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Channel Capacity with Cost Constraint Allowing Cost Overrun∗∗

Masaki HORI†∗, Nonmember and Mikihiko NISHIARA†a), Senior Member

SUMMARY A channel coding problem with cost constraint for general
channels is considered. Verdú and Han derived ε-capacity for general chan-
nels. Following the same lines of its proof, we can also derive ε-capacity
with cost constraint. In this paper, we derive a formula for ε-capacity with
cost constraint allowing overrun. In order to prove this theorem, a new
variation of Feinstein’s lemma is applied to select codewords satisfying cost
constraint and codewords not satisfying cost constraint.
key words: general channel, cost constraint, ε-achievability, Feinstein’s
lemma

1. Introduction

Fundamental problems of channel coding for general chan-
nels were solved by Verdú and Han [1]. They derived for-
mulas for channel capacity and ε-capacity. In addition to
fundamental problems, there are some situations such that
cost of codewords must be taken into account. Cost of a
codeword is an abstract number representing such as the en-
ergy or the time spent to send it. As a mathematical model,
cost is a real-valued function defined over the collection of
channel inputs. A basic constraint is to limit the cost per
symbol of every codeword to a certain constant [2]. Be-
ing more flexible with the cost constraint can potentially
improve the efficiency of communication, and there are situ-
ations where it may not be practical to strictly adhere to the
cost constraint. This is analogous to being tolerant of decod-
ing errors in channel coding problems, which is referred to
as ε-capacity. In this paper, we allow a certain probability
of violation of cost constraint. This means that we have to
spend much cost than the constraint for some codewords.

2. Formulation and Main Theorem

Through a mathematical formulation of the problem, we
describe known results and some extensions we deal with.

Manuscript received February 25, 2023.
Manuscript revised June 26, 2023.
Manuscript publicized October 10, 2023.
†The authors are with Shinshu University, Nagano-shi, 380-

8553 Japan.
∗Presently, the author is with SCSK Corporation, Tokyo, 135-

8110 Japan.
∗∗This work was presented at the International Symposium

on Information Theory and Its Applications 2022 (ISITA2022),
Tsukuba, Japan, Oct. 17–19, 2022. This work was supported by
JSPS KAKENHI Grant Number JP23K03851.

a) E-mail: mikihiko@shinshu-u.ac.jp
DOI: 10.1587/transfun.2023TAP0010

Fig. 1 Schematic diagram of our system.

2.1 Preliminary

Let X andY be two abstract sets∗∗∗. Consider general chan-
nel W , {Wn}∞

n=1 with X and Y as input and output al-
phabet, respectively. This means that Wn(·|x), x ∈ Xn is a
distribution over Yn. We define a real-valued function cn
on the input alphabet Xn and call it the cost function. For
x ∈ Xn, cn(x) is called the cost of x.

We want to inform the destination of one of Mn mes-
sages through this channel. LetMn , {1, . . . ,Mn} denote
the set of messages. A selected message m ∈ Mn is en-
coded by the encoder ϕn :Mn → X

n into codeword ϕn(m),
which is fed into the channel. Observing the output of the
channel, the decoder ψn : Yn → Mn guesses the message
selected at the encoder side. The guess of the decoder is not
necessarily correct. The probability that the guess differs
from the selected message is called the error probability and
represented by

εn , 1 −
1

Mn

∑
m∈Mn

Wn(ψ−1
n (m)|ϕn(m)), (1)

where ψ−1
n (m) , { y ∈ Y

n |ψn(y) = m}, which is called
the decoding region for message m or codeword ϕn(m). A
pair (ϕn,ψn) of encoder ϕn and decoder ψn is called a code.
Figure 1 depicts a schematic diagram of our system.

Let X , {Xn}∞
n=1 and Y , {Yn}∞

n=1. Generally, given
that X is fed into the channel, the output is denoted by Y (X).
For each n, given that Xn is fed into the channel, the output
is denoted by Yn(Xn). That is, we define

PYn(Xn)(y) ,
∑
x∈Xn

PXn (x)Wn(y |x), y ∈ Yn. (2)

∗∗∗We describe the text as if these sets are countable. Use the
Radon-Nikodym derivative and the integral in place of Wn/PYn

and the summation
∑
, respectively, if necessary. For details, see

[2], [3].

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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Every logarithm in this paper is the natural logarithm.
Generally, the distribution of a random variable Z is denoted
by PZ .

2.2 Channel Capacity with Cost Constraint

We formulate a standard problem of channel coding with
cost constraint for general channels.

Definition 1: For ε ≥ 0, rate R is said to be (ε,Γ)-
achievable if there exists a sequence of codes {(ϕn,ψn)}

∞
n=1

satisfying

lim sup
n→∞

εn ≤ ε, (3)

lim inf
n→∞

1
n

log Mn ≥ R, (4)

1
n

cn(ϕn(m)) ≤ Γ for all m ∈ Mn and all n. (5)

Each inequality, namely (3), (4), and (5), represents
the error constraint, the coding rate constraint, and the cost
constraint, respectively. Especially, (5) requires that every
codeword does not exceed the cost constraint.

Definition 2: We define (ε,Γ)-capacity as

C(ε,Γ) , sup{R|R is (ε,Γ)-achievable}. (6)

In order to find a formula for (ε,Γ)-capacity, we need
the following quantity.

Definition 3: For channel input X and output Y = Y (X),
we define

Iε(X ;Y ) , sup
{

R
����

lim sup
n→∞

Pr
{

1
n

log
Wn(Yn |Xn)

PYn (Yn)
< R

}
≤ ε

}
. (7)

The following theorem is known [2].

Theorem 1: (ε,Γ)-capacity is given by

C(ε,Γ) = sup
X :Pr{n−1cn(Xn)≤Γ}=1

Iε(X ;Y (X)), (8)

where the supremum is taken with respect to all input pro-
cesses X satisfying

Pr
{

1
n

cn(Xn) ≤ Γ

}
= 1 for all n. (9)

2.3 Allowing Cost Overrun

Now, let UMn denote the random variable uniformly dis-
tributed over the set of natural integers not exceeding Mn.
Note that (5) can be rewritten as

Pr
{

1
n

cn(ϕn(UMn )) ≤ Γ

}
= 1. (10)

We generalize the definition of achievability at this view-
point.

Definition 4: For β ≥ 0, rate R is said to be (ε, β,Γ)-
achievable if there exists a sequence of codes {(ϕn,ψn)}

∞
n=1

satisfying (3), (4), and

Pr
{

1
n

cn(ϕn(UMn )) > Γ

}
≤ β for all n. (11)

This constraint allows for the occurrence of cost over-
run with a certain probability. For example, in the case of
power constraint, it is generally necessary to adhere to the
peak constraint, but some slight peak exceedance may be
allowed by incorporating some form of protective circuitry.
Inequality (11) mathematically represents such a situation.

Let us define a generalized channel capacity as follows.

Definition 5: (ε, β,Γ)-capacity is defined as

C(ε, β,Γ) , sup{R|R is (ε, β,Γ)-achievable}. (12)

Then, we have the following theorem.

Theorem 2: (ε, β,Γ)-capacity is given by

C(ε, β,Γ) = sup
X :Pr{n−1cn(Xn)>Γ}≤β

Iε(X ;Y (X)). (13)

If β = 0, of course, the situation is reduced to Theo-
rem 1. The resulting formula for channel capacity is easy to
suggest. However, we need new good codes achieving the
capacity.

3. Code Construction Method

To prove Theorem 2, we prepare the following lemma, which
is an extension of Feinstein’s lemma [4]. This lemma is a
key contribution of this paper.

Lemma 1: Suppose that a channel input Xn, a positive in-
teger Mn, a real number γ > 0, and a subset Sn ⊂ Xn are
given. Let Yn = Yn(Xn). Define

B(x) ,

{
y ∈ Yn

����1n log
Wn(y |x)

PYn (y)
≥

1
n

log Mn + γ

}
.

(14)

Then, there exists a code (ϕn,ψn) such that

εn ≤ Pr{Yn < B(Xn)} + (1 + PXn (Sn))e−nγ +
1

Mn
,

(15)

there are Mn codewords in total, and dPXn (Sn)Mne code-
words of those belong to Sn, where d·e is the ceiling func-
tion.

If Sn is empty, this lemma is reduced to the original
lemma. Subset Sn will be specified as a collection of se-
quences that satisfy the cost constraint when the lemma is
utilized in later proofs. However, the lemma is considered
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to have generality and can be applied broadly because it is
unrelated to the meaning of Sn.

Proof: We choose codewords in two phases. In the first
phase, we choose codewords among Sn. And in the second
phase, from the outside of Sn.

Let us get started with the first phase. If Pr{Xn ∈ Sn} =

0, we directly proceed to the second phase because we have
no codeword to choose in the first phase (M ′n , 0, see (36)).
So, assume that Pr{Xn ∈ Sn} > 0. Define

λ′ , Pr{Yn < B(Xn)|Xn ∈ Sn} + e−nγ . (16)

Note that this can be rewritten as

Pr{Yn ∈ B(Xn),Xn ∈ Sn}

= (1 − λ′ + e−nγ)Pr{Xn ∈ Sn}. (17)

As the first codeword ϕn(1), we choose an x ∈ Sn satisfying

Wn(B(x)|x) ≥ 1 − λ′, (18)

and define the decoding region for ϕn(1) as ψ−1
n (1) ,

B(ϕn(1)). Hereafter, we choose codewords one after an-
other as follows. As the mth codeword ϕn(m) for m > 1, we
choose an x ∈ Sn satisfying

Wn

(
B(x) \

⋃
m′<m

ψ−1
n (m

′)

����� x
)
≥ 1 − λ′, (19)

and define the decoding region for ϕn(m) as

ψ−1
n (m) , B(ϕn(m)) \

⋃
m′<m

ψ−1
n (m

′). (20)

Assume that we have taken L ′ codewords and cannot choose
any more codeword satisfying (19). Note that we have taken
infinitely many codewords if λ′ ≥ 1. That is, λ′ < 1 if L ′ is
finite.

If L ′ is finite, we define

D ′ ,
⋃
m≤L′

ψ−1
n (m) (21)

and evaluate L ′. To do this, we will bound

Pr{Yn ∈ B(Xn), Xn ∈ Sn}

= Pr{Yn ∈ B(Xn) ∩ D ′, Xn ∈ Sn}

+ Pr{Yn ∈ B(Xn) \ D ′, Xn ∈ Sn} (22)

term by term. The first term is bounded by

Pr{Yn ∈ B(Xn) ∩ D ′, Xn ∈ Sn} (23)

≤ Pr{Yn ∈ D ′} =
∑
m≤L′

Pr{Yn ∈ ψ−1
n (m)} (24)

≤
∑
m≤L′

Pr{Yn ∈ B(ϕn(m))} (25)

=
∑
m≤L′

∑
y∈B(ϕn(m))

PYn (y) (26)

≤
∑
m≤L′

∑
y∈B(ϕn(m))

Wn(y |ϕn(m))
Mn

e−nγ (27)

≤
L ′

Mn
e−nγ . (28)

On (27), we applied the fact that

PYn (y) ≤
Wn(y |x)

Mn
e−nγ for y ∈ B(x). (29)

The second term is bounded by

Pr{Yn ∈ B(Xn) \ D ′, Xn ∈ Sn} (30)

=
∑
x∈Sn

PXn (x)Wn(B(x) \ D ′ |x) (31)

<
∑
x∈Sn

PXn (x)(1 − λ′) (32)

= Pr{Xn ∈ Sn}(1 − λ′). (33)

Therefore, (22) is bounded by

Pr{Yn ∈ B(Xn), Xn ∈ Sn}

≤
L ′

Mn
e−nγ + Pr{Xn ∈ Sn}(1 − λ′). (34)

With (17), L ′ is evaluated as

L ′ ≥ Pr{Xn ∈ Sn}Mn. (35)

Hence, in any case, we have chosen at least L ′ code-
words from Sn. Here, let

M ′n , dPr{Xn ∈ Sn}Mne . (36)

We formally employ ϕn(1), . . . , ϕn(M ′n) as codewords of our
code. That is, for m > M ′n, codeword ϕn(m) and decoding
region ψ−1

n (m) become undefined.
Even if the cardinality of Sn is smaller than M ′n, it

does not yield a contradiction. It just implies that a certain
codeword is chosen twice or more. From (19), this situation
takes place only if λ′ ≥ 1.

From here, we work on the second phase. If Pr{Xn ∈

Sn} = 1, we skip the second phase and proceed to the
evaluation of the error probability (Mn = M ′n). So, assume
that Pr{Xn < Sn} > 0. Define

λ , Pr{Yn < B(Xn)|Xn < Sn} +
e−nγ

Pr{Xn < Sn}
. (37)

Note that this can be rewritten as

Pr{Yn ∈ B(Xn),Xn < Sn}

= (1 − λ)Pr{Xn < Sn} + e−nγ . (38)

As the mth codeword ϕn(m) for m > M ′n, we choose an
x ∈ Xn \ Sn satisfying

Wn

(
B(x) \

⋃
m′<m

ψ−1
n (m

′)

����� x
)
≥ 1 − λ (39)
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and define the decoding region for ϕn(m) as

ψ−1
n (m) , B(ϕn(m)) \

⋃
m′<m

ψ−1
n (m

′). (40)

Assume that we have taken L codewords in total and cannot
choose any more codeword satisfying (39). Similar to the
first phase, L may be infinite.

If L is finite, we define

D ,
⋃
m≤L

ψ−1
n (m) (41)

and evaluate L. To do this, we can derive

Pr{Yn ∈ B(Xn), Xn < Sn}

≤
L

Mn
e−nγ + Pr{Xn < Sn}(1 − λ). (42)

With (38), L is evaluated as

Mn ≤ L. (43)

Hence, in any case, we have chosen Mn or more code-
words. We formally employ ϕn(1), . . . , ϕn(Mn) as the code-
words of our code. Now, we completed our code.

Finally, we evaluate the error probability of our code.
Before that, we prepare

λ′ − λ (44)
≤ λ′ − Pr{Yn < B(Xn)|Xn < Sn} − e−nγ (45)
≤ Pr{Yn < B(Xn)|Xn ∈ Sn} + e−nγ − e−nγ (46)
≤ 1. (47)

With 0 ≤ δ < 1 such that M ′n = Pr{Xn ∈ Sn}Mn + δ, the
error probability is evaluated as

εn = 1 −
1

Mn

∑
m∈Mn

Wn(ψ−1
n (m)|ϕn(m)) (48)

≤ 1 −
1

Mn

©­«
M′n∑
m=1
(1 − λ′) +

Mn∑
m=M′n+1

(1 − λ)ª®¬ (49)

=
M ′nλ

′ + (Mn − M ′n)λ
Mn

(50)

=
M ′n(λ

′ − λ) + Mnλ

Mn
(51)

= Pr{Xn ∈ Sn}(λ
′ − λ) + λ +

δ

Mn
(λ′ − λ) (52)

≤ Pr{Xn ∈ Sn}(λ
′ − λ) + λ +

1
Mn

(53)

= Pr{Xn ∈ Sn}λ
′ + Pr{Xn < Sn}λ +

1
Mn

(54)

= Pr{Yn < B(Xn)} + (1 + Pr{Xn ∈ Sn})e−nγ +
1

Mn
.

(55)

Note that the last evaluation is valid even if Pr{Xn ∈ Sn} = 0

or 1. �

4. Proof of Theorem 2

Here, we will see that Lemma 1 plays a substantial role in
the construction of good codes.

Proof of Theorem 2: First, we describe the direct part
of the proof. Consider any R satisfying

R < sup
X :Pr{n−1cn(Xn)>Γ}≤β

Iε(X ;Y ). (56)

We will show that rate R is (ε, β,Γ)-achievable.
For some γ > 0, there exists an X such that

Pr
{

1
n

cn(Xn) > Γ

}
≤ β for all n, (57)

Iε(X ;Y ) > R + γ. (58)

We define

Mn , enR, (59)

Sn ,

{
x ∈ Xn

����1n cn(x) ≤ Γ
}

(60)

and apply Lemma 1. Then, we obtain a code (ϕn,ψn) such
that

εn ≤ Pr{Yn < B(Xn)} + (1 + PXn (Sn)})e−nγ +
1

Mn
,

(61)

there are Mn codewords, and dPXn (Sn)Mne codewords of
those belong to Sn. From the definitions of B(x) and
Iε(X ;Y ), we have

lim sup
n→∞

Pr{Yn < B(Xn)} (62)

= lim sup
n→∞

Pr
{

1
n

log
Wn(Yn |Xn)

PYn (Yn)
< R + γ

}
(63)

≤ ε. (64)

Then, the error probability is bounded as

lim sup
n→∞

εn ≤ ε. (65)

As for the coding rate, we can immediately verify

lim inf
n→∞

1
n

log Mn ≥ R. (66)

Finally, as for the cost overrun, since dPXn (Sn)Mne code-
words belong to Sn, we obtain

Pr
{

1
n

cn(ϕn(UMn )) > Γ

}
(67)

=
1

Mn

∑
m∈Mn

1{ϕn(m) < Sn} (68)

≤
1

Mn
(Mn − PXn (Sn)Mn) (69)
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= Pr
{

1
n

cn(Xn) > Γ

}
(70)

≤ β, (71)

where 1{·} is the indicator function. From (65), (66), and
(71), we conclude that rate R is (ε, β,Γ)-achievable.

The converse part of the proof is done by following the
same lines in the converse part of the proof of Theorem 1 [2,
Theorem 3.6.6]. �

5. An Example

Here, we show an example of Theorem 2. Consider a binary
noiseless channel. We divide input alphabet Xn into two
subsets Xn

(1) and X
n
(2); X

n
(1) consists of all sequences that are

binary representations of integers less than 2n/2, and Xn
(2)

consists of the remainder. Assume that, it costs Cn(x) , n
for x ∈ Xn

(1) and Cn(x) , 2n for x ∈ Xn
(2). Let cost constraint

Γ , 1.
SinceWn(Yn |Xn) = 1, Therem 2 yields that the channel

capacity is given by

C(ε, β,Γ) = sup
X :Pr{n−1cn(Xn)>Γ}≤β

Hε(X), (72)

where

Hε(X) , sup
{

R
����

lim sup
n→∞

Pr
{

1
n

log
1

PYn (Yn)
< R

}
≤ ε

}
. (73)

If β = 0, that is, if we do not allow cost overrun,
the channel capacity is C(ε, β,Γ) = 1/2 because Hε(X) is
maximized by the uniform distribution overXn

(1) for 0 ≤ ε <
1.

On the other hand, if β > 1 − ε, the capacity becomes
1. To see this, let us construct a good code. Fix an R < 1.
Let Mn , 2nR be the number of codewords. We choose
βMn distinct codewords from Xn

(2) and a codeword from
Xn
(1), which is used (1 − β)Mn times. Note that |Xn

(2) | >

βMn for n large enough. The codewords are distributed
uniformly. Then, the cost of codeword overruns Γ with
probability β. Since the decoding error occurs only if a
codeword from Xn

(1) is sent, the error probability does not
exceed 1− β < ε. Hence, we can conclude that rate R < 1 is
(ε, β,Γ)-achievable. This implies that the channel capacity
is 1. Applying the output of the encoder, we can also verify
Hε(X) = 1.

6. Asymptotic Cost Constraint

In this section, let us consider an asymptotic cost constraint.
We formulate asymptotic cost constraint as follows.

Definition 6: For input process X , we define

cβ(X) , inf
{
Γ

����lim sup
n→∞

Pr
{

1
n

cn(Xn) > Γ

}
≤ β

}
.

(74)

Replacing (11) with an asymptotic constraint, we define
a new achievability.

Definition 7: Rate R is said to be (ε, β,Γ)-achievable with
asymptotic cost constraint if there exists a sequence of codes
{(ϕn,ψn)}

∞
n=1 satisfying (3), (4), and

cβ({ϕn(UMn )}
∞
n=1) ≤ Γ. (75)

Let C ′(ε, β,Γ) denote the supremum of (ε, β,Γ)-
achievable rates with asymptotic cost constraint. Then, we
have the following theorem.

Theorem 3:

C ′(ε, β,Γ) = sup
X :cβ (X)≤Γ

Iε(X ;Y ). (76)

Proof: This theorem is proved by tracing the same lines
of the proof of Theorem 2 with the diagonal line argument
for the definition of Sn applying Lemma 1.

Consider any R satisfying

R < sup
X :cβ (X)≤Γ

Iε(X ;Y ). (77)

Then, there exists an X satisfying

cβ(X) ≤ Γ. (78)

From the definition of cβ(X), for any natural number k, we
have

lim sup
n→∞

Pr
{

1
n

cn(Xn) > Γ +
1
k

}
≤ β, (79)

which yields that

Pr
{

1
n

cn(Xn) > Γ +
1
k

}
≤ β +

1
k

(80)

for all n large enough. Conversely, for fixed n, there is the
largest value of k satisfying (80). Let γn , 1/k with such
largest k (the diagonal line argument). Then, γn satisfies

Pr
{

1
n

cn(Xn) > Γ + γn

}
≤ β + γn (81)

and vanishes as n→∞. Here, we define Mn , enR and

Sn ,

{
x ∈ Xn

����1n cn(x) ≤ Γ + γn

}
, (82)

and apply Lemma 1. Then, we obtain a code (ϕn,ψn) with
Mn codewords in total. Out of these, dPXn (Sn)Mne code-
words belong to Sn. Bounds for the error probability and
the coding rate are derived in the same manner as Theorem
1. The probability of the cost overrun is bounded, for any
δ > 0, as
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Pr
{

1
n

cn(ϕn(UMn )) > Γ + δ

}
(83)

≤ Pr
{

1
n

cn(ϕn(UMn )) > Γ + γn

}
(84)

= Pr
{

1
n

cn(Xn) > Γ + γn

}
(85)

≤ β + γn (86)

for n large enough, which yields

lim sup
n→∞

Pr
{

1
n

cn(ϕn(UMn )) > Γ + δ

}
≤ β. (87)

Since δ > 0 is arbitrary, this implies that

cβ({ϕn(UMn )}
∞
n=1) ≤ Γ. (88)

Hence, R is (ε, β,Γ)-achievable with asymptotic cost con-
straint.

The converse part is omitted. �

7. A Stronger Criterion

In a recent work [5] on channel coding with cost constraint, a
stronger criterion was introduced. Adapting to our situation,
it is expressed by

c′β(X) , inf
{
Γ

����p- lim sup
n→∞

1

{
1
n

cn(Xn) > Γ

}
≤ β

}
,

(89)

where

p- lim sup
n→∞

Zn , inf
{
θ
��� lim
n→∞

Pr{Zn > θ} = 0
}

(90)

for a sequence of real-valued random variables {Zn}
∞
n=1.

Since we can observe that

p- lim sup
n→∞

1

{
1
n

cn(Xn) > Γ

}
(91)

=

{
0 if Pr

{ 1
n cn(Xn) > Γ

}
→ 0 as n→∞,

1 otherwise,
(92)

criterion c′β(X) for 0 ≤ β < 1 is equivalent to c0(X) in our
situation.

8. Conclusion

In this paper, we considered a channel coding problem with
cost constraint allowing cost overrun for general channels.
We formulated two types of constraints to cost overrun and
derived channel capacities for each constraint. To show the
two types of achievability, the new code constructionmethod
based on Feinstein’s lemma played a substantial role. The
authors are currently focused on proving the lemma using
random coding argument.
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