming table.
Error probability
avg max

codeword length avg avg,avg avg,max
max max,avg max,max

These asymptotic equations are the same in the first-order
term. By the law of total variance, we see that

Vu(X | Y ) = E[(H(X | Y ) − H(X | Y ))2] + Vc(X | Y ).
(32)

implying that Vu(X | Y ) ≥ Vc(X | Y ). Namely, L∗avg,avg is not
greater than L∗avg,max in the

√
n-scale.

3. One-Shot and Second-Order Bounds

3.1 Statement of Main Result

Definition 6 (Our Proposed Criterion). A variable-length
(n, L, ε)max,max-code for source X with side information Y is
defined to satisfy

E[`(Fn(Xn,Yn)) | Yn] ≤ L (a.s.), (33)
P {Xn , Gn(Fn(Xn,Yn),Yn)|Yn} ≤ ε (a.s.). (34)

Table 1 shows the subscript correspondence to each
definition of codeword length and error probability. The
subscript “max” corresponds to (33) and (34) meaning the
worst case with respect to Y ; whereas “avg” corresponds to
(27) and (28) meaning that the criteria are averaged over Y in
the sense that the law of total expectation, i.e.,

E[`(Fn(Xn,Yn))] = E[E[`(Fn(Xn,Yn)) | Yn]]

≤ ess supE[`(Fn(Xn,Yn)) | Yn]

(35)

and

P {Xn , Gn(Fn(Xn,Yn),Yn)}

= E[P {Xn , Gn(Fn(Xn,Yn),Yn)|Yn}]

≤ ess supP {Xn , Gn(Fn(Xn,Yn),Yn)|Yn} .
(36)

The fundamental limit of (n, L, ε)max,max code is

L∗max,max(n, ε,X,Y )

, inf{L : an (n, L, ε)max,max code exists}.
(37)

As a special case, it should be mentioned that
L∗max,max(1, ε,X,Y ) = 0, provided that the tolerated probabil-
ity of error ε is sufficiently large so that ε ≥ 1−maxx PX |Y (x |
Y ) almost surely. This situation means that all source symbols
are encoded to the empty string � and the decoder always
produces a most likely source symbol arg maxx PX |Y (x | Y ).
In other words, all information of the source X is removed
except for the side-information Y , and one just executes a
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maximum a posteriori (MAP) estimator of X given Y only.
On the other hand, in asymptotic analysis under the regime
of nonvanishing error probabilities, the fundamental limit
L∗max,max(n, ε,X,Y ) with fixed 0 ≤ ε < 1 must be strictly
positive for every nondegenerate source distribution of (X,Y )
and for sufficiently large n, because maxx PXn |Yn (x | Yn)

vanishes with positive probability as blocklength n increases.

Theorem 1. Suppose the following two hypotheses hold:
(a) V(X | Y ) is bounded away from zero almost surely,
(b) T (X | Y ) is bounded away from infinity almost surely.
Given 0 ≤ ε ≤ 1, it holds that

L∗max,max(n, ε,X,Y ) = n(1 − ε)ess supH(X | Y ) + θn,
(38)

where the remainder term θn is asymptotically bounded as

−

√
n Vsup(X | Y ) fG(ε) +O(log n)

≤ θn ≤ −
√

n Vinf(X | Y ) fG(ε) +O(1). (39)

Comparing the first terms of (30), (31) and (38), we can
see that L∗max,max is greater than L∗avg,avg and L∗avg,max in the
n-scale. Equation (39) tells us that the remainder term θn in
the right-hand side of (38) is roughly Θ(

√
n).

3.2 Proof of Theorem 1

To prove Theorem 1, we show the following three lemmas.
The first one derived a one-shot formula of the fundamental
limit with n = 1.

Lemma 1. Let L∗max,max(ε,X,Y ) , L∗max,max(1, ε,X,Y ).
Given 0 ≤ ε ≤ 1, it holds that

L∗max,max(ε,X,Y ) = ess supE[〈blog ς−1
Y (X)c | Y〉ε | Y ],

(40)

where ςY is a σ(Y )-measurable random permutation on
X , {1,2, . . .} satisfying

PX |Y (ςY (1) | Y ) ≥ PX |Y (ςY (2) | Y ) ≥ · · · (a.s.).
(41)

Namely, the permutation ςY rearranges the probabilitymasses
in PX |Y (· | Y ) in non-increasing order.

Proof: Lemma 1 can be proved in a similar way
to the one-shot formula under the criterion of Definition 4.
Hence, we give a proof sketch based on [4, Appendix C].
Consider a pair (F,G) of encoder and decoder that fulfills

E[`(F(X,Y )) | Y ] ≤ L (a.s.), (42)
P {X , G(F(X,Y ),Y ) | Y } ≤ ε (a.s.). (43)

By the same way as [4, Equations (114) and (115)], we can
construct a better variable-length stochastic code (F1, g1)
than an arbitrarily given (F,G). In fact, as shown in [4,

Equations (116) and (119)], the average codeword length
and the maximum error probability of (F1, g1) are not longer
than that of (F,G). By the majorization relation as in [4,
Equations (120)–(130)], we can bound the average codeword
length from below via the conditional cutoff operation 〈· | ·〉ε
as

E[`(F1(X,Y )) | Y ] ≥ E[〈blog ς−1
Y (X)c | Y〉ε | Y ], (44)

proving

L ≥ E[〈blog ς−1
Y (X)c | Y〉ε | Y ], (45)

which corresponds to the converse bound of Lemma 1.
We finally show the existence of a (1, L, ε)max,max-code

achieving (45) with equality. Define the σ(Y )-measurable
r.v.’s κY and γY as follows

κY , sup

{
k ≥ 0

����� k∑
x=1

PX |Y (ςY (x) | Y ) ≤ 1 − ε

}
,

(46)

γY , 1 − ε −
κY∑
x=1

PX |Y (ςY (x) | Y ). (47)

In addition, we define a code (F∗sup, g
∗) as

F∗sup(x,Y ) ,


bς−1

Y (x)
if 1 ≤ ς−1

Y (x) ≤ κY ,

Bsup if ς−1
Y (x) = κY + 1,

� if κY + 1 < ς−1
Y (x) < ∞,

(48)

g∗(b,Y ) , x if b = bς−1
Y (x)

for some x ∈ X, (49)

where Bsup is a {0,1}∗-valued r.v. conditionally independent
of X given Y , and†

P{Bsup = � | Y } = 1 − P{Bsup = bκY+1 | Y }

= 1 −
γY

PX |Y (ςY (κY + 1) | Y )
(50)

a.s. In [4, Equations (136) and (137)], it was shown that
(F∗sup, g

∗) is a (1, L, ε)avg,max-code, and a similar calculations
readily proves that it is also a (1, L, ε)max,max-code. This
completes the proof of Lemma 1.

Lemma 2. For every 0 ≤ ε ≤ 1, it holds that

ess sup E[〈ι(X | Y ) | Y〉ε | Y ]
− ess sup log(1 +H(X | Y )) − log e

≤ L∗max,max(ε,X,Y )

≤ ess sup E[〈ι(X | Y ) | Y〉ε | Y ] (51)

Proof: The following proposition, proved in Ap-
pendix B, is given for proving Lemma 2.

Proposition 3. For a nonnegative-valued r.v. Z and an ar-
birary r.v. W, it holds that
†In [4, Equation (135)], the r.v. Bsup was wrongly defined. We

fixed this issue in (50).
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E[〈Z | W〉ε | W]
= min
ε :E[ε (Z ,W ) |W ]≤ε(a.s.)

E[(1 − ε(Z,W))Z | W], (52)

where the minimization in (52) is taken over the measurable
maps ε : [0,∞)×W → [0,1] satisfying E[ε(Z,W) | W] ≤ ε
almost surely.

For each integer k ≥ 1, define Ck as follows

Ck ,

{
blog xc ≤ log

1
PX |Y (ςY (x) | Y )

for all 1 ≤ x ≤ k
}
,

(53)

Since P(Ck) = 1 and {Ck}k is a decreasing sequence of
events, we observe that

P

{
blog ς−1

Y (x)c ≤ log
1

PX |Y (x | Y )
for all x ∈ X

}
= 1.

(54)

From (54), we observe that

P

{
log

1
PX |Y (X | Y )

≤ t
���� Y

}
≤ P

{
blog ς−1

Y (X)c ≤ t | Y
}

(55)

a.s., for all t > 0. We know that the following equation holds
for the two nonnegative-valued r.v.’s Z1 and Z2:

P{Z1 ≤ t | W} ≤ P{Z2 ≤ t | W} (a.s. ∀t > 0)
⇒ E[〈Z1 | W〉ε | W] ≥ E[〈Z2 | W〉ε | W] (a.s.).

(56)

It follows from (56) that

ess sup E[〈blog ς−1
Y (X)c | Y〉ε | Y ]

≤ ess sup E[〈ι(X | Y ) | Y〉ε | Y ]. (57)

Combined with Lemma 1 and (57), one derives that the
following equation

L∗max,max(ε,X,Y ) ≤ ess sup E[〈ι(X | Y ) | Y〉ε | Y ].
(58)

We derive a left-hand inequality of (51) as follows

ess sup E[〈blog ς−1
Y (X)c | Y〉ε | Y ]

(a)
= ess sup min

ε :E[ε ( blog ς−1
Y (X)c,Y) |Y]≤ε(a.s.)

E[(1 − ε(blog ς−1
Y (X)c,Y ))blog ς−1

Y (X)c | Y ]
(b)
≥ ess sup (H(X | Y ) − log (H(X | Y ) + 1) − log e

− max
ε :E[ε ( blog ς−1

Y (X)c,Y) |Y]≤ε(a.s.)

E[ε(blog ς−1
Y (X)c,Y )blog ς−1

Y (X)c | Y ])
(c)
= ess sup (E[〈ι(X | Y ) | Y〉ε | Y ]

− log (H(X | Y ) + 1)) − log e
(d)
≥ ess sup E[〈ι(X | Y ) | Y〉ε | Y ]

− ess sup log(1 +H(X | Y )) − log e, (59)

where

• (a) and (c) follow from (52),
• (b) follows from the following equation given in [2],

E[blog ς−1
Y (X)c | Y ]

≥ H(X | Y ) − log (H(X | Y ) + 1) − log e,
(60)

• (d) follows from (17) of Proposition 1.

This completes the proof of Lemma 2.
Since Hypothesis (b) in Theorem 1 holds, we know that

H(Xn | Yn) is finite and H(Xn | Yn) = nH(X | Y ) holds.
From this, we can see from Lemma 2 that the following
equation holds:

L∗max,max(n, ε,X,Y )

= ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn] +O(log n) (61)

as n→∞.

Lemma 3. For every 0 ≤ ε ≤ 1, it holds that

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

= n(1 − ε)ess supH(X | Y ) + θn, (62)

where θn is given as in (39).

Proof: From Proposition 2,

E[〈ι(Xn | Yn) | Yn〉ε | Yn]

= (1 − ε)H(Xn | Yn) −

∫ ∞

ηYn

P{ι(Xn | Yn) > t | Yn}dt

− ε(ηYn −H(Xn | Yn)) (63)

a.s., where ηYn ≥ 0 and 0 ≤ βYn < 1 are given so that

P{ι(Xn | Yn) > ηYn | Yn} + βYnP{ι(Xn | Yn) = ηYn | Yn}

= ε (a.s.). (64)

As shown in [4, Equation (150)], we obtain∫ ∞

ηYn

P{ι(Xn | Yn) > t | Yn}dt

=
√
V(Xn | Yn)( fG(1 − ε) − εΦ−1(1 − ε)) − BYn + DYn

(65)

a.s., where

BYn , sgn(bYn )

∫ max{0,bYn }

min{0,bYn }

P{ι(Xn | Yn) > H(Xn | Yn)

+
√
V(Xn | Yn)Φ−1(1 − ε) + t | Yn}dt, (66)
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DYn ,
√
V(Xn | Yn)

∫ ∞

Φ−1(1−ε)
1×(

P

{
ι(Xn | Yn) − H(Xn | Yn)√

V(Xn | Yn)
> r

����� Yn

}
− (1 − Φ(r))

)
dr,

(67)

bYn , ηYn −H(Xn | Yn) −
√
V(Xn | Yn)Φ−1(1 − ε),

(68)

sgn(u) ,


−1 if u < 0,
0 if u = 0,
1 if u > 0.

(69)

Combining (63) and (65), we can see that

E[〈ι(Xn | Yn) | Yn〉ε | Yn]

= (1 − ε)H(Xn | Yn) −
√
V(Xn | Yn)( fG(1 − ε)

− εΦ−1(1 − ε)) + BYn − DYn − ε(ηYn −H(Xn | Yn))

= (1 − ε)H(Xn | Yn)

−
√
V(Xn | Yn)( fG(1 − ε) − εΦ−1(1 − ε))

+ BYn − DYn − ε(bnY +
√
V(Xn | Yn)Φ−1(1 − ε))

= (1 − ε)H(Xn | Yn) −
√
V(Xn | Yn) fG(1 − ε)

+ BYn − DYn − εbnY . (70)

Taking the essential supremum in (70), we have

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

≤ ess sup {(1 − ε)H(Xn | Yn)}

+ ess sup {−
√
V(Xn | Yn) fG(1 − ε)

+ BYn − DYn − εbYn }, (71)

Here, we applied (16) of Proposition 1. Consider the first
term in the right-hand side of (71). By Hypothesis (b) in
Theorem 1, it follows that

ess supH(Xn | Yn) = n ess supH(X | Y ), (72)

Hypothesis (a) and (b) in Theorem 1 imply that

Vinf(X | Y ) > 0 (73)
Tsup(X | Y ) , ess supT(X | Y ) < ∞, (74)

respectively. From [4, Equations (171), (174), and (176)],

ess sup |bYn | ≤ ess sup
ATsup(X | Y )4/3

cVinf(X | Y )3/2
, (75)

ess sup |BYn | ≤ ess sup
ATsup(X | Y )4/3

cVinf(X | Y )3/2
, (76)

DYn ≤
3ATsup(X | Y )

Vinf(X | Y )
. (77)

Considering (71) again, we can see that

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

(a)
≤ ess sup {n(1 − ε)H(X | Y )}

+ ess sup {−
√
V(Xn | Yn) fG(1 − ε)}

+ ess sup {BYn − DYn − εbYn }

(b)
≤ ess sup {n(1 − ε)H(X | Y )}

− ess inf {
√
V(Xn | Yn) fG(1 − ε)} +O(1) (78)

where

• (a) follows from (72) and (16) of Proposition 1,
• (b) follows from (75), (76) and (77).

Noting (73), we see that√
nVinf(X | Y ) ≤

√
Vinf(Xn | Yn) (79)

Combining (78) and (79), we obtain

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

≤ ess sup {n(1 − ε)H(X | Y )} (80)

−
√

nVinf(X | Y ) fG(ε) +O(1). (81)

Similarly, we consider the lower bound as follows:

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

≥ ess sup {n(1 − ε)H(X | Y )}

− ess sup {
√
V(Xn | Yn) fG(1 − ε)} +O(1). (82)

Similar to (79), one has√
Vsup(Xn | Yn) ≤

√
nVsup(X | Y ). (83)

Combining (82) and (83),

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

≥ ess sup {n(1 − ε)H(X | Y )} (84)

−

√
nVsup(X | Y ) fG(ε) +O(1). (85)

Finally, by (81) and (85), we obtain

ess sup E[〈ι(Xn | Yn) | Yn〉ε | Yn]

= n(1 − ε)ess supH(X | Y ) + θ̃n, (86)

where the reminder term θ̃n satisfies that

−

√
nVsup(X | Y ) fG(ε) +O(1)

≤ θ̃n ≤ −
√

nVinf(X | Y ) fG(ε) +O(1)
(87)

as n→∞. This completes the proof of Lemma 3.
Theorem1 is now proved from Lemmas 1, 2, and 3.

4. Concluding Remarks

We discussed the variable-length data compression for
(L, ε)max,max-code defined in Definition 6. To investigate
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the fundamental limit L∗max,max of that code in the regime
of nonvanishing error probabilities, we derived one-shot
bounds formulated by the conditional cutoff operation and its
asymptotic expansion up to the remainder term Θ(

√
n). Since

L∗max,max can be a converse part of Slepian–Wolf coding, we
may immediately obtain

L∗max,max ≤ L∗SW, (88)

where L∗SW is the fundamental limit of Slepian–Wolf coding
under similar conditions as L∗max,max. Achievability part of
L∗SW remains an open problem. While the exact first-order
asymptotics of L∗max,max was characterized in a single-letter
form in Theorem 1, deriving the exact coefficient of the
remainder termΘ(

√
n) remains a future work of second-order

asymptotics. In addition, any analysis of (L, ε)max,avg-code
(see Table 1) is also left for the future work.
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Appendix A: Proof of Proposition 1

Let ess sup X = x and ess sup Y = y. For an arbitrary small
δ > 0, we see that

P

{
X > x +

δ

2

}
= P

{
Y > y +

δ

2

}
= 0. (A· 1)

We know that the following inequality holds

P{X + Y > α + β} ≤ P({X > α} ∪ {Y > β}) (A· 2)
≤ P{X > α} + P{Y > β}. (A· 3)

Letting α = x + δ/2 and β = x + δ/2, we get

P{X + Y > x + y + δ} ≤ P
{

X > x +
δ

2

}
+ P

{
Y > y +

δ

2

}

= 0, (A· 4)

where (A· 4) is satisfied by the definition of ess sup, i.e.,

ess sup (X + Y ) = inf{γ | P{X + Y > γ} = 0}
= infS, (A· 5)

where

γ ∈ S ⇔ P{X + Y > γ} = 0. (A· 6)

From (A· 6),

x + y + δ = ess sup X + ess sup Y + δ ∈ S. (A· 7)

Hence,

ess sup (X + Y ) ≤ ess sup X + ess sup Y + δ. (A· 8)

Let S′ be

S′ = {ess sup X + ess sup Y + δ | δ > 0}. (A· 9)

It follows from (A· 8) that

a ∈ S′⇒ a ≥ ess sup (X + Y ), (A· 10)
infS′ = ess sup X + ess sup Y . (A· 11)

Since ess sup (X + Y ) is a lower bound of S′, we have

infS′ ≥ ess sup (X + Y ). (A· 12)

From (A· 11) and (A· 12)

ess sup X + ess sup Y ≥ ess sup (X + Y ). (A· 13)

Also, from (16) we see that

ess sup (X − Y ) ≥ ess sup X − ess sup Y, (A· 14)

proving Proposition 1. �

Appendix B: Proof of Proposition 3

Let ε∗(Z,W) a [0,1]-valued r.v. given as

ε∗(Z,W) =


0 if Z < ηW ,

1 − BW if Z = ηW ,
1 if Z > ηW

(A· 15)

where BW is a Bernoulli r.v. Combining (22) and (A· 15), we
can see that

E[ε∗(Z,W) | W]
(a)
= E[(1 − BW ) · 1{Z=ηW } + 1{Z>ηW } | W]
(b)
= E[(1 − BW ) · 1{Z=ηW } | W] + E[1{Z>ηW } | W]
(c)
= E[1 − BW | W] · E[1{Z=ηW } | W] + E[1{Z>ηW } | W]
(d)
= βW E[1{Z=ηW } | W] + E[1{Z>ηW } | W]
(e)
= βW P{Z = ηW | W} + P{Z > ηW | W}
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(f)
= ε (a.s.). (A· 16)

where

• (a) follows from (A· 15),
• (b) follows from the linearity of conditional expectation,
• (c) follows from the conditional independence BW ⊥

Z | W ,
• (d) follows from (21),
• (e) follows by the definition of conditional probability,
• (f) follows from (22).

In addition, we can see that the following equation of three
cases. Firstly, if 0 ≤ t < ηW ,

P{(1 − ε∗(Z,W))Z > t | W}
(a)
= E[1{(1−ε ∗(Z ,W ))Z>t } · (1{Z<ηW }

+ 1{Z=ηW } + 1{Z>ηW }) | W]
(b)
= E[1{(1−ε ∗(Z ,W ))Z>t } · 1{Z<ηW }

+ 1{(1−ε ∗(Z ,W ))Z>t } · 1{Z=ηW } + 0 | W]
(c)
= E[1{Z>t } · 1{Z<ηW } + 1{(1−(1−BW ))Z>t } · 1{Z=ηW } | W]
(d)
= E[1{ηW>Z>t } + 1{BW=1} · 1{Z=ηW } | W]
(e)
= E[1{ηW>Z>t }] + E[1{BW=1} | W] · E[1{Z=ηW } | W]
(f)
= P{ηW > Z > t | W} + P{BW = 1 | W} · P{Z = ηW | W}
(g)
= P{ηW > Z > t | W} + (1 − βW ) · P{Z = ηW | W}
= P{Z > t | W} − P{Z > ηW | W} − βWP{Z = ηW | W}
(h)
= P{Z > t | W} − ε. (A· 17)

where

• (a) follows the defining function divided in range of r.v.
Z ,

• (b) follows from the conditions 0 ≤ t < ηW ,
• (c) follows from (A· 15),
• (d) follows from the following equation

1{BW ηW>t } · 1{BW=1} = 1 − 1{BW=0}, (A· 18)

since 0 ≤ t < ηW .
• (e) follows from the linearity of the conditional expecta-
tion and the conditional independence BW ⊥ Z | W ,

• (f) follows from the definition of conditional probability,
• (g) follows from (21),
• (h) follows from (22).

Secondly, if t < 0,

P{(1 − ε∗(Z,W))Z > t | W}
= E[1{(1−ε ∗(Z ,W ))Z>t } · (1{Z<ηW }

+ 1{Z=ηW } + 1{Z>ηW }) | W]
= E[1{Z>t } · 1{Z<ηW } + 1{BW Z>t } · 1{Z=ηW }

+ 1{t<0} · 1{Z>ηW } | W]
= P{ηW > Z > t | W}+P{Z = ηW | W}+P{Z > ηW | W}

= P{Z > t | W}. (A· 19)

Thirdly, if t ≥ ηW ,

P{(1 − ε∗(Z,W))Z > t | W} = P{t < 0 | W}
= 0. (A· 20)

To summarize (A· 17), (A· 19) and (A· 20)

P{(1 − ε∗(Z,W))Z > t | W}

=


P{Z > t | W} if t < 0,
P{Z > t | W} − ε if 0 ≤ t < ηW ,

0 if t ≥ ηW

(A· 21)

a.s. The two random variables 〈Z | W〉ε and (1− ε∗(Z,W))Z
are equal in distribution, which implies that

E[〈Z | W〉ε | W] = E[(1 − ε∗(Z,W))Z | W]. (A· 22)

Consider an arbitrary measureable map ε : [0,∞) ×W →
[0,1] satisfying

E[ε(Z,W) | W] ≤ ε (a.s.). (A· 23)

Then, we have

E[(ε(Z,W) − ε∗(Z,W))Z | W]
(a)
= E[ε(Z,W)Z1{Z<ηW } | W]

+ E[(ε(Z,W) − βW )Z1{Z=ηW } | W]
+ E[(ε(Z,W) − 1)Z1{Z>ηW } | W]

(b)
≤ ηW (E[ε(Z,W)1{Z<ηW } | W]

+ E[(ε(Z,W) − βW )1{Z=ηW } | W]
+ E[(ε(Z,W) − 1)1{Z>ηW } | W])

(c)
= ηWE[ε(Z,W) − ε∗(Z,W) | W]
≤ 0 (a.s.). (A· 24)

where

• (a) follows from the linearity of expectation,
• (b) follows from the fact that 0 ≤ ε(Z,W) ≤ 1, and
• (c) follows from the definition of ε∗.

Furthermore, we know that

E[(1 − ε∗(Z,W))Z | W] ≤ E[(1 − ε(Z,W))Z | W].
(A· 25)

Combining (A· 16), (A· 22), (A· 23) and (A· 25) we obtain

E[〈Z | W〉ε | W]
= min
ε :E[ε (Z ,W ) |W ]≤ε(a.s.)

E[(1 − ε(Z,W))Z | W], (A· 26)

completing the proof of Proposition 3. �
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