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Properties of k-Bit Delay Decodable Codes

Kengo HASHIMOTO†a), Nonmember and Ken-ichi IWATA†, Senior Member

SUMMARY The class of k-bit delay decodable codes, source codes
allowing decoding delay of at most k bits for k ≥ 0, can attain a shorter
average codeword length than Huffman codes. This paper discusses the
general properties of the class of k-bit delay decodable codes with a finite
number of code tables and proves two theorems which enable us to limit
the scope of codes to be considered when discussing optimal k-bit delay
decodable codes.
key words: data compression, source coding, decoding delay

1. Introduction

It is known that one can achieve a shorter average codeword
length than Huffman codes by allowing multiple code tables
and some decoding delay. AIFV (almost instantaneous fixed-
to-variable length) codes developed by Yamamoto, Tsuchi-
hashi, and Honda [3] attain a shorter average codeword
length than Huffman codes by using a time-variant encoder
with two code tables and allowing decoding delay of at most
two bits. AIFV codes are generalized to AIFV-m codes,
which can achieve a shorter average codeword length than
AIFV codes for m ≥ 3, allowing m code tables and decod-
ing delay of at most m bits [7]. The worst-case redundancy
of AIFV-m codes is analyzed in [7], [8] for m = 2,3,4,5.
The literature [9]–[22] proposes the code construction and
coding method of AIFV and AIFV-m codes. Extensions of
AIFV-m codes are proposed in [23], [24].

The literature [4] formalizes a binary encoder with a
finite number of code tables as a code-tuple and introduces
the class of code-tuples decodable with a delay of at most
k bits as the class of k-bit delay decodable codes, which
includes the class of AIFV-k codes as a proper subclass.
Also, [4] proves that Huffman codes achieve the optimal
average codeword length in the class of 1-bit delay decodable
code-tuples. The literature [5] indicates that the class of
AIFV codes achieves the optimal average codeword length
in the class of 2-bit delay decodable code-tuples with two
code tables.

This paper discusses the general properties of k-bit de-
lay decodable code-tuples for k ≥ 0 and proves two theorems
as the main results. The first theorem guarantees that it is
not the case that one can achieve an arbitrarily small aver-
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age codeword length by using arbitrarily many code tables.
This leads to the existence of an optimal k-bit delay decod-
able code-tuple, which achieves an average codeword length
shorter than or equal to any other k-bit delay code-tuple.
The first theorem also gives an upper bound of the required
number of code tables for an optimal k-bit delay decodable
code-tuples. The second theorem gives a necessary con-
dition for a k-bit delay decodable code-tuple to be optimal,
which is a generalization of a property of Huffman codes that
each internal node in a code tree has two child nodes. Both
theorems enable us to limit the scope of code-tuples to be
considered when discussing optimal k-bit delay decodable
code-tuples. As an application of these theorems, we can
prove of the optimality of AIFV codes in the class of 2-bit
delay decodable codes with a finite number of code tables
[6].

This paper is organized as follows. In Sect. 2, we pre-
pare some notations, describe our data compression scheme,
introduce some notions including k-bit delay decodable
codes, and show their basic properties used to prove our
main result. Then we prove two theorems in Sect. 3 as the
main results of this paper. Lastly, we conclude this paper
in Sect. 4. To clarify the flow of the discussion, we relegate
the proofs of most of the lemmas to Appendix C. The main
notations are listed in Appendix D.

2. Preliminaries

First, we define some notations as follows. Most of the
notations in this paper are based on [4]. Let R denote the
set of all real numbers, and let Rm denote the set of all m
dimensional real row vectors for an integer m ≥ 1. Let
|A| denote the cardinality of a finite set A. Let A × B
denote the Cartesian product of A and B, that is, A × B B
{(a, b) : a ∈ A, b ∈ B}. Let Ak (resp. A≤k , A≥k , A∗,
A+) denote the set of all sequences of length k (resp. of
length less than or equal to k, of length greater than or equal
to k, of finite length, of finite positive length) over a set A.
Thus,A+ = A∗ \ {λ}, where λ denotes the empty sequence.
The length of a sequence xxx is denoted by |xxx |, in particular,
|λ | = 0. For a non-empty sequence xxx = x1x2 . . . xn, we
define pref(xxx) B x1x2 . . . xn−1 and suff(xxx) B x2 . . . xn−1xn.
Namely, pref(xxx) (resp. suff(xxx)) is the sequence obtained by
deleting the last (resp. first) letter from xxx. We say xxx � yyy if
xxx is a prefix of yyy, that is, there exists a sequence zzz, possibly
zzz = λ, such that yyy = xxxzzz. Also, we say xxx ≺ yyy if xxx � yyy and
xxx , yyy. For sequences xxx and yyy such that xxx � yyy, let xxx−1yyy
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denote the unique sequence zzz such that xxxzzz = yyy. Note that a
notation xxx−1 behaves like the “inverse element” of xxx as stated
in the following statements (i)–(iii).

(i) For any xxx, we have xxx−1xxx = λ.
(ii) For any xxx and yyy such that xxx � yyy, we have xxxxxx−1yyy = yyy.
(iii) For any xxx, yyy, and zzz such that xxxyyy � zzz, we have (xxxyyy)−1zzz =

yyy−1xxx−1zzz.

The main notations used in this paper are listed in Appendix
D.

We now describe the details of our data compression
system. In this paper, we consider a data compression system
consisting of a source, an encoder, and a decoder.

• Source: We consider an i.i.d. source, which outputs
a sequence xxx = x1x2 . . . xn of symbols of the source
alphabet S = {s1, s2, . . . , sσ}, where n and σ denote
the length of xxx and the alphabet size, respectively. Each
source output follows a fixed probability distribution
(µ(s1), µ(s2), . . . , µ(sσ)), where µ(si) is the probability
of occurrence of si for i = 1,2, . . . ,σ. In this paper, we
assume σ ≥ 2.

• Encoder: The encoder has m fixed code tables
f0, f1, . . . , fm−1 : S → C∗, whereC B {0,1} is the cod-
ing alphabet. The encoder reads the source sequence
xxx ∈ S∗ symbol by symbol from the beginning of xxx and
encodes them according to the code tables. For the first
symbol x1, we use an arbitrarily chosen code table from
f0, f1, . . . , fm−1. For x2, x3, . . . , xn, we determine which
code table to use to encode according to m fixed map-
pings τ0, τ1, . . . , τm−1 : S → [m] B {0,1,2, . . . ,m−1}.
More specifically, if the previous symbol xi−1 is en-
coded by the code table fj , then the current symbol xi
is encoded by the code table fτj (xi−1). Hence, if we use
the code table fi to encode x1, then a source sequence
xxx = x1x2 . . . xn is encoded to a codeword sequence
f (xxx) B fi1 (x1) fi2 (xn) . . . fin (xn), where

ij B

{
i if j = 1,
τi j−1 (xj−1) if j ≥ 2

(1)

for j = 1,2, . . . ,n.
• Decoder: The decoder reads the codeword sequence

f (xxx) bit by bit from the beginning of f (xxx). Each time
the decoder reads a bit, the decoder recovers as long
prefix of xxx as the decoder can uniquely identify from
the prefix of f (xxx) already read. We assume that the
encoder and decoder share the index of the code table
used to encode x1 in advance.

2.1 Code-Tuples

The behavior of the encoder and decoder for a given
source sequence is completely determined by m code tables
f0, f1, . . . , fm−1 and m mappings τ0, τ1, . . . , τm−1 if we fix the
index of code table used to encode x1. Accordingly, we name
a tuple F( f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) as a code-tuple F

Table 1 Two examples of an code-tuple: F (α)( f
(α)

0 , f
(α)

1 , f
(α)

2 ,

τ
(α)
0 , τ

(α)
1 , τ

(α)
2 ) and F (β)( f

(β)
0 , f

(β)
1 , f

(β)
2 , τ

(β)
0 , τ

(β)
1 , τ

(β)
2 ).

s ∈ S f
(α)

0 τ
(α)
0 f

(α)
1 τ

(α)
1 f

(α)
2 τ

(α)
2

a 01 0 00 1 1100 1
b 10 1 λ 0 1110 2
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

s ∈ S f
(β)

0 τ
(β)
0 f

(β)
1 τ

(β)
1 f

(β)
2 τ

(β)
2

a λ 1 0110 1 λ 2
b 101 2 01 1 λ 2
c 1011 1 0111 1 λ 2
d 1101 2 01111 1 λ 2

and identify a source code with a code-tuple F.

Definition 1. Let m be a positive integer. An m-code-tuple
F( f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) is a tuple of m mappings
f0, f1, . . . , fm−1 : S → C∗ and m mappings τ0, τ1, . . . , τm−1 :
S → [m].

We define F (m) as the set of all m-code-tuples. Also,
we define F B F (1) ∪F (2) ∪F (3) ∪ · · · . An element of F
is called a code-tuple.

We write F( f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) also as
F( f , τ) or F for simplicity. For F ∈ F (m), let |F | denote
the number of code tables of F, that is, |F | B m. We write
[|F |] = {0,1,2, . . . , |F | − 1} as [F] for simplicity.

Example 1. Table 1 shows two examples F(α) and F(β) of a
3-code-tuple for S = {a,b,c,d}.

Example 2. We consider encoding of a source sequence
xxx = x1x2x3x4 B badb with the code-tuple F( f , τ) B
F(α)( f (α), τ(α)) in Table 1. If x1 = b is encoded with the
code table f0, then the encoding process is as follows.

• x1 = b is encoded to f0(b) = 10. The index of the next
code table is τ0(b) = 1.

• x2 = a is encoded to f1(a) = 00. The index of the next
code table is τ1(a) = 1.

• x3 = d is encoded to f1(d) = 00111. The index of the
next code table is τ1(d) = 2.

• x4 = b is encoded to f2(b) = 1110. The index of the
next code table is τ2(b) = 2.

As the result, we obtain a codeword sequence ccc B
f0(b) f1(a) f1(d) f2(b) = 1000001111110.

The decoding process of ccc = 1000001111110 is as
follows.

• After reading the prefix 10 of ccc, the decoder can
uniquely identify x1 = b and 10 = f0(b). The de-
coder can also know that x2 should be decoded with
fτ0(b) = f1.

• After reading the prefix 1000 = f0(c) f0(a) of ccc, the
decoder still cannot uniquely identify x2 = a because
there remain three possible cases: the case x2 = a, the
case x2 = c, and the case x2 = d.

• After reading the prefix 10000 of ccc, the decoder can
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uniquely identify x2 = a and 10000 = f0(b) f1(a)0. The
decoder can also know that x3 should be decoded with
fτ1(a) = f1.

• After reading the prefix 100000111 = f0(b) f1(a) f1(d)
of ccc, the decoder still cannot uniquely identify x3 = d
because there remain two possible cases: the case x3 =
c and the case x3 = d.

• After reading the prefix 10000011111 of ccc, the de-
coder can uniquely identify x3 = d and 10000011111 =
f0(b) f1(a) f1(d)11. The decoder can also know that x4
should be decoded with fτ1(d) = f2.

• After reading the prefix ccc = 1000001111110,
the decoder can uniquely identify x4 = b and
1000001111110 = f0(b) f1(a) f1(d) f2(b).

As the result, the decoder recovers the original sequence
xxx = badb.

In encoding xxx = x1x2 . . . xn ∈ S∗ with F( f , τ) ∈ F ,
the m mappings τ0, τ1, . . . , τm−1 determine which code table
to use to encode x2, x3, . . . , xn. However, there are choices of
which code table to use for the first symbol x1. For i ∈ [F]
and xxx ∈ S∗, we define f ∗i (xxx) ∈ C

∗ as the codeword sequence
in the case where x1 is encoded with fi . Also, we define
τ∗i (xxx) ∈ [F] as the index of the code table used next after
encoding xxx in the case where x1 is encoded with fi . We give
formal definitions of f ∗i and τ∗i in the following Definition 2
as recursive formulas.

Definition 2. For F( f , τ) ∈ F and i ∈ [F], we define a
mapping f ∗i : S∗ → C∗ and a mapping τ∗i : S∗ → [F] as

f ∗i (xxx) =

{
λ if xxx = λ,
fi(x1) f ∗τi (x1)

(suff(xxx)) if xxx , λ,
(2)

τ∗i (xxx) =

{
i if xxx = λ,
τ∗
τi (x1)
(suff(xxx)) if xxx , λ

(3)

for xxx = x1x2 . . . xn ∈ S∗.

Example 3. We consider F( f , τ) B F(α)( f (α), τ(α)) of Ta-
ble 1. Then f ∗0 (badb) and τ∗0 (badb) is given as follows (cf.
Example 2):

f ∗0 (badb) = f0(b) f ∗1 (adb)
= f0(b) f1(a) f ∗1 (db)
= f0(b) f1(a) f1(d) f ∗2 (b)
= f0(b) f1(a) f1(d) f2(b) f ∗2 (λ)
= 1000001111110

and

τ∗0 (badb) = τ∗1 (adb) = τ∗1 (db) = τ∗2 (b) = τ
∗
2 (λ) = 2.

The following Lemma 1 follows from Definition 2.

Lemma 1. For any F( f , τ) ∈ F , i ∈ [F], and xxx, yyy ∈ S∗, the
following statements (i)–(iii) hold.

(i) f ∗i (xxxyyy) = f ∗i (xxx) f
∗
τ∗i (xxx)
(yyy).

(ii) τ∗i (xxxyyy) = τ
∗
τ∗i (xxx)
(yyy).

(iii) If xxx � yyy, then f ∗i (xxx) � f ∗i (yyy).

2.2 k-Bit Delay Decodable Code-Tuples

In Example 2, despite f0(b) f1(a) = 1000, to uniquely iden-
tify x1x2 = ba, it is required to read 10000 including the
additional 1 bit. Namely, a decoding delay of 1 bit oc-
curs to decode x2 = a. Similarly, despite f0(b) f0(a) f1(d) =
100000111, to uniquely identify x1x2x3 = bad, it is re-
quired to read 10000011111 including the additional 2 bits.
Namely, a decoding delay of 2 bits occurs to decode x3 = d.
In general, in the decoding process with F(α) in Table 1,
it is required to read the additional at most 2 bits for the
decoder to uniquely identify each symbol of a given source
sequence. We say a code-tuple is k-bit delay decodable if
the decoder can always uniquely identify each source symbol
by reading the additional k bits of the codeword sequence.
The code-tuple F(α) is an example of a 2-bit delay decodable
code-tuple. To state the formal definition of a k-bit delay de-
codable code-tuple, we introduce the following Definitions
3 and 4.

Definition 3. For an integer k ≥ 0, F( f , τ) ∈ F , i ∈ [F],
and bbb ∈ C∗, we define

Pk
F ,i(bbb) B {ccc ∈ C

k : xxx ∈ S+, f ∗i (xxx) � bbbccc, fi(x1) � bbb},
(4)

P̄k
F ,i(bbb) B {ccc ∈ C

k : xxx ∈ S+, f ∗i (xxx) � bbbccc, fi(x1) � bbb},
(5)

where x1 denotes the first symbol of xxx. Namely, Pk
F ,i(bbb)

(resp. P̄k
F ,i(bbb)) is the set of all ccc ∈ Ck such that there exists

xxx = x1x2 . . . xn ∈ S+ satisfying f ∗i (xxx) � bbbccc and fi(x1) � bbb
(resp. fi(x1) � bbb).

Definition 4. For F( f , τ) ∈ F , i ∈ [F], and bbb ∈ C∗, we
define

P∗F ,i(bbb) B P
0
F ,i(bbb) ∪ P

1
F ,i(bbb) ∪ P

2
F ,i(bbb) ∪ · · · , (6)

P̄∗F ,i(bbb) B P̄
0
F ,i(bbb) ∪ P̄

1
F ,i(bbb) ∪ P̄

2
F ,i(bbb) ∪ · · · . (7)

We write Pk
F ,i(λ) (resp. P̄

k
F ,i(λ)) as P

k
F ,i (resp. P̄

k
F ,i)

for simplicity. Also, we write P∗F ,i(λ) (resp. P̄
∗
F ,i(λ)) as

P∗F ,i (resp. P̄
∗
F ,i). We have

Pk
F ,i

(A)
= {ccc ∈ Ck : xxx ∈ S+, f ∗i (xxx) � ccc}
(B)
= {ccc ∈ Ck : xxx ∈ S∗, f ∗i (xxx) � ccc}, (8)

where (A) follows from (4), and (B) is justified as follows.
The relation “⊆” holds by S+ ⊆ S∗. We show the relation
“⊇”. We choose ccc ∈ Ck such that f ∗i (xxx) � ccc for some xxx ∈ S∗

arbitrarily and show that f ∗i (xxx
′) � ccc for some xxx ′ ∈ S+. The

case xxx ∈ S+ is trivial. In the case xxx ∈ {λ} = S∗ \ S+, then
since ccc � f ∗i (xxx) = f ∗i (λ) = λ by (2), we have ccc = λ, which
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leads to that any xxx ′ ∈ S+ satisfies f ∗i (xxx
′) � λ = ccc. Hence,

the relation “⊇” holds.

Example 4. For F(α) in Table 1, we have

P0
F (α) ,1(00) = {λ},

P1
F (α) ,1(00) = {0,1},

P2
F (α) ,1(00) = {00,01,10,11},

P3
F (α) ,1(00) = {000,001,010,011,100,101,111}

and

P̄0
F (α) ,1(00) = {λ},

P̄1
F (α) ,1(00) = {1},

P̄2
F (α) ,1(00) = {11},

P̄3
F (α) ,1(00) = {111}.

For F(β) in Table 1, we have

P0
F (β) ,2 = {λ}, P̄0

F (β) ,2 = ∅,

P1
F (β) ,2 = ∅, P̄1

F (β) ,2 = ∅.

We consider the situationwhere the decoder has already
read the prefixbbb′ of a given codeword sequence and identified
a prefix x1x2 . . . xl of the original sequence xxx. Then we have
bbb′ = fi1 (x1) fi2 (x2) . . . fil (xl)bbb for some bbb ∈ C∗. Put i B il+1
and let {s1, s2, . . . , sr } be the set of all symbols s ∈ S such
that fi(s) = bbb. Then there are the following r + 1 possible
cases for the next symbol xl+1: the case xl+1 = s1, the case
xl+1 = s2, . . . , the case xl+1 = sr , and the case fi(xl+1) � bbb.
For a code-tuple F to be k-bit delay decodable, the decoder
must always be able to distinguish these r+1 cases by reading
the following k bits of the codeword sequence. Namely, it is
required that the r + 1 sets listed below are disjoint:

• Pk
F ,τi (s1)

, the set of all possible following k bits in the
case xl+1 = s1,

• Pk
F ,τi (s2)

, the set of all possible following k bits in the
case xl+1 = s2,

• · · · ,
• Pk

F ,τi (sr )
, the set of all possible following k bits in the

case xl+1 = sr ,
• P̄k

F ,i(bbb), the set of all possible following k bits in the
case fi(xl+1) � bbb.

This discussion leads to the following Definition 5.

Definition 5. Let k ≥ 0 be an integer. A code-tuple F( f , τ)
is said to be k-bit delay decodable if the following conditions
(i) and (ii) hold.

(i) For any i ∈ [F] and s ∈ S, it holds that Pk
F ,τi (s)

∩

P̄k
F ,i( fi(s)) = ∅.

(ii) For any i ∈ [F] and s, s′ ∈ S, if s , s′ and fi(s) =
fi(s′), then Pk

F ,τi (s)
∩ Pk

F ,τi (s′)
= ∅.

For an integer k ≥ 0, we define Fk-dec as the set of all k-bit

delay decodable code-tuples, that is, Fk-dec B {F ∈ F :
F is k-bit delay decodable}.

Definition 5 is equivalent to the definition of k-bit delay
decodable codes in [4]. See Appendix A for the proof.

Example 5. We define F( f , τ) as F(α) in Table 1. Then we
have F ∈ F2-dec while F < F1-dec because

P1
F ,τ0(a) ∩ P

1
F ,τ0(d) = {0,1} ∩ {1} = {1} , ∅,

that is, F does not satisfy Definition 5 (ii) for k = 1.
Next, we define F( f , τ) as F(β) in Table 1. Then we

have F ∈ F1-dec while F < F0-dec because

P0
F ,τ1(c) ∩ P̄

0
F ,1( f1(c)) = {λ} ∩ {λ} = {λ} , ∅,

that is, F does not satisfy Definition 5 (i) for k = 0.

Remark 1. A k-bit delay decodable code-tuple F is not
necessarily uniquely decodable, that is, the mappings
f ∗0 , f ∗1 , . . . , f ∗

|F |−1 are not necessarily injective. For example,

for F(α) ∈ F2-dec in Table 1, we have f (α)0
∗
(bc) = 1000111 =

f (α)0
∗
(bd). In general, it is possible that the decoder cannot

uniquely recover the last few symbols of the original source
sequence in the case where the rest of the codeword sequence
is less than k bits. In such a case, we should append addi-
tional information for practical use.

The classes Fk-dec, k = 0,1,2, . . . form a hierarchical
structure: F0-dec ⊆ F1-dec ⊆ F2-dec ⊆ · · · [4, Lem. 2].

For F( f , τ) ∈ F and i ∈ [F], the mapping fi is said
to be prefix-free if for any s, s′ ∈ S, if fi(s) � fi(s′), then
s = s′. A 0-bit delay decodable code-tuple is characterized
as a code-tuple all of which code tables are prefix-free [4,
Lem. 4].

Lemma 2. A code-tuple F( f , τ) ∈ F satisfies F ∈ F0-dec if
and only if the code tables f0, f1, . . . , f |F |−1 are prefix-free.

2.3 Extendable Code-Tuples

For the code-tuple F(β) in Table 1, we can see that f (β)2
∗
(xxx) =

λ for any xxx ∈ S∗. To exclude such abnormal and useless
code-tuples, we introduce a class Fext in the following Def-
inition 6.

Definition 6. A code-tuple F is said to be extendable if
P1
F ,i , ∅ for any i ∈ [F]. We define Fext as the set of

all extendable code-tuples, that is, Fext B {F ∈ F : ∀i ∈
[F];P1

F ,i , ∅}.

Example 6. For F(α) in Table 1, we have

P1
F (α) ,0 = {0,1}, P

1
F (α) ,1 = {0,1}, P

1
F (α) ,2 = {1}.

Therefore, we have F(α) ∈ Fext. For F(β) in Table 1, we have

P1
F (β) ,0 = {0,1}, P

1
F (β) ,1 = {0}, P

1
F (β) ,2 = ∅.
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Since P1
F (β) ,2 = ∅, we have F(β) < Fext.

The following Lemma 3 shows that for an extendable
code-tuple F, we can extend the length of f ∗i (xxx) as long as
we want by appending symbols to xxx appropriately.

Lemma 3. A code-tuple F( f , τ) is extendable if and only if
for any i ∈ [F] and integer l ≥ 0, there exists xxx ∈ S∗ such
that | f ∗i (xxx)| ≥ l.

Proof of Lemma 3. (Sufficiency) Fix i ∈ [F] arbitrarily. Ap-
plying the assumption with l = 1, we see that there exists
xxx ∈ S∗ such that | f ∗i (xxx)| ≥ 1. Then there exists c ∈ C
such that f ∗i (xxx) � c, which leads to c ∈ P1

F ,i by (8), that is,
P1
F ,i , ∅ as desired.

(Necessity) Assume F ∈ Fext. We prove by induction
for l. The base case l = 0 is trivial. We consider the
induction step for l ≥ 1. By the induction hypothesis, there
exists xxx ∈ S∗ such that

| f ∗i (xxx)| ≥ l − 1. (9)

Also, by F ∈ Fext, there exists c ∈ P1
F ,τ∗i (xxx)

. By (8), there
exists yyy ∈ S∗ such that

f ∗τ∗i (xxx)(y
yy) � c. (10)

Thus, we obtain

| f ∗i (xxxyyy)|
(A)
= | f ∗i (xxx)|+ | f

∗
τ∗i (xxx)
(yyy)|

(B)
≥ (l −1)+1 = l, (11)

where (A) follows from Lemma 1 (i), and (B) follows from
(9) and (10). This completes the induction. �

This property leads to the following Lemma 4 and
Corollary 1.

Lemma 4. Let k, k ′ be two integers such that 0 ≤ k ≤ k ′.
For any F( f , τ) ∈ Fext, i ∈ [F], bbb ∈ C∗, and ccc ∈ Ck , the
following statements (i) and (ii) hold.

(i) ccc ∈ Pk
F ,i(bbb) ⇐⇒

∃ccc′ ∈ Ck
′−k ; cccccc′ ∈ Pk′

F ,i(bbb).
(ii) ccc ∈ P̄k

F ,i(bbb) ⇐⇒
∃ccc′ ∈ Ck

′−k ; cccccc′ ∈ P̄k′

F ,i(bbb).

Proof of Lemma 4. We prove (i) only because (ii) follows by
the similar argument.

( =⇒ ): Assume ccc ∈ Pk
F ,i(bbb). Then by (4), there exists

xxx ∈ S+ such that

f ∗i (xxx) � bbbccc, (12)
fi(x1) � bbb. (13)

By F ∈ Fext and Lemma 3, there exists yyy ∈ S∗ such that

| f ∗τ∗i (xxx)(y
yy)| ≥ k ′ − k . (14)

Hence, we have

| f ∗i (xxxyyy)|
(A)
= | f ∗i (xxx)| + | f

∗
τ∗i (xxx)
(yyy)|

(B)
≥ |bbbccc | + k ′ − k, (15)

where (A) follows from Lemma 1 (i), and (B) follows from
(12) and (14). By (12) and (15), there exists ccc′ ∈ Ck

′−k such
that

f ∗i (xxxyyy) � bbbcccccc′. (16)

Equations (13) and (16) lead to cccccc′ ∈ Pk′

F ,i(bbb) by (4).
( ⇐= ): Assume that there exists ccc′ ∈ Ck

′−k such that
cccccc′ ∈ Pk′

F ,i(bbb). Then by (4), there exists xxx = x1x2 . . . xn ∈
S+ such that f ∗i (xxx) � bbbcccccc′ and fi(x1) � bbb. This clearly
implies f ∗i (xxx) � bbbccc and fi(x1) � bbb, which leads to ccc ∈
Pk
F ,i(bbb) by (4). �

Corollary 1. For any integer k ≥ 0, F ∈ Fext, i ∈ [F], and
bbb ∈ C∗, we have Pk

F ,i(bbb) = ∅ (resp. P̄
k
F ,i(bbb) = ∅) if and only

if P0
F ,i(bbb) = ∅ (resp. P̄

0
F ,i(bbb) = ∅).

The following Lemma 5 gives a lower bound of the
length of a codeword sequence for F ∈ Fext ∩Fk-dec. See
Appendix C.1 for the proof of Lemma 5.

Lemma 5. For any integer k ≥ 0, F( f , τ) ∈ Fext ∩
Fk-dec, i ∈ [F], and xxx ∈ S∗, we have | f ∗i (xxx)| ≥ b|xxx |/|F |c.

2.4 Average Codeword Length of Code-Tuple

We introduce the average codeword length L(F) of a code-
tuple F. From now on, we fix an arbitrary probability distri-
bution µ of the source symbols, that is, a real-valued function
µ : S → R such that

∑
s∈S µ(s) = 1 and 0 < µ(s) ≤ 1 for

any s ∈ S. Note that we exclude the case where µ(s) = 0 for
some s ∈ S without loss of generality.

First, for F( f , τ) ∈ F and i, j ∈ [F], we define the
transition probability Qi, j(F) as the probability of using the
code table fj next after using the code table fi in the encoding
process.

Definition 7. For F( f , τ) ∈ F and i, j ∈ [F], we define the
transition probability Qi, j(F) as

Qi, j(F) B
∑

s∈S,τi (s)=j

µ(s). (17)

We also define the transition probability matrix Q(F) as the
following |F | × |F | matrix:

Q0,0(F) Q0,1(F) · · · Q0, |F |−1(F)
Q1,0(F) Q1,1(F) · · · Q1, |F |−1(F)

...
...

. . .
...

Q |F |−1,0(F) Q |F |−1,1(F) · · · Q |F |−1, |F |−1(F)


.

(18)

We fix F ∈ F and consider the encoding process with
F. Let Ii ∈ [F] be the index of the code table used to en-
code the i-th symbol of a source sequence for i = 1,2,3, . . ..
Then {Ii}i=1,2,3,... is a Markov process with the transition
probability matrix Q(F). We consider a stationary distribu-
tion of the Markov process {Ii}i=1,2,3,..., formally defined as
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follows.

Definition 8. For F ∈ F , a solution πππ = (π0,
π1, . . . , π |F |−1) ∈ R

|F | of the following simultaneous equa-
tions (19) and (20) is called a stationary distribution of F:

πππQ(F) = πππ, (19)∑
i∈[F]

πi = 1. (20)

A code-tuple has at least one stationary distribution
without a negative element as shown in the following Lemma
6. See Appendix C.2 for the proof of Lemma 6.

Lemma 6. For any F ∈ F , there exists a stationary distri-
bution πππ = (π0, π1, . . . , π |F |−1) of F such that πi ≥ 0 for any
i ∈ [F].

As stated later in Definition 10, the average codeword
length L(F) of F is defined depending on the stationary
distribution πππ of F. However, it is possible that a code-
tuple has multiple stationary distributions. Therefore, we
limit the scope of consideration to a class Freg defined as
the following Definition 9, which is the class of code-tuples
with a unique stationary distribution.

Definition 9. A code-tuple F is said to be regular if F
has a unique stationary distribution. We define Freg as
the set of all regular code-tuples, that is, Freg B {F ∈
F : F is regular}. For F ∈ Freg, we define πππ(F) =
(π0(F), π1(F), . . . , π |F |−1(F)) as the unique stationary dis-
tribution of F.

Since the transition probability matrix Q(F) depends
on µ, it might seem that the class Freg also depends on µ.
However, we can see later that in fact Freg is independent of
µ. More precisely, whether a code-tuple F( f , τ) belongs to
Freg depends only on τ0, τ1, . . . , τ|F |−1.

We also note that for any F ∈ Freg, the unique station-
ary distribution πππ(F) of F satisfies πi(F) ≥ 0 for any i ∈ [F]
by Lemma 6.

The asymptotical performance (i.e., average codeword
length per symbol) of a regular code-tuple does not de-
pend on which code table we start encoding: the aver-
age codeword length L(F) of a regular code-tuple F is the
weighted sum of the average codeword lengths of the code ta-
bles f0, f1, . . . , f |F |−1 weighted by the stationary distribution
πππ(F). Namely, L(F) is defined as the following Definition
10.

Definition 10. For F( f , τ) ∈ F and i ∈ [F], we define
the average codeword length Li(F) of the single code table
fi : S → C∗ as

Li(F) B
∑
s∈S

| fi(s)| · µ(s). (21)

For F ∈ Freg, we define the average codeword length L(F)
of the code-tuple F as

L(F) B
∑
i∈[F]

πi(F)Li(F). (22)

Example 7. We consider F B F(α) of Table 1, where
(µ(a), µ(b), µ(c), µ(d)) = (0.1,0.2,0.3,0.4). We have

Q(F) =


0.4 0.2 0.4
0.2 0.4 0.4
0 0.1 0.9

 .
The code-tuple F has a unique stationary distribution
πππ(F) = (π0(F), π1(F), π2(F)) = (1/20,3/20,16/20). Hence,
we have F ∈ Freg. Also, we have

L0(F) = 2.6, L1(F) = 3.7, L2(F) = 4.2.

Therefore, L(F) is given as

L(F) = π0(F)L0(F) + π1(F)L1(F) + π2(F)L2(F)
= 4.045.

Remark 2. Note that Q(F), Li(F), L(F), and πππ(F) depend
on µ. However, since we are now discussing on a fixed µ,
the average codeword length Li(F) of fi (resp. the transition
probability matrix Q(F)) is determined only by the mapping
fi (resp. τ0, τ1, . . . , τ|F |−1) and therefore the stationary dis-
tribution πππ(F) of a regular code-tuple F is also determined
only by τ0, τ1, . . . , τ|F |−1.

2.5 Irreducible Parts of Code-Tuple

As we can see from (22), the code tables fi of F( f , τ) ∈ Freg
such that πi(F) = 0 does not contribute to L(F). It is
useful to remove such non-essential code tables and obtain
an irreducible code-tuple: we say that a regular code-tuple F
is irreducible if πi(F) > 0 for any i ∈ [F] as formally defined
later in Definition 13. In this subsection, we introduce an
irreducible part of F ∈ Freg, which is an irreducible code-
tuple obtained by removing all the code tables fi such that
πi(F) = 0 from F. The formal definition of an irreducible
part of F is stated using a notion of homomorphism defined
in the following Definition 11.

Definition 11. For F( f , τ),F ′( f ′, τ′) ∈ F , a mapping ϕ :
[F ′] → [F] is called a homomorphism from F ′ to F if

f ′i (s) = fϕ(i)(s), (23)
ϕ(τ′i (s)) = τϕ(i)(s) (24)

for any i ∈ [F ′] and s ∈ S.

Given a homomorphism of code-tuples, the following
Lemma 7 holds between the two code-tuples. See Ap-
pendix C.3 for the proof of Lemma 7.

Lemma 7. For any F( f , τ),F ′( f ′, τ′) ∈ F and a homomor-
phism ϕ : [F ′] → [F] from F ′ to F , the following statements
(i)–(vi) hold.

(i) For any i ∈ [F ′] and xxx ∈ S∗, we have f ′∗i (xxx) = f ∗
ϕ(i)
(xxx)
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and ϕ(τ′∗i (xxx)) = τ
∗
ϕ(i)
(xxx).

(ii) For any i ∈ [F ′] and bbb ∈ C∗, we have P∗F′,i(bbb) =
P∗
F ,ϕ(i)

(bbb) and P̄∗F′,i(bbb) = P̄
∗
F ,ϕ(i)

(bbb).
(iii) For any stationary distribution πππ′ = (π′0, π

′
1, . . . ,

π′
|F′ |−1) of F ′, the vector πππ = (π0, π1, . . . , π |F |−1) ∈ R

|F |

defined as

πj =
∑
j′∈A j

π′j′ for j ∈ [F] (25)

is a stationary distribution of F, where

Ai B {i′ ∈ [F ′] : ϕ(i′) = i} (26)

for i ∈ [F].
(iv) If F ∈ Fext, then F ′ ∈ Fext.
(v) If F,F ′ ∈ Freg, then L(F ′) = L(F).
(vi) For any integer k ≥ 0, if F ∈ Fk-dec, then F ′ ∈ Fk-dec.

Wealso introduce the setRF for F ∈ F as the following
Definition 12. We state in Lemma 8 that we can characterize
a regular code-tuple F by RF .

Definition 12. For F( f , τ) ∈ F , we define RF as

RF B {i ∈ [F] : ∀ j ∈ [F]; ∃xxx ∈ S∗; τ∗j (xxx) = i}. (27)

Namely, RF is the set of indices i of the code tables such that
for any j ∈ [F], there exists xxx ∈ S∗ such that τ∗j (xxx) = i.

Example 8. For F(α) and F(β) in Table 1, we have RF (α) =

{0,1,2} and RF (β) = ∅.

Lemma 8. For any F ∈ F , the following statements (i) and
(ii) hold.

(i) F ∈ Freg if and only if RF , ∅.
(ii) If F ∈ Freg, then for any i ∈ [F], the following equiva-

lence relation holds: πi(F) > 0 ⇐⇒ i ∈ RF .

The proof of Lemma 8 is given in Appendix C.4.
Since RF does not depend on µ, we can see from

Lemma 8 (i) that the class Freg is determined independently
of µ as mentioned before.

By Lemma 8 (ii), a regular code-tuple F( f , τ) satisfies
πi(F) > 0 for any i ∈ [F] if and only if F is an irreducible
code-tuple defined as follows.

Definition 13. A code-tuple F is said to be irreducible if
RF = [F]. We define Firr as the set of all irreducible code-
tuples, that is, Firr B {F ∈ F : RF = [F]}.

Note that Firr ⊆ Freg since F ∈ Freg is equivalent to
RF , ∅ by Lemma 8 (i).

Now we define an irreducible part F̄ of a code-tuple F
as the following Definition 14.

Definition 14. An irreducible code-tuple F̄ is called an ir-
reducible part of a code-tuple F if there exists an injective
homomorphism ϕ : [F̄] → [F] from F̄ to F.

The following property of F̄ is immediately from Defi-
nition 14 and Lemma 7 (iv)–(vi).

Lemma 9. For any integer k ≥ 0, F ∈ Freg∩Fext∩Fk-dec,
and an irreducible part F̄ of F, we have F̄ ∈ Firr ∩Fext ∩
Fk-dec and L(F̄) = L(F).

The existence of an irreducible part is guaranteed as the
following Lemma 10. See Appendix C.5 for the proof of
Lemma 10.

Lemma 10. For any F ∈ Freg, there exists an irreducible
part F̄ of F.

3. Main Results

In this section, we discuss the average codeword length for
code-tuples of the class Freg ∩Fext ∩Fk-dec for k ≥ 0 and
prove Theorems 1 and 2 as the main results of this paper.

3.1 Theorem 1

The first theorem claims that for any F ∈ Freg ∩ Fext ∩
Fk-dec, there exists F† ∈ Firr ∩ Fext ∩ Fk-dec such that
L(F†) ≤ L(F) and Pk

F† ,0,P
k
F† ,1, . . . ,P

k
F† , |F† |−1 are distinct.

Namely, Theorem 1 guarantees that it suffices to consider
only irreducible code-tuples with at most 2(2k ) code tables to
achieve a short average codeword length. In particular, it is
not the case that one can achieve an arbitrarily small average
codeword length by using arbitrarily many code tables. To
state Theorem 1, we prepare the following Definition 15.

Definition 15. For an integer k ≥ 0 and F ∈ F , we define
Pk

F as

Pk
F B {P

k
F ,i : i ∈ [F]}. (28)

Example 9. For F(α) in Table 1, we have

P0
F (α)
= {{λ}},

P1
F (α)
= {{0,1}, {1}},

P2
F (α)
= {{01,10}, {00,01,10}, {11}}.

Note that Pk
F ,0,P

k
F ,1, . . . ,P

k
F , |F |−1 are distinct if and

only if |Pk
F | = |F |. Also, note that the following Lemma 11

holds by Lemma 7 (ii).

Lemma 11. For any integer k ≥ 0, F ∈ Freg, and an
irreducible part F̄ of F, we have Pk

F̄
⊆ Pk

F .

Using Definition 15, we state Theorem 1 as follows.

Theorem 1. For any integer k ≥ 0 and F ∈ Freg ∩Fext ∩
Fk-dec, there exists F† ∈ F satisfying the following condi-
tions (a)–(d).

(a) F† ∈ Firr ∩Fext ∩Fk-dec.
(b) L(F†) ≤ L(F).
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Table 2 The code-tuple F (δ) is an optimal 2-bit delay decod-
able code-tuple satisfying Theorem 1 (a)–(d) with F = F (γ), where
(µ(a), µ(b), µ(c), µ(d)) = (0.1, 0.2, 0.3, 0.4).

s ∈ S f
(γ)

0 τ
(γ)
0 f

(γ)
1 τ

(γ)
1 f

(γ)
2 τ

(γ)
2 f

(γ)
3 τ

(γ)
3

a 0010 2 100 1 1100 1 010 0
b 0011 0 00 0 11 2 011 1
c 000 1 01 1 01 1 100 0
d λ 2 1 2 10 0 1 2

s ∈ S f
(δ)

0 τ
(δ)
0 f

(δ)
1 τ

(δ)
1

a 100 0 1100 0
b 00 0 11 1
c 01 0 01 0
d 1 1 10 0

(c) Pk
F†
⊆ Pk

F .
(d) |Pk

F†
| = |F† |.

Example 10. Let (µ(a), µ(b), µ(c), µ(d)) = (0.1,0.2,0.3,0.4)
and F B F(γ) in Table 2. Then we have F ∈

Freg ∩ Fext ∩ F2-dec, L(F) ≈ 1.98644, and P2
F =

{{00,01,10,11}, {01,10,11}}. The code-tuple F† B F(δ)

in Table 2 satisfies Theorem 1 (a)–(d) because RF† =

{0,1} = [F†], L(F†) ≈ 1.8667 ≤ L(F), and P2
F†
=

{{00,01,10,11}, {01,10,11}}.

Example 11. We confirm that Theorem 1 holds for k = 0.
Choose F ∈ Freg ∩ Fext ∩ F0-dec arbitrarily and define
F†( f †, τ†) ∈ F (1) as

f †0 (s) = fp(s), (29)

τ†0 (s) = 0 (30)

for s ∈ S, where

p ∈ arg min
i∈[F]

Li(F). (31)

Namely, F† is the 1-code-tuple consisting of themost efficient
code table of F.

We can see that F† satisfies Theorem 1 (a)–(d) as fol-
lows.

(a) We obtain F† ∈ Firr directly from |F† | = 1. By F ∈
F0-dec and Lemma 2, all code tables of F are prefix-
free. In particular, f †0 = fp is prefix-free and thus
F† ∈ F0-dec. Moreover, since f †0 is prefix-free and
σ ≥ 2, we have f †0 (s) , λ for some s ∈ S, which shows
F† ∈ Fext.

(b) We have

L(F†) = L0(F†)
(A)
= Lp(F)

=
∑
i∈[F]

πi(F)Lp(F)
(B)
≤

∑
i∈[F]

πi(F)Li(F)

= L(F),

where (A) follows from (29), and (B) follows from (31).
(c) By P0

F†
= {{λ}} =P0

F .

(d) By |P0
F†
| = |{{λ}}| = 1 = |F† |.

As a preparation for the proof of Theorem 1, we state
the following Lemmas 12–15. See Appendix C.6–C.8 for
the proofs of Lemmas 12, 13, and 15.

Lemma 12. Let k ≥ 0 be an integer and let F( f , τ) and
F ′( f ′, τ′) be code-tuples such that |F | = |F ′ |. Assume that
the following conditions (a) and (b) hold.

(a) fi(s) = f ′i (s) for any i ∈ [F] and s ∈ S.
(b) Pk

F ,τi (s)
= Pk

F ,τ′i (s)
for any i ∈ [F] and s ∈ S.

Then the following statements (i)–(iii) hold.

(i) For any i ∈ [F ′] and bbb ∈ C∗, we have Pk
F ,i(bbb) =

Pk
F′,i(bbb) and P̄

k
F ,i(bbb) = P̄

k
F′,i(bbb).

(ii) If F ∈ Fext, then F ′ ∈ Fext.
(iii) If F ∈ Fk-dec, then F ′ ∈ Fk-dec.

Lemma 13. For any F( f , τ) ∈ Firr, I ⊆ [F], and p ∈ I,
the code-tuple F ′( f ′, τ′) ∈ F ( |F |) defined as (32) and (33)
satisfies F ′ ∈ Freg:

f ′i (s) = fi(s), (32)

τ′i (s) =

{
p if τi(s) ∈ I,
τi(s) if τi(s) < I

(33)

for i ∈ [F ′] and s ∈ S.

Lemma 14. For any F ∈ F , there exists (h0, h1, . . . ,
h |F |−1) ∈ R

|F | satisfying

∀i ∈ [F]; L(F) = Li(F) +
∑
j∈[F]

(hj − hi)Qi, j(F). (34)

See [25, Sec. 8.2] for proof of Lemma 14. The vector
h called “bias” defined as [25, (8.2.2)] satisfies (34) of this
paper. This fact is shown as [25, (8.2.12)] in [25, Theo-
rem 8.2.6], where g,r, and P in [25, (8.2.12)] correspond to
the notations of this paper as follows:

g =


L(F)
L(F)
...

L(F)


, r =


L0(F)
L1(F)
...

L |F |−1(F)


, P = Q(F).

A real vector (h0, h1, . . . , h |F |−1) satisfying (34) is not
unique. We refer to arbitrarily chosen one of them as h(F) =
(h0(F), h1(F), . . . , h |F |−1(F)).

Lemma 15. For any F( f , τ),F ′( f ′, τ′) ∈ Freg such that
|F | = |F ′ |, if the following conditions (a) and (b) hold, then
L(F ′) ≤ L(F).

(a) Li(F) = Li(F ′) for any i ∈ [F].
(b) hτi (s)(F) ≥ hτ′i (s)(F) for any i ∈ [F] and s ∈ S.

Using these lemmas, we now prove Theorem 1.

Proof of Theorem 1. We fix an integer k ≥ 0 arbitrarily and
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prove Theorem 1 by induction for |F |. For the base case
|F | = 1, the code-tuple F† B F satisfies (a)–(d) of Theorem
1 as desired. We now consider the induction step for |F | ≥ 2.

We consider an irreducible part F̄( f̄ , τ̄) of F. By Lem-
mas 9 and 11, the following statements (ā)–(c̄) hold (cf.
(a)–(c) of Theorem 1).

(ā) F̄ ∈ Firr ∩Fext ∩Fk-dec.
(b̄) L(F̄) = L(F).
(c̄) Pk

F̄
⊆ Pk

F .

Therefore, if |Pk
F̄
| = |F̄ |, then F† B F̄ satisfies (a)–(d) of

Theorem 1 as desired. Thus, we now assume |Pk
F̄
| < |F̄ |.

Then we can choose i′, j ′ ∈ [F̄] such that i′ , j ′ and Pk
F̄ ,i′
=

Pk
F̄ , j′

by pigeonhole principle. We define F ′( f ′, τ′) ∈ F ( |F̄ |)

as

f ′i (s) = f̄i(s), (35)

τ′i (s) =

{
p if τ̄i(s) ∈ I,
τ̄i(s) if τ̄i(s) < I

(36)

for i ∈ [F ′] and s ∈ S, where

I B {i ∈ [F̄] : Pk
F̄ ,i
= Pk

F̄ ,i′
(= Pk

F̄ , j′
)} (37)

and we choose

p ∈ arg min
i∈I

hi(F̄) (38)

arbitrarily.
Then we obtain F ′ ∈ Freg by applying Lemma 13 since

F̄ ∈ Firr. Also, we obtain F ′ ∈ Fext ∩Fk-dec and

Pk
F′ =Pk

F̄
(39)

for any i ∈ [F ′] by applying Lemma 12 (i)–(iii) since f̄i(s) =
f ′i (s) and P

k
F̄ ,τ̄i (s)

= Pk
F̄ ,τ′i (s)

for any i ∈ [F̄] and s ∈ S by
(35) and (36). Moreover, we can see

L(F ′) ≤ L(F̄) (40)

by applying Lemma 15 because F ′ satisfies (a) (resp. (b)) of
Lemma 15 by (35) (resp. (36)–(38)).

Since |I | ≥ |{i′, j ′}| ≥ 2, we have I \ {p} , ∅. Also,
for any i ∈ I \ {p}, we have i < RF′ since for any j ∈
[F ′] \ {i}, there exists no xxx ∈ S∗ such that τ′∗j (xxx) = i by (36).
Therefore, we have

RF′ ( [F ′]. (41)

For an irreducible part F̄ ′ of F ′, we have

|F̄ ′ | = |RF′ |
(A)
< |F ′ | = |F̄ | = |RF | ≤ |F |, (42)

where (A) follows from (41). Therefore, by applying the
induction hypothesis to F̄ ′, we can see that there exists F† ∈
F satisfying the following conditions (a†)–(d†).

(a†) F† ∈ Firr ∩Fext ∩Fk-dec.

(b†) L(F†) ≤ L(F̄ ′).
(c†) Pk

F†
⊆ Pk

F̄′
.

(d†) |Pk
F†
| = |F† |.

We can see that F† is a desired code-tuple, that is, F† satisfies
(a)–(d) of Theorem 1 as follows. First, (a) and (d) are directly
from (a†) and (d†), respectively. We obtain (b) as follows:

L(F†)
(A)
≤ L(F̄ ′)

(B)
= L(F ′)

(C)
≤ L(F̄)

(D)
= L(F), (43)

where (A) follows from (b†), (B) follows from Lemma 9,
(C) follows from (40), and (D) follows from Lemma 9. The
condition (c) holds because

Pk
F†

(A)
⊆ Pk

F̄′

(B)
⊆ Pk

F′
(C)
= Pk

F̄

(D)
⊆ Pk

F ,

where (A) follows from (c†), (B) follows from Lemma 11,
(C) follows from (39), and (D) follows from Lemma 11. �

As a consequence of Theorem 1, we can prove the
existence of an optimal k-bit delay decodable code-tuple,
that is, F∗ ∈ Freg ∩Fext ∩Fk-dec such that L(F∗) ≤ L(F)
for any F ∈ Freg ∩ Fext ∩ Fk-dec. We prove this fact in
Appendix B.

We define Fk-opt as the set of all optimal k-bit delay
decodable code-tuples as following Definition 16.

Definition 16. For an integer k ≥ 0, we define

Fk-opt B arg min
F ∈Freg∩Fext∩Fk-dec

L(F). (44)

Note thatFk-opt depends on the probability distribution
µ of the source symbols, and we are now discussing on an
arbitrarily fixed µ.

Example 12. Let (µ(a), µ(b), µ(c), µ(d)) = (0.1,0.2,0.3,0.4).
Then the code-tuple F(δ) in Table 2 is an optimal 2-bit delay
decodable code-tuple with L(F(δ)) ≈ 1.8667.

3.2 Theorem 2

Theorem 2 gives a necessary condition for F ∈ Freg∩Fext∩
Fk-dec to be optimal. Recall that every internal node in a
code-tree of Huffman code has two child nodes because
of its optimality. This leads to that any bit sequence is
a prefix of codeword sequence of some source sequence.
More formally,

∀bbb ∈ C∗; ∃xxx ∈ S∗; fHuff(xxx) � bbb, (45)

where fHuff(xxx) is the codeword sequence of xxx with the Huff-
man code. The following Theorem 2 is a generalization
of this property of Huffman codes to k-bit delay decodable
code-tuples for k ≥ 0.

Theorem 2. For any integer k ≥ 0, F ∈ Fk-opt, i ∈ RF , and
bbb = b1b2 . . . bl ∈ C≥k , if b1b2 . . . bk ∈ Pk

F ,i , then bbb ∈ P∗F ,i .

Remark 3. AHuffman code is represented by a 1-code-tuple
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Table 3 An example of xxx ∈ S∗ such that f ∗i (xxx) � bbb, where F( f , τ) B
F (δ) in Table 2, i ∈ {0, 1}, and bbb ∈ C3.

i
bbb 000 001 010 011 100 101 110 111

0 bb ba cb ca a dc dd db
1 - - cb ca db da a ba

F ∈ F (1). We have F ∈ F0-opt by the optimality of Huffman
codes. Applying Theorem 2 to F with k = 0, we obtain

∀bbb ∈ C∗; bbb ∈ P∗F ,0,

which is equivalent to (45), and thus Theorem 2 is indeed a
generalization of the property (45) of Huffman codes.

Example 13. For F( f , τ) B F(δ) in Table 2, we have
F ∈ F2-opt for (µ(a), µ(b), µ(c), µ(d)) = (0.1,0.2,0.3,0.4) (cf.
Example 12). Theorem 2 claims that for any i ∈ RF = {0,1}
and bbb ∈ C≥2 such that b1b2 ∈ P

2
F ,i , it holds that bbb ∈ P∗F ,i ,

that is, there exists xxx ∈ S∗ such that f ∗i (xxx) � bbb.
For i ∈ {0,1} and bbb ∈ C3 such that b1b2 ∈ P

2
F ,i ,

Table 3 shows an example of xxx ∈ S∗ such that f ∗i (xxx) � bbb.
For example, we have f ∗0 (ca) � 011 and f ∗1 (ba) � 111.
Note that b1b2 ∈ P

2
F ,i does not hold for (i,bbb) = (1,000) and

(i,bbb) = (1,001).

Proof of Theorem 2. We prove by contradiction assuming
that there exist p ∈ RF and bbb = b1b2 . . . bl ∈ C≥k such that

bbb < P∗F ,p, b1b2 . . . bk ∈ Pk
F ,p . (46)

Without loss of generality, we assume p = |F | − 1 and bbb
is the shortest sequence satisfying (46). Because we have
l > k by (46), we have pref(bbb) � b1b2 . . . bk ∈ Pk

F , |F |−1.
Since bbb is the shortest sequence satisfying (46), it must hold
that pref(bbb) ∈ P∗

F , |F |−1. Hence, by F ∈ Fext and Lemma 4
(i), we have ddd = d1d2 . . . dl B pref(bbb)b̄l ∈ P∗F , |F |−1, where
c̄ denotes the negation of c ∈ C, that is, 0̄ B 1 and 1̄ B 0.
Namely, we have

ddd ∈ P∗F , |F |−1, pref(ddd)d̄l = bbb < P∗F , |F |−1. (47)

We state the key idea of the proof as follows. By (47),
whenever the decoder reads a prefix pref(ddd) of the codeword
sequence, the decoder can know that the following bit is dl
without reading it. Hence, the bit dl gives no information
and is unnecessary for the k-bit delay decodability of the
mapping f ∗

|F |−1. We consider obtaining another code-tuple
F ′′ ∈ Freg ∩ Fext ∩ Fk-dec such that L(F ′′) < L(F) by
removing this redundant bit, which leads to a contradiction
to F ∈ Fk-opt as desired. However, naive removing a bit may
impair the k-bit delay decodability of the other mappings
f ∗i for i ∈ [|F | − 1]. Accordingly, we first define a code-
tuple F ′ which is essentially equivalent to F by adding some
duplicates of the code tables to F. Then by making changes
to the replicated code tables instead of the original code
tables, we obtain the desired F ′′ without affecting the k-bit
delay decodability of f ∗i for i ∈ [|F | − 1].

We define the code-tuple F ′ as follows. Put L B
|F |(|ddd | + 1) and M B |S≤L |. We number all the sequences
of S≤L as zzz(0),zzz(1),zzz(2), . . . ,zzz(M−1) in any order but zzz(0) B λ.
For zzz′ ∈ S≤L , we define 〈zzz′〉 B |F | − 1 + t, where t is
the integer such that zzz(t) = zzz′. Note that 〈λ〉 = |F | − 1
since zzz(0) = λ. We define the code-tuple F ′ ∈ F ( |F |−1+M)

consisting of f ′0 , f ′1 , . . . , f ′
|F |−1, f ′

〈zzz(1) 〉
, f ′
〈zzz(2) 〉

, . . . f ′
〈zzz(M−1) 〉

and
τ′0, τ

′
1, . . . , τ

′
|F |−1, τ

′

〈zzz(1) 〉
, τ′
〈zzz(2) 〉

, . . . τ′
〈zzz(M−1) 〉

as

f ′i (s) =

{
fτ∗
〈λ〉
(zzz)(s) if i = 〈zzz〉 for some zzz ∈ S≤L,

fi(s) otherwise,

(48)

τ′i (s) =


〈zzzs〉 if i = 〈zzz〉 for some zzz ∈ S≤L−1,

τ∗
〈λ〉
(zzzs) if i = 〈zzz〉 for some zzz ∈ SL,

τi(s) otherwise
(49)

for i ∈ [F ′] and s ∈ S. Then F ′ satisfies the following
Lemma 16. See Appendix C.9 for the proof of Lemma 16.

Lemma 16. For any zzz ∈ S≤L , the following statements (i)
and (ii) hold.

(i) τ′∗
〈λ〉
(zzz) = 〈zzz〉.

(ii) 〈zzz〉 ∈ RF′ .

Lemma 16 (i) claims that the code table in F ′ used next
after encoding zzz ∈ S≤L starting from f ′

〈λ〉
is f ′
〈zzz 〉

, which is
a duplicate of the code table in F used next after encoding
zzz starting from f〈λ〉 . This leads to the equivalency of F and
F ′ shown next.

We confirm that F ′ is equivalent to F, that is, F ′ ∈
Freg ∩Fext ∩Fk-dec and L(F ′) = L(F). We obtain F ′ ∈
Freg from Lemma 16 (ii) and Lemma 8 (i). To prove F ′ ∈
Fext∩Fk-dec and L(F ′) = L(F) by using Lemma 7, we show
that a mapping ϕ : [F ′] → [F] defined as the following (50)
is a homomorphism:

ϕ(i) =

{
i if i ∈ [F],
τ∗
〈λ〉
(zzz) if i = 〈zzz〉 for some zzz ∈ S≤L

(50)

for i ∈ [F ′]. The case i = |F | − 1 = 〈λ〉 applies to both
of the first and second cases of (50). However, this case is
consistent since τ∗

〈λ〉
(zzz) = τ∗

〈λ〉
(λ) = 〈λ〉 = i. We see that ϕ

satisfies (23) directly from (48) and (50). We confirm that ϕ
satisfies also (24) as follows:

ϕ(τ′i (s))

(A)
=


ϕ(〈zzzs〉) if i = 〈zzz〉 for some zzz ∈ S≤L−1,

ϕ(τ∗
〈λ〉
(zzzs)) if i = 〈zzz〉 for some zzz ∈ SL,

ϕ(τi(s)) otherwise,

(B)
=


τ∗
〈λ〉
(zzzs) if i = 〈zzz〉 for some zzz ∈ S≤L−1,

τ∗
〈λ〉
(zzzs) if i = 〈zzz〉 for some zzz ∈ SL,

τi(s) otherwise,
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(C)
=

{
ττ∗
〈λ〉
(zzz)(s) if i = 〈zzz〉 for some zzz ∈ S≤L,

τi(s) otherwise,
(D)
= τϕ(i)(s),

where (A) follows from (49), (B) follows from (50), (C) fol-
lows from Lemma 1 (ii), and (D) follows from (50). Hence,
by Lemma 7 (iv)–(vi), we obtain F ′ ∈ Fext ∩ Fk-dec and
L(F ′) = L(F).

Now, we define a code-tuple F ′′ ∈ F ( |F′ |) as

f ′′i (s) =


f ′∗
〈λ〉
(zzz)−1pref(ddd)ddd−1( f ′∗

〈λ〉
(zzzs))

if i = 〈zzz〉 and f ′∗
〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzs)

for some zzz ∈ S≤L,
f ′i (s) otherwise,

(51)
τ′′i (s) = τ

′
i (s) (52)

for i ∈ [F ′′] and s ∈ S.
Intuitively, (51) means that F ′′ is obtained by removing

the bit dl from codeword sequences of F ′ such that f ′∗
〈λ〉
(zzz) �

ddd.
Then F ′′ satisfies the following Lemma 17. See Ap-

pendix C.10 for the proof of Lemma 17.

Lemma 17. The following statements (i)–(iii) hold.

(i) For any zzz ∈ S≤L and xxx ∈ S≤L−|zzz | , we have

f ′′∗
〈zzz 〉(xxx) =


f ′∗
〈λ〉
(zzz)−1pref(ddd)ddd−1( f ′∗

〈λ〉
(zzzxxx))

if f ′∗
〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzxxx),

f ′∗
〈zzz 〉
(xxx) otherwise.

(53)

(ii) For any zzz ∈ S≤L and s, s′ ∈ S, if f ′′
〈zzz 〉
(s) ≺ f ′′

〈zzz 〉
(s′),

then f ′
〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′).

(iii) For any xxx ∈ S≥L , we have | f ∗
〈λ〉
(xxx)| = | f ′∗

〈λ〉
(xxx)| ≥ |ddd |+1

and | f ′′∗
〈λ〉
(xxx)| ≥ |ddd |.

We show that F ′′ ∈ Freg ∩Fext ∩Fk-dec and L(F ′′) <
L(F ′) (= L(F) as shown above), which conflicts with F ∈
Fk-opt and completes the proof of Theorem 2.

(Proof of F ′′ ∈ Freg): From F ′ ∈ Freg and (52).
(Proof of F ′′ ∈ Fext): Choose j ∈ [F ′′] arbitrarily.

Since 〈λ〉 ∈ RF′ = RF′′ by Lemma 16 (ii) and (52), there
exists xxx ∈ S∗ such that

τ′′∗j (xxx) = 〈λ〉. (54)

Also, we can choose xxx ′ ∈ SL such that

f ′∗
〈λ〉(xxx

′) � ddd (55)

by Lemma 17 (iii). We have

| f ′′∗j (xxxxxx ′)|
(A)
= | f ′′∗j (xxx)| + | f

′′∗
τ′′∗j (xxx)
(xxx ′)|

≥ | f ′′∗τ′′∗j (xxx)(x
xx ′)|

(B)
= | f ′′∗

〈λ〉(xxx
′)|

(C)
= | f ′∗

〈λ〉(λ)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(xxx
′)|

= | f ′∗
〈λ〉(xxx

′)| − 1
(D)
≥ |ddd |
≥ 1,

where (A) follows from Lemma 1 (i), (B) follows from (54),
(C) follows from (55) and the first case of (53), and (D)
follows from Lemma 17 (iii). Hence, by (8), P1

F′′, j , ∅

holds for any j ∈ [F ′′], which leads to F ′′ ∈ Fext as desired.
(Proof of L(F ′′) < L(F ′)): For any i ∈ [F ′′] and s ∈ S,

we have | f ′′i (s)| ≤ | f
′
i (s)| by (51). Hence, for any i ∈ [F ′′],

we have

πi(F ′)Li(F ′′) ≤ πi(F ′)Li(F ′). (56)

By Lemma 17 (iii), we can choose xxx = x1x2 . . . xL ∈
SL such that f ′∗

〈λ〉
(xxx) � ddd. Since f ′∗

〈λ〉
(λ) ≺ ddd � f ′∗

〈λ〉
(xxx),

there exists exactly one integer r such that

f ′∗
〈λ〉(x1x2 . . . xr−1) ≺ ddd � f ′∗

〈λ〉(x1x2 . . . xr ), (57)

which leads to

| f ′′
〈zzz 〉(xr )|

(A)
= | f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1( f ′∗

〈λ〉(zzzxr ))|

= | f ′
〈zzz 〉(xr )| − 1

< | f ′
〈zzz 〉(xr )|, (58)

where zzz B x1x2 . . . xr−1, and (A) follows from (57) and the
first case of (51). This leads to

π〈zzz 〉(F ′)L〈zzz 〉(F ′′) < π〈zzz 〉(F ′)L〈zzz 〉(F ′) (59)

because π〈zzz 〉(F ′) > 0 by Lemma 16 (ii) and Lemma 8 (ii).
Hence, we have

L(F ′′)

=
∑

i∈[F′′]

πi(F ′′)Li(F ′′)

(A)
=

∑
i∈[F′′]

πi(F ′)Li(F ′′)

=
∑

i∈[F′′]\{ 〈zzz 〉 }

πi(F ′)Li(F ′′) + π〈zzz 〉(F ′)L〈zzz 〉(F ′′)

(B)
≤

∑
i∈[F′′]\{ 〈zzz 〉 }

πi(F ′)Li(F ′) + π〈zzz 〉(F ′)L〈zzz 〉(F ′′)

(C)
<

∑
i∈[F′′]\{ 〈zzz 〉 }

πi(F ′)Li(F ′) + π〈zzz 〉(F ′)L〈zzz 〉(F ′)

=
∑
i∈[F′]

πi(F ′)Li(F ′)

= L(F ′)

as desired, where (A) follows from (52), (B) follows from
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(56), and (C) follows from (59).
(Proof of F ′′ ∈ Fk-dec): To prove F ′′ ∈ Fk-dec, we use

the following Lemma 18, where J B ([F ′] \ 〈λ〉) ∪ {〈zzz〉 :
zzz ∈ SL} = [F ′] \ {〈zzz〉 : zzz ∈ S≤L−1}. See Appendix C.11
for the proof of Lemma 18.

Lemma 18. The following statements (i)–(iii) hold.

(i) For any xxx ∈ S∗ and ccc ∈ C≤k , if f ′′∗
〈λ〉
(xxx) � ccc, then

f ′∗
〈λ〉
(xxx) � ccc. Therefore, we have Pk

F′, 〈λ〉
⊇ Pk

F′′, 〈λ〉
by

(8).
(ii) For any i ∈ J and s ∈ S, we have f ′′i (s) = f ′i (s).
(iii) For any i ∈ J and bbb ∈ C∗, we havePk

F′′,i(bbb) ⊆ P
k
F′,i(bbb)

and P̄k
F′′,i(bbb) ⊆ P̄

k
F′,i(bbb).

Also, for zzz ∈ S∗, we define a mapping ψzzz : C∗ → C∗
as

ψzzz(bbb) =


f ′∗
〈λ〉
(zzz)−1dddpref(ddd)−1( f ′∗

〈λ〉
(zzz)bbb)

if f ′∗
〈λ〉
(zzz) � pref(ddd) ≺ f ′∗

〈λ〉
(zzz)bbb,

bbb otherwise
(60)

for bbb ∈ C∗. Then ψzzz satisfies the following Lemma 19.

Lemma 19. The following statements (i)–(iii) hold.

(i) For any zzz ∈ S∗ and bbb,bbb′ ∈ C∗, if bbb � bbb′, then ψzzz(bbb) �
ψzzz(bbb′).

(ii) For any zzz ∈ S≤L , xxx ∈ S≤L−|zzz | , and ccc ∈ C∗, we have

ψzzz( f ′′∗〈zzz 〉(xxx)ccc)

=


pref( f ′∗

〈zzz 〉
(xxx))

if f ′∗
〈λ〉
(zzz) ≺ f ′∗

〈λ〉
(zxzxzx) = ddd,ccc = λ,

f ′∗
〈zzz 〉
(xxx)ψzxzxzx(ccc) otherwise.

(61)

(iii) For any zzz ∈ SL and bbb ∈ C∗, we have ψzzz(bbb) = bbb.

See Appendix C.12 for the proof of Lemma 19.
By Lemma 19 (ii) with ccc = λ, it holds thatψzzz( f ′′∗〈zzz 〉(xxx)) =

f ′∗
〈zzz 〉
(xxx) in most cases. Thus, we can intuitively interpret the

mapping ψzzz as a kind of an inverse transformation of (53).
We prove k-bit delay decodability of F ′′ later by attributing
it to k-bit delay decodability of F ′ using ψzzz .

Now we prove F ′′ ∈ Fk-dec. We first show that F ′′

satisfies Definition 5 (i). Namely, we show that Pk
F′′,τ′′i (s)

∩

P̄k
F′′,i( f

′′
i (s)) = ∅ for any i ∈ [F ′′] and s ∈ S dividing

into the following two cases: the case i ∈ J and the case
i ∈ [F ′′] \ J .

• The case i ∈ J : Then for any i ∈ J and s ∈ S, we
have

Pk
F′′,τ′′i (s)

∩ P̄k
F′′,i( f

′′
i (s))

(A)
⊆ Pk

F′,τ′′i (s)
∩ P̄k

F′,i( f
′′
i (s))

(B)
= Pk

F′,τ′i (s)
∩ P̄k

F′,i( f
′
i (s))

(C)
= ∅,

where (A) follows from Lemma 18 (i) and (iii) since
τ′′i (s) ∈ [F], (B) follows from Lemma 18 (ii) and (52),
and (C) follows from F ′ ∈ Fk-dec.

• The case i ∈ [F ′′] \ J : We prove by contradiction
assuming that there exist zzz ∈ S≤L−1, s ∈ S, and ccc ∈
P̄k
F′′, 〈zzz 〉

( f ′′
〈zzz 〉
(s)) ∩ Pk

F′′, 〈zzzs〉
. By ccc ∈ P̄k

F′′, 〈zzz 〉
( f ′′
〈zzz 〉
(s))

and (5), there exist xxx ∈ SL−|zzz | and yyy ∈ S∗ such that

f ′′∗
〈zzz 〉(xxxyyy) � f ′′

〈zzz 〉(s)ccc (62)

and

f ′′
〈zzz 〉(x1) � f ′′

〈zzz 〉(s). (63)

By Lemma 3, we may assume

| f ′′∗
〈zxzxzx 〉(yyy)| ≥ max{k,1}. (64)

By (63) and Lemma 17 (ii), we obtain

f ′
〈zzz 〉(x1) � f ′

〈zzz 〉(s). (65)

This shows that f ′
〈zzz 〉

is not prefix-free, which conflicts
with F ′ ∈ Fk-dec in the case k = 0 by Lemma 2. Thus,
we consider the case k ≥ 1, that is,

ccc , λ. (66)

Equation (62) leads to

f ′′∗
〈zzz 〉(xxxyyy) � f ′′

〈zzz 〉(s)ccc
(A)
=⇒ ψzzz( f ′′∗〈zzz 〉(xxxyyy)) � ψzzz( f

′′
〈zzz 〉(s)ccc)

(B)
⇐⇒ ψzzz( f ′′∗〈zzz 〉(xxx) f

′′∗
〈zzzxxx 〉(yyy)) � ψzzz( f

′′
〈zzz 〉(s)ccc)

(C)
⇐⇒ f ′∗

〈zzz 〉(xxx)ψzzzxxx( f
′′∗
〈zzzxxx 〉(yyy)) � f ′

〈zzz 〉(s)ψzzzs(ccc)
(D)
⇐⇒ f ′∗

〈zzz 〉(xxx) f
′′∗
〈zzzxxx 〉(yyy) � f ′

〈zzz 〉(s)ψzzzs(ccc), (67)

where (A) follows from Lemma 19 (i), (B) follows from
Lemma 1 (i) and Lemma 16 (i), (C) follows from (64),
(66), and the second case of (61), and (D) follows from
Lemma 19 (iii) and |zxzxzx | = L.
Now, for bbb ∈ C≥k , let [bbb]k denote the prefix of length k
of bbb. Then by (65) and (67), we have

f ′∗
〈zzz 〉(xxx)[ f

′′∗
〈zzzxxx 〉(yyy)]k � f ′

〈zzz 〉(s)[ψzzzs(ccc)]k . (68)

Also, we have

[ f ′′∗
〈zzzxxx 〉(yyy)]k ∈ P

k
F′′, 〈zxzxzx 〉

(A)
⊆ Pk

F′, 〈zxzxzx 〉, (69)

where (A) follows from Lemma 18 (iii) and 〈zxzxzx〉 ∈
SL ⊆ J . Hence, by (8) there exists yyy′ ∈ S∗ such that
f ′∗
〈zzzxxx 〉
(yyy′) � [ f ′′∗

〈zzzxxx 〉
(yyy)]k , which leads to

f ′∗
〈zzz 〉(xxxyyy

′) = f ′∗
〈zzz 〉(xxx) f

′∗
〈zzzxxx 〉(yyy

′)

� f ′∗
〈zzz 〉(xxx)[ f

′′∗
〈zzzxxx 〉(yyy)]k

(A)
� f ′

〈zzz 〉(s)[ψzzzs(ccc)]k, (70)
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where (A) follows from (68). Equations (65) and (70)
show

[ψzzzs(ccc)]k ∈ P̄k
F′, 〈zzz 〉( f

′
〈zzz 〉(s)) (71)

by (5).
On the other hand, by ccc ∈ Pk

F′′, 〈zzzs〉
and (8), there exist

xxx ∈ SL−|zzzs | and yyy ∈ S∗ such that

f ′′∗
〈zzzs〉(xxxyyy) � ccc. (72)

By Lemma 3, we may assume

| f ′′∗
〈zzzsxxx 〉(yyy)| ≥ k ≥ 1. (73)

We have

f ′∗
〈zzzs〉(xxx) f

′′∗
〈zzzsxxx 〉(yyy)

(A)
= f ′∗

〈zzzs〉(xxx)ψzzzsxxx( f
′′∗
〈zzzsxxx 〉(yyy))

(B)
= ψzzzs( f ′′∗〈zzzs〉(xxxyyy))
(C)
� ψzzzs(ccc),

where (A) follows from Lemma 19 (iii) and |zzzsxxx | = L,
(B) follows from (73) and the second case of (61), and
(C) follows from (72) and Lemma 19 (i).
Hence, we have

f ′∗
〈zzzs〉(xxx)[ f

′′∗
〈zzzsxxx 〉(yyy)]k � [ψzzzs(ccc)]k . (74)

Also, we have

[ f ′′∗
〈zzzsxxx 〉(yyy)]k ∈ P

k
F′′, 〈zzzsxxx 〉

(A)
⊆ Pk

F′, 〈zzzsxxx 〉, (75)

where (A) follows from Lemma 18 (iii) and 〈zzzsxxx〉 ∈
SL ⊆ J . Hence, there exists yyy′ ∈ S∗ such that
f ′∗
〈zzzxxx 〉
(yyy′) � [ f ′′∗

〈zzzsxxx 〉
(yyy)]k , which leads to

f ′∗
〈zzzs〉(xxxyyy

′) = f ′∗
〈zzzs〉(xxx) f

′∗
〈zzzxxxs〉(yyy

′)

� f ′∗
〈zzzs〉(xxx)[ f

′′∗
〈zzzsxxx 〉(yyy)]k

(A)
� [ψzzzs(ccc)]k, (76)

where (A) follows from (74). This shows

[ψzzzs(ccc)]k ∈ Pk
F′, 〈zzzs〉 (77)

by (8). By (71) and (77), the code-tuple F ′ does not sat-
isfy Definition 5 (i), which conflicts with F ′ ∈ Fk-dec.

Consequently, F ′′ satisfies Definition 5 (i).
Next, we show that F ′′ satisfies Definition 5 (ii).

Namely, we show that for any i ∈ [F ′′] and s, s′ ∈ S such that
s , s′ and f ′′i (s) = f ′′i (s

′), we have Pk
F′,τ′i (s)

∩Pk
F′,τ′i (s

′)
= ∅.

We prove for the following two cases: the case i ∈ J and
the case i ∈ [F ′′] \ J .

• The case i ∈ J : Then for any i ∈ J and s, s′ ∈ S such
that s , s′ and f ′′i (s) = f ′′i (s

′), we have

f ′i (s) = f ′i (s
′) (78)

by Lemma 18 (ii), and we have

Pk
F′′,τ′′i (s)

∩ Pk
F′′,τ′′i (s

′)

(A)
⊆ Pk

F′,τ′′i (s)
∩ Pk

F′,τ′′i (s
′)

(B)
= Pk

F′,τ′i (s)
∩ Pk

F′,τ′i (s
′)

(C)
= ∅,

where (A) follows from Lemma 18 (i) and (iii) since
τ′′i (s), τ

′′
i (s
′) ∈ [F], (B) follows from (52), and (C)

follows from F ′ ∈ Fk-dec and (78).
• The case i ∈ [F ′′] \ J : We prove by contradiction
assuming that there exists zzz ∈ S≤L−1, s, s′ ∈ S, and
ccc ∈ Pk

F′′, 〈zzzs〉
∩ Pk

F′′, 〈zzzs′〉
such that s , s′ and

f ′′
〈zzz 〉(s) = f ′′

〈zzz 〉(s
′). (79)

By the similar way to derive (77), we obtain

[ψzzzs(ccc)]k ∈ Pk
F′, 〈zzzs〉 (80)

from ccc ∈ Pk
F′′, 〈zzzs〉

. By (79) and Lemma 19 (i), we have

ψ〈zzz 〉( f ′′〈zzz 〉(s)) = ψ〈zzz 〉( f
′′
〈zzz 〉(s

′)). (81)

By Lemma 19 (ii), exactly one of f ′
〈zzz 〉
(s) = f ′

〈zzz 〉
(s′),

f ′
〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′), and f ′

〈zzz 〉
(s) � f ′

〈zzz 〉
(s′) holds. There-

fore, f ′
〈zzz 〉

is not prefix-free, which conflicts with F ′ ∈
Fk-dec in the case k = 0 by Lemma 2. We consider the
case k ≥ 1, that is,

ccc , λ. (82)

We consider the following two cases separately: the
case f ′

〈zzz 〉
(s) = f ′

〈zzz 〉
(s′) and the case f ′

〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′).

Note that we may exclude the case f ′
〈zzz 〉
(s) � f ′

〈zzz 〉
(s′) by

symmetry.

– The case f ′
〈zzz 〉
(s) = f ′

〈zzz 〉
(s′): By (60), we have

ψzzzs(ccc) = ψzzzs′(ccc) and thus

[ψzzzs(ccc)]k = [ψzzzs′(ccc)]k
(A)
∈ Pk

F′, 〈zzzs′〉, (83)

where (A) is obtained from ccc ∈ Pk
F′′, 〈zzzs′〉

by the
similar way to derive (77).
By (80), (83), and f ′

〈zzz 〉
(s) = f ′

〈zzz 〉
(s′), the code-

tuple F ′ does not satisfy Definition 5 (ii), which
conflicts with F ′ ∈ Fk-dec.

– The case f ′
〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′): Then by (81) and

Lemma 19 (ii), it must hold that

f ′∗
〈λ〉(zzz) ≺ f ′∗

〈λ〉(zzzs′) = ddd (84)

and

f ′
〈zzz 〉(s) = pref( f ′

〈zzz 〉(s
′)). (85)

Thus, we have

f ′
〈zzz 〉(s)dl

(A)
= pref( f ′

〈zzz 〉(s
′))dl
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= f ′∗
〈λ〉(zzz)

−1 f ′∗
〈λ〉(zzz)pref( f ′

〈zzz 〉(s
′))dl

(B)
= f ′∗

〈λ〉(zzz)
−1pref( f ′∗

〈λ〉(zzzs′))dl
(C)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)dl

= f ′∗
〈λ〉(zzz)

−1ddd
(D)
= f ′∗

〈λ〉(zzz)
−1 f ′∗
〈λ〉(zzzs′)

(E)
= f ′∗

〈λ〉(zzz)
−1 f ′∗
〈λ〉(zzz) f

′
〈zzz 〉(s

′)

= f ′
〈zzz 〉(s

′), (86)

where (A) follows from (85), (B) follows from
Lemma 1 (i) and Lemma 16 (i), (C) follows from
(84), (D) follows from (84), and (E) follows from
Lemma 1 (i) and Lemma 16 (i).
Also, we have

pref(ddd) (A)= pref( f ′∗
〈λ〉(zzzs′))

= pref( f ′∗
〈λ〉(zzz) f

′
〈zzz 〉(s

′))

(B)
= pref( f ′∗

〈λ〉(zzz) f
′
〈zzz 〉(s)dl)

= f ′∗
〈λ〉(zzz) f

′
〈zzz 〉(s)

= f ′∗
〈λ〉(zzzs), (87)

where (A) follows from (84), and (B) follows from
(86).
By ccc ∈ Pk

F′′, 〈zzzs′〉
and (8), there exist xxx ∈ SL−|zzzs′ |

and yyy ∈ S∗ such that

f ′′∗
〈zzzs′〉(xxxyyy) � ccc. (88)

By Lemma 3, we may assume

| f ′′∗
〈zzzs′xxx 〉(yyy)| ≥ k ≥ 1. (89)

We have

f ′
〈zzz 〉(s

′) f ′∗
〈zzzs′〉(xxx) f

′′∗
〈zzzs′xxx 〉(yyy)

(A)
= f ′

〈zzz 〉(s
′)ψzzzs′( f ′′∗〈zzzs′〉(xxx) f

′′∗
〈zzzs′xxx 〉(yyy))

(B)
= f ′

〈zzz 〉(s
′)ψzzzs′( f ′′∗〈zzzs′〉(xxxyyy))

(C)
� f ′

〈zzz 〉(s
′)ψzzzs′(ccc)

(D)
= f ′

〈zzz 〉(s)dlψzzzs′(ccc)
(E)
= f ′

〈zzz 〉(s)dlccc

= f ′
〈zzz 〉(s)pref(ddd)−1dddpref(ddd)−1(pref(ddd)ccc)

(F)
= f ′

〈zzz 〉(s) f
′∗
〈λ〉(zzzs)−1dddpref(ddd)−1( f ′∗

〈λ〉(zzzs)ccc)
(G)
= f ′

〈zzz 〉(s)ψzzzs(ccc),

where (A) follows from (89) and the second case
of (61), (B) follows from Lemma 1 (i) and Lemma
16 (i), (C) follows from (88) and Lemma 19 (i),

(D) follows from (86), (E) follows from the sec-
ond case of (60) because f ′∗

〈λ〉
(zzzs′) � pref(ddd)

does not hold by (84), (F) follows from (87), and
(G) follows from the first case of (60) because
f ′∗
〈λ〉
(zzzs) = pref( f ′∗

〈λ〉
(zzzs′)) = pref(ddd) ≺ f ′∗

〈λ〉
(zzzs)ccc

by (84), (85), and (82).
Hence, by f ′

〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′), we have

f ′
〈zzz 〉(s

′) f ′∗
〈zzzs′〉(xxx)[ f

′′∗
〈zzzs′xxx 〉(yyy)]k � f ′

〈zzz 〉(s)[ψzzzs(ccc)]k .
(90)

Also, we have

[ f ′′∗
〈zzzs′xxx 〉(yyy)]k ∈ P

k
F′′, 〈zzzs′xxx 〉

(A)
⊆ Pk

F′, 〈zzzs′xxx 〉, (91)

where (A) follows from Lemma 18 (iii) and
〈zzzs′xxx〉 ∈ SL ⊆ J . Hence, there exists yyy′ ∈ S∗
such that f ′∗

〈zzzs′xxx 〉
(yyy′) � [ f ′′∗

〈zzzs′xxx 〉
(yyy)]k , which leads

to

f ′∗
〈zzz 〉(s

′xxxyyy′) = f ′
〈zzz 〉(s

′) f ′∗
〈zzzs′〉(xxx) f

′∗
〈zzzs′xxx 〉(yyy

′)

� f ′
〈zzz 〉(s

′) f ′∗
〈zzzs′〉(xxx)[ f

′∗
〈zzzs′xxx 〉(yyy

′)]k

(A)
� f ′

〈zzz 〉(s)[ψzzzs(ccc)]k, (92)

where (A) follows from (90). The assumption that
f ′
〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′) and (92) shows that

[ψzzzs(ccc)]k ∈ P̄k
F′, 〈zzz 〉( f

′
〈zzz 〉(s)) (93)

by (5). By (80) and (93), the code-tuple F ′ does
not satisfy Definition 5 (i), which conflicts with
F ′ ∈ Fk-dec.

Consequently, F ′′ satisfies Definition 5 (ii). �

4. Conclusion

This paper discussed the general properties of k-bit delay
decodable code-tuples for k ≥ 0 and proved two main the-
orems. Theorem 1 guarantees that it suffices to consider
only irreducible code-tuples with at most 2(2k ) code tables
to achieve the optimal average codeword length. Theorem
2 is a generalization of the necessary condition of Huffman
codes that every internal node in the code-tree has two child
nodes. Both theorems enable us to limit the scope of code-
tuples to be considered when discussing optimal k-bit delay
decodable code-tuples.
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Appendix A: Equivalency of the Definitions of a k-Bit
Delay Decodable Code-Tuple

We confirm that Definition 5 in this paper is equivalent to
the definition of a k-bit delay decodable code-tuple in [4].
We first introduce the following Definition 17.

Definition 17. Let F( f , τ) ∈ F and i ∈ [F].

(i) A pair (xxx,ccc) ∈ S∗ × C∗ is said to be f ∗i -positive if for
any xxx ′ ∈ S∗, if f ∗i (xxx)ccc � f ∗i (xxx

′), then xxx � xxx ′.
(ii) A pair (xxx,ccc) ∈ S∗ × C∗ is said to be f ∗i -negative if for

any xxx ′ ∈ S∗, if f ∗i (xxx)ccc � f ∗i (xxx
′), then xxx � xxx ′.

Then the definition of a k-bit delay decodable code-
tuple in [4] is stated as the following Definition 18.

Definition 18. Let k ≥ 0 be an integer. A code-tuple F
is said to be k-bit delay decodable if for any i ∈ [F] and
(xxx,ccc) ∈ S∗×Ck , the pair (xxx,ccc) is f ∗i -positive or f ∗i -negative.

We show that the following conditions (a) and (b) are
equivalent for any F( f , τ) ∈ F .

(a) For any i ∈ [F] and (xxx,ccc) ∈ S∗ × Ck , the pair (xxx,ccc) is
f ∗i -positive or f ∗i -negative.

(b) The code-tuple F satisfies Definition 5 (i) and (ii).

((a) =⇒ (b)): We show the contraposition. Assume
that (b) does not hold. We consider the following two cases
separately: the case where Definition 5 (i) is false and the
case where Definition 5 (ii) is false.

• The case where Definition 5 (i) is false: Then there
exist i ∈ [F], s ∈ S, and ccc ∈ Pk

F ,τi (s)
∩ P̄k

F ,i( fi(s)).
By (5) and (8), there exist xxx = x1x2 . . . , xn ∈ S∗ and
xxx ′ = x ′1x ′2 . . . x ′n′ ∈ S

+ such that

f ∗τi (s)(xxx) � ccc, (A· 1)
f ∗i (xxx

′) � fi(s)ccc, (A· 2)
fi(x ′1) � fi(s). (A· 3)
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We have

f ∗i (sxxx)
(A)
= fi(s) f ∗τi (s)(xxx)

(B)
� fi(s)ccc, (A· 4)

where (A) follows from (2), and (B) follows from (A· 1).
By (A· 4) and s � sxxx, the pair (s,ccc) is not f ∗i -negative.
On the other hand, since s , x ′1 by (A· 3), we have
s � xxx ′. Hence, by (A· 2), the pair (s,ccc) is not f ∗i -
positive. Since the pair (s,ccc) is neither f ∗i -positive nor
f ∗i -negative, the condition (a) does not hold.

• The case where Definition 5 (ii) is false: Then there
exist i ∈ [F], s, s′ ∈ S, and ccc ∈ Pk

F ,τi (s)
∩Pk

F ,τi (s′)
such

that s , s′ and

fi(s) = fi(s′). (A· 5)

By (8), there exist xxx, xxx ′ ∈ S∗ such that

f ∗τi (s)(xxx) � ccc (A· 6)

and

f ∗τi (s′)(xxx
′) � ccc. (A· 7)

Thus, we have

f ∗i (sxxx)
(A)
= fi(s) f ∗τi (s)(xxx)

(B)
� fi(s)ccc (A· 8)

and

f ∗i (s
′xxx ′)

(C)
= fi(s′) f ∗τi (s′)(xxx

′)

(D)
= fi(s) f ∗τi (s′)(xxx

′)

(E)
� fi(s)ccc, (A· 9)

where (A) follows from (2), (B) follows from (A· 6),
(C) follows from (2), (D) follows from (A· 5), and (E)
follows from (A· 7). By (A· 8) and s � sxxx, the pair
(s,ccc) is not f ∗i -negative. On the other hand, by s � s′xxx
and (A· 9), the pair (s,ccc) is not f ∗i -positive. Since the
pair (s,ccc) is neither f ∗i -positive nor f ∗i -negative, the
condition (a) does not hold.

((b) =⇒ (a)): We show the contraposition. Assume
that (a) does not hold. Then there exist i ∈ [F] and (xxx,ccc) ∈
S∗×Ck such that (xxx,ccc) is neither f ∗i -positive nor f ∗i -negative.
Thus, there exist xxx ′, xxx ′′ ∈ S∗ such that

f ∗i (xxx)ccc � f ∗i (xxx
′), (A· 10)

f ∗i (xxx)ccc � f ∗i (xxx
′′), (A· 11)

xxx � xxx ′, (A· 12)
xxx � xxx ′′. (A· 13)

We consider the following two cases separately: the
case xxx � xxx ′′ and the case xxx � xxx ′′.

• The case xxx � xxx ′′: By Lemma 1 (iii), we have

f ∗i (xxx) � f ∗i (xxx
′′). (A· 14)

Hence, by (A· 11), it must hold that ccc = λ. Namely,
only k = 0 is possible now.
Since (A· 13) and xxx � xxx ′′ lead to xxx � xxx ′′, there exists
uuu = u1u2 . . . un ∈ S+ such that xxx = xxx ′′uuu. Defining
j B τ∗i (xxx

′′), we have

f ∗i (xxx)
(A)
= f ∗i (xxx

′′) f ∗j (uuu)
(B)
= f ∗i (xxx) f

∗
j (uuu)

(C)
= f ∗i (xxx) fj(u1) f ∗τj (u1)

(suff(uuu)), (A· 15)

where (A) follows from Lemma 1 (i), (B) follows be-
cause we have f ∗i (xxx) � f ∗i (xxx

′′) by (A· 11) and we have
f ∗i (xxx) � f ∗i (xxx

′′) by (A· 14), and (C) follows from (2).
Comparing both sides of (A· 15), we obtain

fj(u1) = λ (A· 16)

and f ∗
τj (u1)
(suff(uuu)) = λ.

We now show that (b) does not hold dividing into two
cases by whether fj is injective.

– If fj is not injective, then F does not satisfy Defi-
nition 5 (ii) by k = 0 and Lemma 2.

– If fj is injective, then there exists s ∈ S such that
fj(s) � λ by σ ≥ 2, which leads to

P̄0
F , j , ∅ (A· 17)

by (5). We see that F does not satisfy Definition 5
(i) because

P0
F ,τj (u1)

∩ P̄0
F , j( fj(u1))

(A)
= P0

F ,τj (u1)
∩ P̄0

F , j

(B)
= {λ} ∩ P̄0

F , j

(C)
= {λ} ∩ {λ}

= {λ}

, ∅,

where (A) follows from (A· 16), (B) follows from
(8), and (C) follows from (A· 17).

• The case xxx � xxx ′′: By (A· 13) and xxx � xxx ′′, there exist
zzz = z1z2 . . . zn ∈ S+ and zzz′′ = z′′1 z′′2 . . . z′′n′′ ∈ S

+ such
that

xxx = yyyzzz, (A· 18)
xxx ′′ = yyyzzz′′, (A· 19)
z1 , z′′1 , (A· 20)

where yyy is the longest common prefix of xxx and xxx ′′.
Also, by (A· 12), there exists www ∈ S∗ such that

xxx ′ = xwxwxw. (A· 21)

Defining zzz′ = z′1z′2 . . . z′n′ B zwzwzw, we have
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xxx ′ = xwxwxw = yzwyzwyzw = yzyzyz′, (A· 22)
z1 = z′1. (A· 23)

Then defining j B τ∗i (yyy), we have

f ∗i (yyy) fj(z
′
1) f
∗
τj (z

′
1)
(suff(zzz′))

(A)
= f ∗i (yyy) f

∗
j (zzz
′)
(B)
= f ∗i (yyyzzz′)

(C)
= f ∗i (xxx

′)
(D)
� f ∗i (xxx)ccc,

(A· 24)

where (A) follows from (2), (B) follows from Lemma
1 (i), (C) follows from (A· 22), and (D) follows from
(A· 10). Similarly, by (A· 11) and (A· 19), we have

f ∗i (yyy) fj(z
′′
1 ) f

∗
τj (z

′′
1 )
(suff(zzz′′))

= f ∗i (yyy) f
∗
j (zzz
′′) = f ∗i (yyyzzz′′) = f ∗i (xxx

′′) � f ∗i (xxx)ccc.
(A· 25)

Also, we have

f ∗i (xxx)ccc
(A)
= f ∗i (yyyzzz)ccc
(B)
= f ∗i (yyy) f

∗
j (zzz)ccc

(C)
= f ∗i (yyy) fj(z1) f ∗τj (z1)

(suff(zzz))ccc, (A· 26)

where (A) follows from (A· 18), (B) follows from
Lemma 1 (i), and (C) follows from (2).
Thus, we have

fj(z′1) f
∗
τj (z

′
1)
(suff(zzz′))

(A)
� fj(z1) f ∗τj (z1)

(suff(zzz))ccc
(B)
= fj(z′1) f

∗
τj (z

′
1)
(suff(zzz))ccc

� fj(z′1)ccc
′, (A· 27)

where ccc′ ∈ Ck is defined as the prefix of length k
of f ∗

τj (z
′
1)
(suff(zzz))ccc, and (A) follows from (A· 24) and

(A· 26), and (B) follows from (A· 23). Similarly, we
have

fj(z′′1 ) f
∗
τj (z

′′
1 )
(suff(zzz′′))

(A)
� fj(z1) f ∗τj (z1)

(suff(zzz))ccc
(B)
= fj(z′1) f

∗
τj (z

′
1)
(suff(zzz))ccc

� fj(z′1)ccc
′, (A· 28)

where (A) follows from (A· 25) and (A· 26), and
(B) follows from (A· 23). By (A· 27), we have
f ∗
τj (z

′
1)
(suff(zzz′)) � ccc′, which leads to

ccc′ ∈ Pk
F ,τj (z

′
1)

(A· 29)

by (8).
By (A· 28), at least one of fj(z′1) � fj(z′′1 ) and fj(z′1) �
fj(z′′1 ) holds. We may assume fj(z′1) � fj(z′′1 ) by sym-
metry. We consider the following two cases separately:
the case fj(z′1) ≺ fj(z′′1 ) and the case fj(z′1) = fj(z′′1 ).

– The case fj(z′1) ≺ fj(z′′1 ): We have

f ∗j (zzz
′′)
(A)
= fj(z′′1 ) f

∗
τj (z

′′
1 )
(suff(zzz′′))

(B)
� fj(z′1)ccc

′,

(A· 30)

where (A) follows from (2), and (B) follows from
(A· 28). By (A· 30) and fj(z′1) ≺ fj(z′′1 ), we obtain

ccc′ ∈ P̄k
F , j( fj(z

′
1)) (A· 31)

by (5). By (A· 29) and (A· 31), the code-tuple F
does not satisfy Definition 5 (i).

– The case fj(z′1) = fj(z′′1 ): We have

fj(z′1) f
∗
τj (z

′′
1 )
(suff(zzz′′))

(A)
= fj(z′′1 ) f

∗
τj (z

′′
1 )
(suff(zzz′′))

(B)
� fj(z′1)ccc

′,

where (A) follows from fj(z′1) = fj(z′′1 ),
and (B) follows from (A· 28). This shows
f ∗
τj (z

′′
1 )
(suff(zzz′′)) � ccc′, which leads to

ccc′ ∈ Pk
F ,τj (z

′′
1 )

(A· 32)

by (8). By fj(z′1) = fj(z′′1 ), (A· 20), (A· 29), and
(A· 32), the code-tuple F does not satisfy Defini-
tion 5 (ii).

Appendix B: Proof of the Existence of an Optimal
Code-Tuple

Form ∈ {1,2, . . . ,M B 2(2k )}, the number of possible tuples
(τ0, τ1, . . . , τm−1) (i.e., a tuple of m mappings from S to [m])
is mσm, in particular, finite. Hence, the number of possible
vectors πππ(F ′) = (π0(F ′), π1(F ′), . . . , πm−1(F ′)) of a code-
tuple F ′ ∈ F ′ is also finite (cf. Remark 2), where

F ′ B {F ′ ∈ Firr∩Fext∩Fk-dec : |F ′ | ≤ M}. (A· 33)

Therefore, D B {πi(F ′) : F ′ ∈ F ′, i ∈ [F ′]} is a finite set
and has the minimum value δ B minD. Note that δ > 0
holds since πi(F ′) > 0 for any F ′ ∈ F ′ and i ∈ [F ′] by
F ′ ⊆ Firr and Lemma 8 (ii).

Now, we define

F ′′ B {F ′( f ′, τ′) ∈ F ′ :
∑

i∈[F′],s∈S

| f ′i (s)| ≤
l
δν
},

(A· 34)

where l B dlog2 σe and ν B mins∈S µ(s). Note that

0 < ν ≤ 1/σ. (A· 35)

Then F ′′ is not empty because F̃( f̃0, τ̃0) ∈ F (1) defined as
the following (A· 36) is in F ′′:

f̃0(sr ) = b(r), τ̃0(sr ) = 0 (A· 36)
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for r = 0,1,2, . . . ,σ − 1, where S = {s0, s1, . . . , sσ−1} and
b(r) denotes the binary representation of length l of the
integer r . In fact, we obtain F̃ ∈ F ′′ by∑

i∈[F̃],s∈S

| f̃i(s)| =
∑
s∈S

| f̃0(s)| = σl
(A)
≤

l
ν

(B)
≤

l
δν
,

(A· 37)

where (A) follows from (A· 35), and (B) follows from 0 <
δ ≤ 1. Since F ′′ is a non-empty and finite set, there exists
F∗ ∈ F ′′ such that

L(F∗) = min
F′′∈F ′′

L(F ′′). (A· 38)

To complete the proof, it suffices to show that L(F∗) ≤ L(F)
for any F ∈ Freg ∩Fext ∩Fk-dec.

First, we can see that L(F∗) ≤ L(F ′) for any F ′ ∈ F ′

because for any F ′( f ′, τ′) ∈ F ′ \F ′′, we have

L(F ′) =
∑
i∈[F′]

πi(F ′)Li(F ′)

=
∑
i∈[F′]

πi(F ′)
∑
s∈S

µ(s)| f ′i (s)|

(A)
≥ δν

∑
i∈[F′],s∈S

| f ′i (s)|

(B)
> δν ·

l
δν

= l

= L(F̃)
(C)
≥ L(F∗),

where (A) follows from the definitions of δ and ν, (B) follows
from F ′ < F ′′, and (C) follows from (A· 38). Hence, we
have

L(F∗) = min
F′∈F ′

L(F ′). (A· 39)

By Theorem 1, for any F ∈ Freg ∩Fext ∩Fk-dec, there
exists F ′ ∈ Firr ∩Fext ∩Fk-dec such that L(F ′) ≤ L(F) and
|Pk

F′ | = |F
′ |. Then we have F ′ ∈ F ′ because

|F ′ | = |Pk
F′ | ≤ |P(C

k)| = 2(2
k ) = M, (A· 40)

where P(Ck) denotes the power set of Ck . Therefore, for
any F ∈ Freg ∩Fext ∩Fk-dec, we have

L(F) ≥ L(F ′)
(A)
≥ L(F∗) (A· 41)

as desired, where (A) follows from (A· 39).

Appendix C: Proofs of Lemmas

C.1 Proof of Lemma 5

To prove Lemma 5, we first show the following Lemma 20.

Lemma20. For any integer k ≥ 0, F( f , τ) ∈ F and i ∈ [F],
the following statements (i) and (ii) hold.

(i) Pk
F ,i ⊇ P̄

k
F ,i .

(ii) For any s ∈ S such that fi(s) = λ, we have Pk
F ,i ⊇

Pk
F ,τi (s)

.

Proof of Lemma 20. (Proof of (i)): Directly from (4) and
(5).

(Proof of (ii)): Choose ccc ∈ Pk
F ,τi (s)

arbitrarily. Then
there exists xxx ∈ S∗ such that

f ∗τi (s)(xxx) � ccc (A· 42)

by (8). We have

f ∗i (sxxx)
(A)
= fi(s) f ∗τi (s)(xxx)

(B)
= f ∗τi (s)(xxx)

(C)
� ccc, (A· 43)

where (A) follows from Lemma 1 (i), (B) follows from the
assumption, and (C) follows from (A· 42). This leads to
ccc ∈ Pk

F ,i . �

Proof of Lemma 5. It suffices to show that | f ∗i (xxx)| ≥ 1 holds
for any i ∈ [F] and xxx ∈ S |F | . We prove by contradiction
assuming that there exist i ∈ [F] and xxx = x1x2 . . . x |F | ∈
S |F | such that f ∗i (xxx) = λ. Then by pigeonhole principle, we
can choose integers p,q such that 0 ≤ p < q ≤ |F | and

τ∗i (x1x2 . . . xp) = τ∗i (x1x2 . . . xq) C j . (A· 44)

We have

τ∗j (xp+1xp+2 . . . xq)
(A)
= τ∗τ∗i (x1x2...xp )

(xp+1xp+2 . . . xq)

(B)
= τ∗i (x1x2 . . . xq)

(C)
= j, (A· 45)

where (A) follows from (A· 44), (B) follows from Lemma 1
(ii), and (C) follows from (A· 44). Thus, we obtain

Pk
F ,τj (xp+1)

(A)
⊇ Pk

F ,τ∗j (xp+1xp+2)

(A)
⊇ · · ·

(A)
⊇ Pk

F ,τ∗j (xp+1xp+2...xq )

(B)
= Pk

F , j, (A· 46)
where (A)s follow from Lemma 20 (ii) and f ∗i (xxx) = λ, and
(B) follows from (A· 45).

We consider the following two cases separately: the
case P̄k

F , j , ∅ and the case P̄k
F , j = ∅.

• The case P̄k
F , j , ∅: We have

Pk
F ,τj (xp+1)

∩ P̄k
F , j

(A)
⊇ Pk

F , j ∩ P̄
k
F , j

(B)
⊇ P̄k

F , j ∩ P̄
k
F , j

= P̄k
F , j

(C)
, ∅,
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where (A) follows from (A· 46), (B) follows from
Lemma 20 (i), and (C) follows from the assumption.
Therefore, F does not satisfy Definition 5 (i), which
conflicts with F ∈ Fk-dec.

• The case P̄k
F , j = ∅: By Corollary 1 (ii), we have P̄

0
F , j =

∅. Hence, by (5), there is no symbol s′ ∈ S such that
fj(s′) � λ. Therefore, by σ ≥ 2, there exists s ∈ S
such that s , xp+1 and fj(s) = λ = fj(xp+1). We have

Pk
F ,τj (xp+1)

∩ Pk
F ,τj (s)

(A)
⊇ Pk

F , j ∩ P
k
F ,τj (s)

(B)
⊇ Pk

F ,τj (s)
∩ Pk

F ,τj (s)

= Pk
F ,τj (s)

(C)
, ∅,

where (A) follows from (A· 46), (B) follows from
Lemma 20 (ii), and (C) follows from F ∈ Fext and
Corollary 1 (i). Therefore, F does not satisfy Defini-
tion 5 (ii), which conflicts with F ∈ Fk-dec.

�

C.2 Proof of Lemma 6

In preparation for the proof, we introduce the following Def-
inition 19 and Lemma 21.

Definition 19. Let F( f , τ) ∈ F . A set I ⊆ [F] is said to be
closed if for any i ∈ I and s ∈ S, it holds that τi(s) ∈ I.

Lemma 21. For any F ∈ F and xxx = (x0, x1, . . . , x |F |−1) ∈

R |F | , if

xxxQ(F) = xxx, (A· 47)

then both of I+ B {i ∈ [F] : xi > 0} and I− B {i ∈ [F] :
xi < 0} are closed.

Proof of Lemma 21. By symmetry, it suffices to prove only
that I+ is closed. We have∑

i∈I+

∑
j∈I+

xjQ j ,i(F) +
∑
i∈I+

∑
j∈[F]\I+

xjQ j ,i(F)

=
∑
i∈I+

∑
j∈[F]

xjQ j ,i(F)

(A)
=

∑
i∈I+

xi

(B)
=

∑
i∈I+

xi
∑
j∈[F]

Qi, j(F)

=
∑
i∈I+

∑
j∈[F]

xiQi, j(F)

=
∑
i∈I+

∑
j∈I+

xiQi, j(F) +
∑
i∈I+

∑
j∈[F]\I+

xiQi, j(F)

(C)
=

∑
i∈I+

∑
j∈I+

xjQ j ,i(F) +
∑
i∈I+

∑
j∈[F]\I+

xiQi, j(F),

(A· 48)

where (A) follows from (A· 47), (B) follows from∑
j∈[F]Qi, j(F) = 1 for any i ∈ [F], and (C) is obtained by

exchanging the roles of i and j in the first term. Therefore,
we have

0
(A)
≥

∑
i∈I+

∑
j∈[F]\I+

xjQ j ,i(F)

(B)
=

∑
i∈I+

∑
j∈[F]\I+

xiQi, j(F)

(C)
≥ 0,

where (A) follows since xj ≤ 0 for any j ∈ [F] \ I+, (B) is
obtained by eliminating the first terms from the leftmost and
rightmost sides of (A· 48), and (C) follows since xi > 0 for
any i ∈ I+. This shows∑

i∈I+

∑
j∈[F]\I+

xiQi, j(F) = 0.

Since xi > 0 holds for any i ∈ I+, it must hold that Qi, j(F) =
0 for any i ∈ I+ and j ∈ [F] \ I+. This implies that for any
i ∈ I+ and s ∈ S, we have τi(s) ∈ I+; that is, I+ is closed as
desired. �

Proof of Lemma 6. Equation (19) can be rewritten as

πππA = 000, (A· 49)

where A = (Ai, j) B Q(F) − E and E is the identity matrix.
We have det A = 0 because the sum of each row of A equals
0: for any i ∈ [F], we have∑

j∈[F]

Ai, j =
∑
j∈[F]

(Qi, j(F) − δi j)

=
∑
j∈[F]

Qi, j(F) −
∑
j∈[F]

δi j

=
∑
j∈[F]

Qi, j(F) − 1

=
∑
j∈[F]

∑
s∈S,τi (s)=j

µ(s) − 1

=
∑
s∈S

µ(s) − 1

= 0,

where δi j denotes Kronecker delta. Thus, the dimension
of the null space of A is greater than or equal to 1. In
particular, Equation (A· 49), which is equivalent to (19),
has a non-trivial solution πππ , 000. We choose such πππ =
(π0, π1, . . . , π |F |−1) , 000. Then both of I+ B {i ∈ [F] : πi >
0} and I− B {i ∈ [F] : πi < 0} are closed by Lemma 21.
Hence, we have

∀i ∈ I+; ∀ j ∈ [F] \ I+;Qi, j(F) = 0, (A· 50)
∀i ∈ I−; ∀ j ∈ [F] \ I−;Qi, j(F) = 0. (A· 51)

Since πππ , 000, we have
∑

i∈[F] |πi | > 0 and thus we can
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define πππ′ = (π′0, π
′
1, . . . , π

′
|F |−1) ∈ R

|F | as

π′i =
|πi |∑

i∈[F] |πi |
(A· 52)

for i ∈ [F]. This vector πππ′ is a desired stationary distribution
of F. In fact, by the definition, πππ′ clearly satisfies (20) and
π′i ≥ 0 for any i ∈ [F]. Also, we can see that πππ′ satisfies (19)
because for any j ∈ [F], we have( ∑

i∈[F]

|πi |
) ( ∑

i∈[F]

π′iQi, j(F)
)

(A)
=

∑
i∈[F]

|πi |Qi, j(F)

=
∑
i∈I+

πiQi, j(F) −
∑
i∈I−

πiQi, j(F)

(B)
=


∑

i∈I+ πiQi, j(F) if j ∈ I+,
−

∑
i∈I− πiQi, j(F) if j ∈ I−,

0 otherwise,

(C)
=


∑

i∈I+ πiQi, j(F) +
∑

i∈I− πiQi, j(F) if j ∈ I+,
−

∑
i∈I+ πiQi, j(F) −

∑
i∈I− πiQi, j(F) if j ∈ I−,

0 otherwise,

=


∑

i∈[F] πiQi, j(F) if j ∈ I+,
−

∑
i∈[F] πiQi, j(F) if j ∈ I−,

0 otherwise,

(D)
=


πj if j ∈ I+,
−πj if j ∈ I−,
0 otherwise,

= |πj |

(E)
=

( ∑
i∈[F]

|πi |
)
π′j,

where (A) follows from (A· 52), (B) follows from (A· 50) and
(A· 51), (C) follows from (A· 50) and (A· 51), (D) follows
since πππ is a stationary distribution of F, and (E) follows
from (A· 52). �

C.3 Proof of Lemma 7

Proof of Lemma 7. (Proof of (i)): We first show that
f ′∗i (xxx) = f ∗

ϕ(i)
(xxx) for any i ∈ [F ′] and xxx ∈ S∗ by induction for

|xxx |. For the base case |xxx | = 0, we have f ′∗i (λ) = λ = f ∗
ϕ(i)
(λ)

by (2). We consider the induction step for |xxx | ≥ 1. We have

f ′∗i (xxx)
(A)
= f ′i (x1) f ′∗τ′i (x1)

(suff(xxx))
(B)
= fϕ(i)(x1) f ′∗τ′i (x1)

(suff(xxx))
(C)
= fϕ(i)(x1) f ∗ϕ(τ′i (x1))

(suff(xxx))
(D)
= fϕ(i)(x1) f ∗τϕ(i)(x1)

(suff(xxx))

(E)
= f ∗ϕ(i)(xxx)

as desired, where (A) follows from (2), (B) follows from
(23), (C) follows from the induction hypothesis, (D) follows
from (24), and (E) follows from (2).

Next, we show that ϕ(τ′∗i (xxx)) = τ
∗
ϕ(i)
(xxx) for any i ∈ [F ′]

and xxx ∈ S∗ by induction for |xxx |. For the base case |xxx | = 0,
we have ϕ(τ′∗i (λ)) = ϕ(i) = τ

∗
ϕ(i)
(λ) by (3). We consider the

induction step for |xxx | ≥ 1. We have

ϕ(τ′∗i (xxx))
(A)
= ϕ(τ′∗τ′i (x1)

(suff(xxx))) (B)= τ∗ϕ(τ′i (x1))
(suff(xxx))

(C)
= τ∗τϕ(i)(x1)

(suff(xxx)) (D)= τ∗ϕ(i)(xxx)

as desired, where (A) follows from (3), (B) follows from the
induction hypothesis, (C) follows from (24), and (D) follows
from (3).

(Proof of (ii)): For any ccc ∈ C∗, we have

ccc ∈ P∗F′,i(bbb)
(A)
⇐⇒ ∃xxx ∈ S+; ( f ′∗i (xxx) � bbbccc, f ′i (x1) � bbb)
(B)
⇐⇒ ∃xxx ∈ S+; ( f ∗ϕ(i)(xxx) � bbbccc, fϕ(i)(x1) � bbb)

(C)
⇐⇒ ccc ∈ P∗F ,ϕ(i)(bbb),

where (A) follows from (4), (B) follows from (i) of this
lemma, and (C) follows from (4). This shows that P∗F′,i(bbb) =
P∗
F ,ϕ(i)

(bbb). We can prove P̄∗F′,i(bbb) = P̄
∗
F ,ϕ(i)

(bbb) by the same
way using (5).

(Proof of (iii)): For any i′ ∈ [F ′] and j ∈ [F], we have∑
j′∈A j

Qi′, j′(F ′)
(A)
=

∑
j′∈A j

∑
s∈S

τ′
i′
(s)=j′

µ(s) =
∑
s∈S

τ′
i′
(s)∈A j

µ(s)

(B)
=

∑
s∈S

ϕ(τ′
i′
(s))=j

µ(s)
(C)
=

∑
s∈S

τϕ(i′)(s)=j

µ(s)

(D)
= Qϕ(i′), j(F) = Qi, j(F), (A· 53)

where i B ϕ(i′) and (A) follows from (17), (B) follows from
(26), (C) follows from (24), and (D) follows from (17).

Thus, for any j ∈ [F], we have

πj =
∑
j′∈A j

π′j′

(A)
=

∑
j′∈A j

∑
i′∈[F′]

π′i′Qi′, j′(F ′)

=
∑
j′∈A j

∑
i∈[F]

∑
i′∈Ai

π′i′Qi′, j′(F ′)

=
∑
i∈[F]

∑
i′∈Ai

π′i′
∑
j′∈A j

Qi′, j′(F ′)

(B)
=

∑
i∈[F]

∑
i′∈Ai

π′i′Qi, j(F)
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=
∑
i∈[F]

Qi, j(F)
∑
i′∈Ai

π′i′

=
∑
i∈[F]

Qi, j(F)πi, (A· 54)

where (A) follows since πππ′ satisfies (19), and (B) follows
from (A· 53) and i′ ∈ Ai .

Also, we have∑
i∈[F]

πi =
∑
i∈[F]

∑
i′∈Ai

π′i′ =
∑

i′∈[F′]

π′i′
(A)
= 1, (A· 55)

where (A) follows since πππ′ satisfies (20). By (A· 54) and
(A· 55), πππ is a stationary distribution of F.

(Proof of (iv)): We have

F ∈ Fext ⇐⇒
∀i ∈ [F];P1

F ,i , ∅

=⇒ ∀i′ ∈ [F ′];P1
F ,ϕ(i′) , ∅

(A)
⇐⇒ ∀i′ ∈ [F ′];P1

F′,i′ , ∅

⇐⇒ F ′ ∈ Fext,

where (A) follows from (ii) of this lemma.
(Proof of (v)): By F,F ′ ∈ Freg, the code-tuples F and

F ′ have the unique stationary distributions πππ(F) and πππ(F ′),
respectively. By (iii) of this lemma, we have

∀ j ∈ [F]; πj(F) =
∑
j′∈A j

πj′(F ′), (A· 56)

where

Ai B {i′ ∈ [F ′] : ϕ(i′) = i} (A· 57)

for i ∈ [F]. Therefore, we have

L(F ′) =
∑

i′∈[F′]

πi′(F ′)Li′(F ′)

=
∑
i∈[F]

∑
i′∈Ai

πi′(F ′)Li′(F ′)

(A)
=

∑
i∈[F]

∑
i′∈Ai

πi′(F ′)Lϕ(i′)(F)

(B)
=

∑
i∈[F]

∑
i′∈Ai

πi′(F ′)Li(F)

=
∑
i∈[F]

Li(F)
∑
i′∈Ai

πi′(F ′)

(C)
=

∑
i∈[F]

πi(F)Li(F)

= L(F)

as desired, where (A) follows from (23) (cf. Remark 2),
(B) follows from (A· 57) and i′ ∈ Ai , and (C) follows from
(A· 56).

(Proof of (vi)): For any i ∈ [F ′] and s ∈ S, we have

Pk
F′,τ′i (s)

∩ P̄k
F′,i( f

′
i (s))

(A)
= Pk

F ,ϕ(τ′i (s))
∩ P̄k

F ,ϕ(i)( f
′
i (s))

(B)
= Pk

F ,τϕ(i)(s)
∩ P̄k

F ,ϕ(i)( fϕ(i)(s))

(C)
= ∅,

where (A) follows from (ii) of this lemma, (B) follows from
(23) and (24), and (C) follows from F ∈ Fk-dec. Namely, F ′

satisfies Definition 5 (i).
Choose i ∈ [F ′] and s, s′ ∈ S such that s , s′ and

f ′i (s) = f ′i (s
′) arbitrarily. Then by (23), we have

fϕ(i)(s) = f ′i (s) = f ′i (s
′) = fϕ(i)(s′). (A· 58)

Thus, we obtain

Pk
F′,τ′i (s)

∩ Pk
F′,τ′i (s

′)

(A)
= Pk

F ,ϕ(τ′i (s))
∩ Pk

F ,ϕ(τ′i (s
′))

(B)
= Pk

F ,τϕ(i)(s)
∩ Pk

F ,τϕ(i)(s′)

(C)
= ∅,

where (A) follows from (ii) of this lemma, (B) follows from
(24), (C) follows from (A· 58) and F ∈ Fk-dec. Namely, F ′

satisfies Definition 5 (ii). �

C.4 Proof of Lemma 8

To prove Lemma 8, we first prove the following Lemmas
22–24. Lemmas 22 and 23 relate to closed sets defined in
Appendix C.2.

Lemma 22. For any F ∈ F , the following statements (i)
and (ii) hold.

(i) RF is closed.
(ii) For any non-empty closed set I ⊆ [F], we have RF ⊆

I.

Proof of Lemma 22. (Proof of (i)): Choose i ∈ RF and s ∈
S arbitrarily. For any j ∈ [F], there exists xxx ∈ S∗ such that
τ∗j (xxx) = i, which leads to

τ∗j (xxxs)
(A)
= ττ∗j (xxx)(s) = τi(s), (A· 59)

where (A) follows from Lemma 1 (ii). This shows τi(s) ∈
RF .

(Proof of (ii)): Choose i ∈ RF arbitrarily. We prove
i ∈ I by contradiction assuming the contrary i < I. Since
I , ∅, we can choose j ∈ I. By i ∈ RF , there exists
xxx = x1x2 . . . xn ∈ S∗ such that τ∗j (xxx) = i. We define il B
τ∗j (x1x2 . . . xl) for l = 0,1,2, . . . ,n. Since i0 = τ∗j (λ) = j ∈ I
and in = τ∗j (xxx) = i < I, there exists an integer 0 ≤ l < n
such that il ∈ I and il+1 = τil (xl+1) < I. This conflicts with
that I is closed. �

Lemma 23. For any F ∈ F and non-empty closed set
I ⊆ [F], the following statements (i) and (ii) hold.

(i) There exist F ′ ∈ F ( |I |) and an injective homomor-
phism ϕ : [F ′] → [F] from F ′ to F such that
I = ϕ([F ′]) B {ϕ(i) : i ∈ [F ′]}.

(ii) There exists a stationary distribution πππ = (π0,
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π1, . . . , π |F |−1) of F such that πi = 0 for any i ∈ [F] \I.

Proof of Lemma 23. (Proof of (i)): Suppose I =

{i0, i1, . . . , im−1}, where i0 < i1 < · · · < im−1 and m = |I |.
We define a mapping ϕ : [m] → [F] as ϕ( j) = ij for j ∈ [m].
Since ϕ is injective and ϕ([m]) = I, we can consider the in-
verse mapping ϕ−1 : I → [m], which maps ϕ(i) to i for any
i ∈ [m]. Also, we define F ′( f ′, τ′) ∈ F (m) as

f ′i (s) = fϕ(i)(s), (A· 60)
τ′i (s) = ϕ

−1(τϕ(i)(s)) (A· 61)

for i ∈ [F ′] and s ∈ S. Since I is closed, we have τϕ(i)(s) ∈
I and thus τ′i (s) = ϕ

−1(τϕ(i)(s)) ∈ [m] = [F ′]; that is, F ′ is
indeed well-defined. We can see that ϕ is a homomorphism
from F ′ to F directly from (A· 60) and (A· 61).

(Proof of (ii)): By (i) of this lemma, there exist F ′ ∈ F
and an injective homomorphism ϕ : [F ′] → [F] from F ′ to
F such that

ϕ([F ′]) = I. (A· 62)

By Lemma 6, we can choose a stationary distribution πππ′ of
F ′. By Lemma 7 (iii), the vector πππ ∈ R |F | defined as (25)
is a stationary distribution of F. This vector πππ is a desired
stationary distribution because Ai = {i′ ∈ [F ′] : ϕ(i′) =
i} = ∅ holds for any i ∈ [F] \ I by (A· 62). �

Lemma 24. For any F ∈ F , If RF = ∅, then there exist
p,q ∈ [F] such that Ip ∩ Iq = ∅, where Ii B {τ∗i (xxx) : xxx ∈
S∗} for i ∈ [F].

Proof of Lemma 24. We first show that for any i, j ∈ [F], we
have

j ∈ Ii =⇒ Ij ⊆ Ii . (A· 63)

Assume j ∈ Ii and choose p ∈ Ij arbitrarily. Then there
exists xxx ∈ S∗ such that τ∗j (xxx) = p. Also, by j ∈ Ii , there
exists yyy ∈ S∗ such that τ∗i (yyy) = j. Therefore, we have

τ∗i (yxyxyx)
(A)
= τ∗τ∗i (yyy)

(xxx) = τ∗j (xxx) = p,

where (A) follows from Lemma 1 (ii). This leads to p ∈ Ii
and thus we obtain (A· 63).

Now, we prove Lemma 24 by proving its contraposition.
Namely, we show RF , ∅ assuming that

∀i, j ∈ [F];Ii ∩ Ij , ∅. (A· 64)

We can see that

RF =
⋂
i∈[F]

Ii

because for any j ∈ [F], it holds that

j ∈
⋂
i∈[F]

Ii ⇐⇒
∀i ∈ [F]; j ∈ Ii

⇐⇒ ∀i ∈ [F]; ∃xxx ∈ S∗; τ∗i (xxx) = j

⇐⇒ j ∈ RF .

Thus, to show RF , ∅, it suffices to show that⋂
i∈[r]

Ii , ∅ (A· 65)

for any r = 1,2, . . . , |F | since the case r = |F | gives the
desired result.

We prove (A· 65) by induction for r . The base case r = 1
is trivial since I0 3 0. We consider the induction step for
r ≥ 2. By the induction hypothesis, we have

⋂
i∈[r−1] Ii , ∅.

Therefore, we can choose j ∈ [F] such that j ∈ Ii for any
i ∈ [r − 1]. By (A· 63), we have Ij ⊆ Ii for any i ∈ [r − 1]
and thus

Ij ⊆
⋂

i∈[r−1]
Ii . (A· 66)

Hence, we obtain⋂
i∈[r]

Ii =
( ⋂
i∈[r−1]

Ii

)
∩ Ir−1

(A)
⊇ Ij ∩ Ir−1

(B)
, ∅

as desired, where (A) follows from (A· 66), and (B) follows
from (A· 64). �

Proof of Lemma 8. (Proof of (i)): (Necessity) We assume
RF = ∅ and show that F has two distinct stationary dis-
tributions. By Lemma 24, we can choose p,q ∈ [F] such
that

Ip ∩ Iq = ∅. (A· 67)

We can see that Ip is not empty since Ip 3 p and also see
that Ip is closed because for any i ∈ Ip , we have

{τi(s) : s ∈ S} ⊆ {τ∗i (xxx) : xxx ∈ S∗} = Ii
(A)
⊆ Ip,

(A· 68)

where (A) follows from (A· 63). By the same argument, also
Iq is a non-empty closed set. Therefore, by Lemma 23 (ii),
there exist stationary distributions πππ = (π0, π1, . . . , π |F |−1)
and πππ′ = (π′0, π

′
1, . . . , π

′
|F |−1) of F such that

∀i ∈ [F] \ Ip; πi = 0 (A· 69)

and
∀i ∈ [F] \ Iq; π′i = 0. (A· 70)

Since πππ satisfies (20), we have πj > 0 for some j ∈ [F].
By (A· 69) and (A· 67), it must hold that j ∈ Ip ⊆ [F] \ Iq .
Hence, we obtain π′j = 0 < πj by (A· 70). This shows
πππ , πππ′. Therefore, we conclude that F has two distinct
stationary distributions as desired.

(Sufficiency) We prove RF = ∅ assuming that
there exist two distinct stationary distributions πππ =

(π0, π1, . . . , π |F |−1) and πππ′ = (π′0, π
′
1, . . . , π

′
|F |−1) of F. Then

xxx = (x0, x1, . . . , x |F |−1) B πππ − πππ′ , 000 satisfies
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xxxQ(F) = πππQ(F) − πππ′Q(F)
(A)
= πππ − πππ′ = xxx, (A· 71)∑

i∈[F]

xi =
∑
i∈[F]

πi −
∑
i∈[F]

π′i
(B)
= 1 − 1 = 0, (A· 72)

where (A) follows from (19), and (B) follows from (20).
Thus, by xxx , 000 and (A· 72), both of I+ B {i ∈ [F] : xi > 0}
and I− B {i ∈ [F] : xi < 0} are non-empty sets. Also,
both of I+ and I− are closed by (A· 71) and Lemma 21 stated
in Appendix C.2. Therefore, by Lemma 22 (ii), we obtain
RF ⊆ I+ and RF ⊆ I−, which conclude RF ⊆ I+ ∩ I− = ∅

as desired.
(Proof of (ii)): We showRF = I+ B {i ∈ [F] : πi(F) >

0}.
(RF ⊆ I+) By (20), the set I+ is not empty. Also, by

(19) and Lemma 21 stated in Appendix C.2, the set I+ is
closed. Hence, we obtain RF ⊆ I+ by Lemma 22 (ii).

(RF ⊇ I+) Since RF is closed by Lemma 22 (i), we see
from Lemma 23 (ii) that the unique stationary distribution
πππ(F) satisfies πi(F) = 0 for any i ∈ [F] \ RF . Therefore, we
obtain RF ⊇ I+. �

C.5 Proof of Lemma 10

The proof of Lemma 10 relies on Lemmas 22 and 23 stated
in Appendix C.4.

Proof of Lemma 10. Since RF is closed by Lemma 22 (i),
we see from Lemma 23 (i) that there exist F̄( f̄ , τ̄) ∈ F and
an injective homomorphism ϕ : [F̄] → [F] from F ′ to F
such that ϕ([F̄]) = RF . Now, it suffices to show F̄ ∈ Firr.

For any i, j ∈ [F̄], there exists xxx ∈ S∗ such that

τ∗ϕ(i)(xxx) = ϕ( j) (A· 73)

by ϕ( j) ∈ ϕ([F̄]) = RF . Thus, for any i, j ∈ [F], we have

τ̄∗i (xxx) = ϕ
−1(ϕ(τ̄∗i (xxx)))

(A)
= ϕ−1(τ∗ϕ(i)(xxx))

(B)
= ϕ−1(ϕ( j)) = j,

where (A) follows from Lemma 7 (i), and (B) follows from
(A· 73). Therefore, F̄ ∈ Firr holds. �

C.6 Proof of Lemma 12

Proof of Lemma 12. (Proof of (i)): We prove onlyPk
F ,i(bbb) ⊇

Pk
F′,i(bbb) for any i ∈ [F] and bbb ∈ C∗ because we can prove
Pk
F ,i(bbb) ⊆ P

k
F′,i(bbb), P̄

k
F ,i(bbb) ⊇ P̄

k
F′,i(bbb), and P̄k

F ,i(bbb) ⊆
P̄k
F′,i(bbb) in the similar way. To prove Pk

F ,i(bbb) ⊇ P
k
F′,i(bbb), it

suffices to prove that for any (i, xxx,bbb,ccc) ∈ [F]×S+×C∗×C≤k ,
we have

( f ′∗i (xxx) � bbbccc, f ′i (x1) � bbb)

=⇒ ∃xxx ′ ∈ S+; ( f ∗i (xxx
′) � bbbccc, fi(x ′1) � bbb) (A· 74)

because this shows that for any i ∈ [F ′], bbb ∈ C∗, and ccc ∈ Ck ,

we have

ccc ∈ Pk
F′,i(bbb)

(A)
⇐⇒ ∃xxx ∈ S+; ( f ′∗i (xxx) � bbbccc, fi(x1) � bbb)
(B)
=⇒ ∃xxx ′ ∈ S+; ( f ∗i (xxx

′) � bbbccc, fi(x ′1) � bbb)
(C)
⇐⇒ ccc ∈ Pk

F ,i(bbb)

as desired, where (A) follows from (4), (B) follows from
(A· 74), and (C) follows from (4).

Choose (i, xxx,bbb,ccc) ∈ [F]×S+×C∗×C≤k arbitrarily and
assume

f ′∗i (xxx) � bbbccc (A· 75)

and

f ′i (x1) � bbb. (A· 76)

Then we have

fi(x1)
(A)
= f ′i (x1)

(B)
� bbb, (A· 77)

where (A) follows from the assumption (a) of this lemma,
and (B) follows from (A· 76).

We prove (A· 74) by induction for |xxx |. For the base case
|xxx | = 1, we have

f ∗i (xxx) = fi(x1)
(A)
= f ′i (x1) = f ′∗i (xxx)

(B)
� bbbccc, (A· 78)

where (A) follows from the assumption (a) of this lemma,
and (B) follows from (A· 75). By (A· 78) and (A· 77), the
claim (A· 74) holds for the base case |xxx | = 1.

We consider the induction step for |xxx | ≥ 2. We have

fi(x1) f ′∗τ′i (x1)
(suff(xxx)) (A)= f ′i (x1) f ′∗τ′i (x1)

(suff(xxx))

(B)
= f ′∗i (xxx)

(C)
� bbbccc, (A· 79)

where (A) follows from the assumption (a) of this lemma, (B)
follows from (2), and (C) follows from (A· 75). Therefore,
fi(x1) � bbbccc or fi(x1) ≺ bbbccc holds. In the case fi(x1) � bbbccc,
clearly xxx ′ B x1 satisfies f ∗i (xxx

′) � bbbccc and fi(x ′1) = fi(x1) � bbb
by (A· 77) as desired. Thus, now we assume fi(x1) ≺ bbbccc.
Then we have

| fi(x1)
−1bbbccc | = −| fi(x1)| + |bbb| + |ccc |

(A)
= −| f ′i (x1)| + |bbb| + |ccc |
(B)
≤ |ccc | ≤ k, (A· 80)

where (A) follows from the assumption (a) of this lemma,
and (B) follows from (A· 76). By (A· 79), we have

f ′∗τ′i (x1)
(suff(xxx)) � fi(x1)

−1bbbccc. (A· 81)

By (A· 80) and (A· 81), we can apply the induction hypoth-
esis to (τ′i (x1), suff(xxx), λ, fi(x1)

−1bbbccc). Hence, there exists
xxx ′ ∈ S∗ such that f ∗

τ′i (x1)
(xxx ′) � fi(x1)

−1bbbccc, which leads to



440
IEICE TRANS. FUNDAMENTALS, VOL.E107–A, NO.3 MARCH 2024

fi(x1)
−1bbbccc ∈ Pk′

F ,τ′i (x1)
by (8), where k ′ B | fi(x1)

−1bbbccc |. By
Lemma 4 (i), there exists ccc′ ∈ Ck−k

′ such that

fi(x1)
−1bbbcccccc′ ∈ Pk

F ,τ′i (x1)

(A)
= Pk

F ,τi (x1)
, (A· 82)

where (A) follows from the assumption (b) of this lemma.
By (8), there exists xxx ′′ ∈ S∗ such that

f ∗τi (x1)
(xxx ′′) � fi(x1)

−1bbbcccccc′ � fi(x1)
−1bbbccc. (A· 83)

Thus, we have

f ∗i (x1xxx ′′)
(A)
= fi(x1) f ∗τi (x1)

(xxx ′′)
(B)
� fi(x1) fi(x1)

−1bbbccc
= bbbccc, (A· 84)

where (A) follows from (2), and (B) follows from (A· 83).
The induction is completed by (A· 77) and (A· 84).

(Proof of (ii)): We have

F ∈ Fext ⇐⇒
∀i ∈ [F];P1

F ,i , ∅

(A)
⇐⇒ ∀i ∈ [F ′];P1

F′,i , ∅

⇐⇒ F ′ ∈ Fext,

where (A) follows from (i) of this lemma.
(Proof of (iii)): For any i ∈ [F ′] and s ∈ S, we have

Pk
F′,τ′i (s)

∩ P̄k
F′,i( f

′
i (s))

(A)
= Pk

F ,τ′i (s)
∩ P̄k

F ,i( f
′
i (s))

(B)
= Pk

F ,τi (s)
∩ P̄k

F ,i( fi(s))
(C)
= ∅,

where (A) follows from (i) of this lemma, (B) follows from
the assumptions (a) and (b), and (C) follows fromF ∈ Fk-dec.
Namely, F ′ satisfies Definition 5 (i).

For any i ∈ [F ′] and s, s′ ∈ S such that s , s′ and
f ′i (s) = f ′i (s

′), we have

fi(s) = fi(s′) (A· 85)

by the assumption (a), and we have

Pk
F′,τ′i (s)

∩ Pk
F′,τ′i (s

′)

(A)
⊆ Pk

F ,τ′i (s)
∩ Pk

F ,τ′i (s
′)

(B)
= Pk

F ,τi (s)
∩ Pk

F ,τi (s′)

(C)
= ∅,

where (A) follows from (i) of this lemma, (B) follows from
the assumptions (b), and (C) follows from F ∈ Fk-dec and
(A· 85). Namely, F ′ satisfies Definition 5 (ii). �

C.7 Proof of Lemma 13

Proof of Lemma 13. We show RF′ 3 p since this implies
F ′ ∈ Freg by Lemma 8 (i). Namely, we show that for any
j ∈ [F ′], there exists xxx ∈ S∗ such that τ′∗j (xxx) = p.

For j = p, the sequence xxx B λ satisfies τ′∗j (xxx) = p
by (3). Thus, we now consider the case j , p. Choose

j ∈ [F ′] \ {p} arbitrarily. Since p ∈ RF by F ∈ Firr, there
exists xxx = x1x2 . . . xn ∈ S+ such that τ∗j (xxx) = p. Let r ≥ 1
be the minimum positive integer such that

τ∗j (x1x2 . . . xr ) ∈ I. (A· 86)

Note that there exists such an integer r ≤ n since τ∗j (xxx) =
τ∗j (x1x2 . . . xn) = p ∈ I. We show that

τ′∗j (x1x2 . . . xr′) = τ∗j (x1x2 . . . xr′) (A· 87)

for any r ′ = 1,2, . . . ,r − 1 by induction for r ′. For the base
case r ′ = 0, we have τ′∗j (λ) = j = τ∗j (λ) by (3). We consider
the induction step for r ′ ≥ 1. We have

τ′∗j (x1x2 . . . xr′)
(A)
= τ′τ′∗j (x1x2...xr′−1)

(xr′)

(B)
= τ′τ∗j (x1x2...xr′−1)

(xr′)

(C)
= ττ∗j (x1x2...xr′−1)(xr′)

(D)
= τ∗j (x1x2 . . . xr′)

as desired, where (A) follows from Lemma 1 (ii), (B) fol-
lows from the induction hypothesis, (C) is obtained by ap-
plying the second case of (33) since ττ∗j (x1x2...xr′−1)(xr′) =
τ∗j (x1x2 . . . xr′) < I by r ′ ≤ r − 1 and the minimality of r ,
and (D) follows from Lemma 1 (ii).

Thus, we obtain

τ′∗j (x1x2 . . . xr )
(A)
= τ′τ′∗j (x1x2...xr−1)

(xr )

(B)
= τ′τ∗j (x1x2...xr−1)

(xr )
(C)
= p

as desired, where (A) follows from Lemma 1 (ii), (B) follows
from (A· 87), and (C) follows from (A· 86) and the first case
of (33). �

C.8 Proof of Lemma 15

Proof of Lemma 15. Let p ∈ arg min
i∈[F]

(hi(F) − hi(F ′)). Then

it holds that
∀i ∈ [F]; hi(F ′) − hp(F ′) ≤ hi(F) − hp(F). (A· 88)

We have∑
i∈[F]

(hi(F) − hp(F))Qp,i(F)

=
∑
i∈[F]

(hi(F) − hp(F))
∑
s∈S

τp (s)=i

µ(s)

=
∑
i∈[F]

∑
s∈S

τp (s)=i

(hi(F) − hp(F))µ(s)

=
∑
i∈[F]

∑
s∈S

τp (s)=i

(hτp (s)(F) − hp(F))µ(s)
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=
∑
s∈S

(hτp (s)(F) − hp(F))µ(s). (A· 89)

Similarly, we have∑
i∈[F]

(hi(F) − hp(F))Qp,i(F ′)

=
∑
s∈S

(hτ′p (s)(F) − hp(F))µ(s). (A· 90)

Hence, we obtain

L(F ′)
(A)
= Lp(F ′) +

∑
i∈[F]

(hi(F ′) − hp(F ′))Qp,i(F ′)

(B)
≤ Lp(F ′) +

∑
i∈[F]

(hi(F) − hp(F))Qp,i(F ′)

(C)
= Lp(F ′) +

∑
s∈S

(hτ′p (s)(F) − hp(F))µ(s)

(D)
≤ Lp(F) +

∑
s∈S

(hτp (s)(F) − hp(F))µ(s)

(E)
= Lp(F) +

∑
i∈[F]

(hi(F) − hp(F))Qp,i(F)

(F)
= L(F)

as desired, where (A) follows from (34), (B) follows from
(A· 88), (C) follows from (A· 90), (D) follows from the as-
sumptions (a) and (b) of this lemma, (E) follows from (A· 89),
and (F) follows from (34). �

C.9 Proof of Lemma 16

Proof of Lemma 16. (Proof of (i)): We prove by induction
for |zzz |. For the base case |zzz | = 0, we have τ′∗

〈λ〉
(λ) = 〈λ〉 by

(3). We consider the induction step for |zzz | ≥ 1. We have

τ′∗
〈λ〉(zzz)

(A)
= τ′τ′∗

〈λ〉
(pref(zzz))(zn)

(B)
= τ′

〈pref(zzz)〉(zn)
(C)
= 〈zzz〉,

(A· 91)

where zzz = z1z2 . . . zn and (A) follows from Lemma 1 (ii),
(B) follows from the induction hypothesis, and (C) follows
from the first case of (49).

(Proof of (ii)): It suffices to show that 〈λ〉 ∈ RF′ be-
cause it guarantees that for any j ∈ [F ′], there exists xxx ∈ S∗

such that τ′∗j (xxx) = 〈λ〉, which leads to that for any zzz ∈ S≤L ,
we have

τ′∗j (xxxzzz)
(A)
= τ′∗τ′∗j (xxx)

(zzz) = τ′∗
〈λ〉(zzz)

(B)
= 〈zzz〉 (A· 92)

as desired, where (A) follows from Lemma 1 (ii), and (B)
follows from (i) of this lemma.

To prove 〈λ〉 ∈ RF′ , we show that there exists xxx ∈ S∗

such that τ′∗j (xxx) = 〈λ〉 for the following two cases separately:
(I) the case j ∈ [F] and (II) the case j = [F ′] \ [F].

(I) The case j ∈ [F]: By the assumption that p = 〈λ〉 ∈
RF , there exists xxx = x1x2 . . . xn′ ∈ S∗ such that τ∗j (xxx) =
〈λ〉. We choose the shortest xxx among such sequences.
Then we can see τ′∗j (x1x2 . . . xr ) = τ∗j (x1x2 . . . xr ) for
any r = 0,1,2, . . . ,n by induction for r . For the base
case r = 0, we have τ′∗j (λ) = j = τ∗j (λ) by (3). We
consider the induction step for r ≥ 1. We have

τ′∗j (x1x2 . . . xr )
(A)
= τ′τ′∗j (x1x2...xr−1)

(xr )

(B)
= τ′τ∗j (x1x2...xr−1)

(xr )

(C)
= ττ∗j (x1x2...xr−1)(xr )

(D)
= τ∗j (x1x2 . . . xr )

as desired, where (A) follows from (3), (B) follows
from the induction hypothesis, (C) follows from the
third case of (49) since τ∗j (x1x2 . . . xr−1) ∈ [F] \ {〈λ〉}
by the definition of xxx, and (D) follows from Lemma
1 (ii). Therefore, we obtain τ′∗j (xxx) = τ∗j (xxx) = 〈λ〉 as
desired.

(II) The case where j = [F ′] \ [F]: Then we have j = 〈zzz〉
for some zzz ∈ S≤L . Choose z′z′z′ = z′1z′2 . . . z′n′ ∈ S

L−|zzz |+1

arbitrarily. We have

τ′∗
〈λ〉(zzzzzz′)

(A)
= τ′τ′∗

〈λ〉
(zzzpref(zzz′))(z

′
n′)

(B)
= τ′

〈zzzpref(zzz′)〉(z
′
n′)
(C)
= τ∗

〈λ〉(zzzzzz′)

= τ∗
|F |−1(zzzzzz′) ∈ [F],

where (A) follows from Lemma 1 (ii), (B) follows from
(i) of this lemma and zzzpref(zzz′) ∈ S≤L , and (C) fol-
lows from the second case of (49) and zzzpref(zzz′) ∈ SL .
Hence, by the discussion for the case (I) above, there
exists xxx ′ ∈ S∗ such that τ′∗

τ′∗
〈λ〉
(zzzzzz′)
(xxx ′) = 〈λ〉. Thus,

xxx B zzz′xxx ′ satisfies

τ′∗
〈zzz 〉(xxx) = τ

′∗
〈zzz 〉(zzz

′xxx ′)
(A)
= τ′∗τ′∗

〈λ〉
(zzz)(zzz

′xxx ′)
(B)
= τ′∗

〈λ〉(zzzzzz′xxx ′)

(C)
= τ′∗τ′∗

〈λ〉
(zzzzzz′)(xxx

′) = 〈λ〉,

where (A) follows from (i) of this lemma, (B) follows
from Lemma 1 (ii), and (C) follows from Lemma 1 (ii).

�

C.10 Proof of Lemma 17

Proof of Lemma 17. (Proof of (i)): We prove by the in-
duction for |xxx |. For the base case |xxx | = 0, we have
f ′′∗
〈zzz 〉
(λ) = λ = f ′∗

〈zzz 〉
(λ) by (2). We consider the induction

step for |xxx | ≥ 1 choosing zzz ∈ S≤L arbitrarily and dividing
into the following two cases: the case f ′∗

〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzxxx)

and the other case.

• The case f ′∗
〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzxxx): We consider the
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following two cases separately: the case f ′∗
〈λ〉
(zzz) ≺ ddd �

f ′∗
〈λ〉
(zzzx1) and the case f ′∗

〈λ〉
(zzzx1) ≺ ddd � f ′∗

〈λ〉
(zzzxxx).

– The case f ′∗
〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzx1): We have

f ′′∗
〈zzz 〉(xxx)
(A)
= f ′′

〈zzz 〉(x1) f ′′∗〈zzzx1 〉
(suff(xxx))

(B)
= f ′∗

〈zzz 〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzx1) f ′′∗〈zzzx1 〉
(suff(xxx))

(C)
= f ′∗

〈zzz 〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzx1) f ′∗〈zzzx1 〉
(suff(xxx))

(D)
= f ′∗

〈zzz 〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzxxx),

where (A) follows from (2) and Lemma 16 (i), (B)
follows from the first case of (51) and f ′∗

〈λ〉
(zzz) ≺

ddd � f ′∗
〈λ〉
(zzzx1), (C) follows from the second case of

(53) by the induction hypothesis and f ′∗
〈λ〉
(zzzx1) ⊀

ddd, and (D) follows from (2).
– The case f ′∗

〈λ〉
(zzzx1) ≺ ddd � f ′∗

〈λ〉
(zzzxxx): We have

f ′′∗
〈zzz 〉(xxx)
(A)
= f ′′

〈zzz 〉(x1) f ′′∗〈zzzx1 〉
(suff(xxx))

(B)
= f ′

〈zzz 〉(x1) f ′′∗〈zzzx1 〉
(suff(xxx))

(C)
= f ′

〈zzz 〉(x1) f ′∗〈λ〉(zzzx1)
−1pref(ddd)ddd−1( f ′∗

〈λ〉(zzzxxx))
(D)
= f ′∗

〈zzz 〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzxxx),

where (A) follows from (2) and Lemma 16 (i),
(B) follows from the second case of (51) since
ddd � f ′∗

〈λ〉
(zzzx1), (C) follows from the first case of

(53) by the induction hypothesis and f ′∗
〈λ〉
(zzzx1) ≺

ddd � f ′∗
〈λ〉
(zzzxxx), and (D) follows from (2).

• The other case: We have

f ′′∗
〈zzz 〉(xxx)

(A)
= f ′′

〈zzz 〉(x1) f ′′∗〈zzzx1 〉
(suff(xxx))

(B)
= f ′

〈zzz 〉(x1) f ′′∗〈zzzx1 〉
(suff(xxx))

(C)
= f ′

〈zzz 〉(x1) f ′∗〈zzzx1 〉
(suff(xxx))

(D)
= f ′∗

〈zzz 〉(xxx),

where (A) follows from (2) and Lemma 16 (i), (B)
follows from the second case of (51) since f ′∗

〈λ〉
(zzz) ≺

ddd � f ′∗
〈λ〉
(zzzx1) does not hold, (C) follows from the sec-

ond case of (53) by the induction hypothesis and that
f ′∗
〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zzzx1) does not hold, and (D) follows

from (2).

(Proof of (ii)): Assume that

f ′′
〈zzz 〉(s) ≺ f ′′

〈zzz 〉(s
′). (A· 93)

In the case f ′∗
〈λ〉
(zzz) ⊀ ddd, we have

f ′
〈zzz 〉(s)

(A)
= f ′′

〈zzz 〉(s)
(B)
≺ f ′′

〈zzz 〉(s
′)
(C)
= f ′

〈zzz 〉(s
′) (A· 94)

as desired, where (A) follows from the second case of (51)
and f ′∗

〈λ〉
(zzz) ⊀ ddd, (B) follows from (A· 93), and (C) follows

from the second case of (51) and f ′∗
〈λ〉
(zzz) ⊀ ddd.

We consider the case f ′∗
〈λ〉
(zzz) ≺ ddd dividing into four

cases by whether ddd � f ′∗
〈λ〉
(zzzs) and whether ddd � f ′∗

〈λ〉
(zzzs′).

• The case ddd � f ′∗
〈λ〉
(zzzs),ddd � f ′∗

〈λ〉
(zzzs′): We have

f ′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1( f ′∗
〈λ〉(zzz) f

′∗
〈zzz 〉(s))

(A)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzs)
(B)
= f ′′

〈zzz 〉(s)
(C)
≺ f ′′

〈zzz 〉(s
′)

(D)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzs′)
(E)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1( f ′∗

〈λ〉(zzz) f
′
〈zzz 〉(s

′)), (A· 95)

where (A) follows from Lemma 1 (i) and Lemma 16 (i),
(B) follows from the first case of (51) and ddd � f ′∗

〈λ〉
(zzzs),

(C) follows from (A· 93), (D) follows from the first
case of (51) and ddd � f ′∗

〈λ〉
(zzzs′), and (E) follows from

Lemma 1 (i) and Lemma 16 (i). Comparing both sides
of (A· 95), we obtain f ′

〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′) as desired.

• The case ddd � f ′∗
〈λ〉
(zzzs),ddd � f ′∗

〈λ〉
(zzzs′): We show that this

case is impossible. We have

f ′∗
〈λ〉(zzzs′)
(A)
= f ′∗

〈λ〉(zzz) f
′
〈zzz 〉(s

′)

(B)
= f ′∗

〈λ〉(zzz) f
′′
〈zzz 〉(s

′)

(C)
� f ′∗

〈λ〉(zzz) f
′′
〈zzz 〉(s)

(D)
= f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1dddpref(ddd)−1 f ′∗
〈λ〉(zzzs)

= dddpref(ddd)−1ddd
� ddd,

where (A) follows from Lemma 1 (i) and Lemma 16
(i), (B) follows from the second case of (51) and ddd �
f ′∗
〈λ〉
(zzzs′), (C) follows from (A· 93), and (D) follows

from the first case of (51) and ddd � f ′∗
〈λ〉
(zzzs). This

conflicts with ddd � f ′∗
〈λ〉
(zzzs′).

• The case ddd � f ′∗
〈λ〉
(zzzs),ddd � f ′∗

〈λ〉
(zzzs′): We have

f ′∗
〈λ〉(zzzs)
(A)
= f ′∗

〈λ〉(zzz) f
′
〈zzz 〉(s)

(B)
= f ′∗

〈λ〉(zzz) f
′′
〈zzz 〉(s)

(C)
≺ f ′∗

〈λ〉(zzz) f
′′
〈zzz 〉(s

′)

(D)
= f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1dddpref(ddd)−1 f ′∗
〈λ〉(zzzs′)
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= dddpref(ddd)−1 f ′∗
〈λ〉(zzzs′),

where (A) follows from Lemma 1 (i) and Lemma 16
(i), (B) follows from the second case of (51) and ddd �
f ′∗
〈λ〉
(zzzs), (C) follows from (A· 93), and (D) follows from

the first case of (51) and ddd � f ′∗
〈λ〉
(zzzs′).

Therefore, we have at least one of f ′∗
〈λ〉
(zzzs) ≺ ddd and

f ′∗
〈λ〉
(zzzs) � ddd. Sinceddd � f ′∗

〈λ〉
(zzzs), we have f ′∗

〈λ〉
(zzzs) ≺ ddd.

Thus, we have f ′∗
〈λ〉
(zzzs) ≺ ddd � f ′∗

〈λ〉
(zzzs′), which leads to

f ′
〈zzz 〉
(s) ≺ f ′

〈zzz 〉
(s′) as desired.

• The case ddd � f ′∗
〈λ〉
(zzzs),ddd � f ′∗

〈λ〉
(zzzs′): We have

f ′
〈zzz 〉(s)

(A)
= f ′′

〈zzz 〉(s)
(B)
≺ f ′′

〈zzz 〉(s
′)
(C)
= f ′

〈zzz 〉(s
′) (A· 96)

as desired, where (A) follows from the second case of
(51) and ddd � f ′∗

〈λ〉
(zzzs), (B) follows from (A· 93), and (C)

follows from the second case of (51) and ddd � f ′∗
〈λ〉
(zzzs′).

(Proof of (iii)): Choose xxx ∈ S≥L arbitrarily. We have

| f ′∗
〈λ〉(xxx)|

(A)
= | f ∗

〈λ〉(xxx)|
(B)
≥

⌊
|xxx |
|F |

⌋
≥

⌊
L
|F |

⌋
(C)
=

⌊
|F |(|ddd | + 1)
|F |

⌋
= |ddd | + 1, (A· 97)

where (A) follows from Lemma 7 (i) since ϕ defined in (50)
is a homomorphism from F ′ to F, (B) follows from Lemma
5, and (C) follows from the definition of L. Also, we have

| f ′′∗
〈λ〉(xxx)|
(A)
≥ min{| f ′∗

〈λ〉(xxx)|, | f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1( f ′∗
〈λ〉(zzzxxx))|}

= min{| f ′∗
〈zzz 〉(xxx)|, | f

′∗
〈zzz 〉(xxx)| − 1}

(B)
≥ |ddd |,

where (A) follows from (i) of this lemma, and (B) follows
from (A· 97). �

C.11 Proof of Lemma 18

Proof of Lemma 18. (Proof of (i)): Assume

f ′′∗
〈λ〉(xxx) � ccc. (A· 98)

We consider the following two cases separately: the case
ddd � f ′∗

〈λ〉
(xxx) and the case ddd � f ′∗

〈λ〉
(xxx).

• The case ddd � f ′∗
〈λ〉
(xxx): We have

f ′′∗
〈λ〉(xxx)

(A)
= pref(ddd)ddd−1 f ′∗

〈λ〉(xxx) � pref(ddd), (A· 99)

where (A) follows from the first case of (53) and
ddd � f ′∗

〈λ〉
(xxx). Comparing (A· 98) and (A· 99), we have

pref(ddd) � ccc since |pref(ddd)| ≥ k ≥ |ccc |. Therefore, by
ddd � f ′∗

〈λ〉
(xxx), we obtain f ′∗

〈λ〉
(xxx) � ddd � pref(ddd) � ccc as

desired.

• The case ddd � f ′∗
〈λ〉
(xxx): We have

f ′∗
〈λ〉(xxx)

(A)
= f ′′∗

〈λ〉(xxx)
(B)
� ccc, (A· 100)

where (A) follows from the second case of (53) and
ddd � f ′∗

〈λ〉
(xxx), and (B) follows from (A· 98).

(Proof of (ii)): For i ∈ [F] \ {〈λ〉}, we have f ′′i (s) =
f ′i (s) directly from the second case of (51). We consider the
case where i = 〈zzz〉 for some zzz ∈ SL . Then we have f ′∗

〈λ〉
(zzz) ⊀

ddd because | f ′∗
〈λ〉
(zzz)| ≥ |ddd | + 1 by Lemma 17 (iii). Therefore,

by the second case of (51), we obtain f ′′i (s) = f ′i (s).
(Proof of (iii)): We prove only that Pk

F′′,i(bbb) ⊆ P
k
F′,i(bbb)

for any i ∈ J and bbb ∈ C∗ because we can prove P̄k
F′′,i(bbb) ⊆

P̄k
F′,i(bbb) in the similar way. To prove Pk

F′′,i(bbb) ⊆ P
k
F′,i(bbb), it

suffices to prove that for any (i, xxx,bbb,ccc) ∈ J ×S+×C∗×C≤k ,
we have

( f ′′∗i (xxx) � bbbccc, f ′′i (x1) � bbb)

=⇒ ∃xxx ′ ∈ S+; ( f ′∗i (xxx
′) � bbbccc, f ′i (x

′
1) � bbb) (A· 101)

because this shows that for any i ∈ J , bbb ∈ C∗, and ccc ∈ Ck ,
we have

ccc ∈ Pk
F′′,i(bbb)

(A)
⇐⇒ ∃xxx ∈ S+; ( f ′′∗i (xxx) � bbbccc, f ′′i (x1) � bbb)
(B)
=⇒ ∃xxx ′ ∈ S+; ( f ′∗i (xxx

′) � bbbccc, f ′i (x
′
1) � bbb)

(C)
⇐⇒ ccc ∈ Pk

F′,i(bbb)

as desired, where (A) follows from (4), (B) follows from
(A· 101), and (C) follows from (4).

Choose (i, xxx,bbb,ccc) ∈ [F]×S+×C∗×C≤k arbitrarily and
assume

f ′′∗i (xxx) � bbbccc (A· 102)

and

f ′′i (x1) � bbb. (A· 103)

Then we have

f ′i (x1)
(A)
= f ′′i (x1)

(B)
� bbb, (A· 104)

where (A) follows from (ii) of this lemma, and (B) follows
from (A· 103).

We prove (A· 101) by induction for |xxx |. For the base
case |xxx | = 1, we have

f ′∗i (xxx) = f ′i (x1)
(A)
= f ′′i (x1) = f ′′∗i (xxx)

(B)
� bbbccc (A· 105)

as desired, where (A) follows from (ii) of this lemma, and
(B) follows from (A· 102). By (A· 105) and (A· 104), the
claim (A· 101) holds for the base case |xxx | = 1.

We consider the induction step for |xxx | ≥ 2. We have
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f ′i (x1) f ′′∗τ′′i (x1)
(suff(xxx)) (A)= f ′′i (x1) f ′′∗τ′′i (x1)

(suff(xxx))

(B)
= f ′′∗i (xxx)

(C)
� bbbccc, (A· 106)

where (A) follows from (ii) of this lemma, (B) follows from
(2), and (C) follows from (A· 102).

Therefore, f ′i (x1) � bbbccc or f ′i (x1) ≺ bbbccc holds. In the
case f ′i (x1) � bbbccc, the sequence xxx ′ B x1 satisfies f ′∗i (xxx

′) �

bbbccc and f ′i (x
′
1) = f ′i (x1) � bbb by (A· 104) as desired. Thus,

now we assume f ′i (x1) ≺ bbbccc. Then we have

| f ′i (x1)
−1bbbccc | = −| f ′i (x1)| + |bbb| + |ccc |

(A)
= −| f ′′i (x1)| + |bbb| + |ccc |
(B)
≤ |ccc |
≤ k, (A· 107)

where (A) follows from (ii) of this lemma, and (B) follows
from (A· 103). By (A· 106), we have

f ′′∗τ′′i (x1)
(suff(xxx)) � f ′i (x1)

−1bbbccc. (A· 108)

We can see that there exists xxx ′ ∈ S+ such that

f ′∗τ′′i (x1)
(xxx ′) � f ′i (x1)

−1bbbccc (A· 109)

as follows.

• The case τ′′i (x1) = 〈λ〉: By (A· 107), we can apply (i) of
this lemma to obtain that xxx ′ B suff(xxx) satisfies (A· 109)
from (A· 108).

• The case τ′′i (x1) ∈ J : By (A· 107) and
(A· 108), we can apply the induction hypothesis to
(τ′′i (x1), suff(xxx), λ, f ′i (x1)

−1bbbccc).

Therefore, we have

f ′∗i (x1xxx ′)
(A)
= f ′i (x1) f ′∗τ′i (x1)

(xxx ′)

(B)
= f ′i (x1) f ′∗τ′′i (x1)

(xxx ′)

(C)
� f ′i (x1) f ′i (x1)

−1bbbccc
= bbbccc, (A· 110)

where (A) follows from (2), (B) follows from (52), and
(C) follows from (A· 109). The induction is completed by
(A· 104) and (A· 110). �

C.12 Proof of Lemma 19

Proof of Lemma 19. (Proof of (i)): Assume that

bbb � bbb′. (A· 111)

In the case f ′∗
〈λ〉
(zzz) � pref(ddd), we have

ψzzz(bbb)
(A)
= bbb

(B)
� bbb′

(C)
= ψzzz(bbb′), (A· 112)

where (A) follows from the second case of (60) and f ′∗
〈λ〉
(zzz) �

pref(ddd), (B) follows from (A· 111), and (C) follows from the
second case of (60) and f ′∗

〈λ〉
(zzz) � pref(ddd).

We consider the case f ′∗
〈λ〉
(zzz) � pref(ddd) dividing into

four cases by whether pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb and whether

pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb′.

• The case pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb,pref(ddd) ≺ f ′∗

〈λ〉
(zzz)bbb′: We

have

ψzzz(bbb)
(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz)bbb)
(B)
� f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz)bbb
′)
(C)
= ψzzz(bbb′)

as desired, where (A) follows from the first case of (60)
and pref(ddd) ≺ f ′∗

〈λ〉
(zzz)bbb, (B) follows from (A· 111), and

(C) follows from the first case of (60) and pref(ddd) ≺
f ′∗
〈λ〉
(zzz)bbb′.

• The case pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb,pref(ddd) ⊀ f ′∗

〈λ〉
(zzz)bbb′: This

case is impossible because (A· 111) leads to pref(ddd) ≺
f ′∗
〈λ〉
(zzz)bbb � f ′∗

〈λ〉
(zzz)bbb′, which conflicts with pref(ddd) ⊀

f ′∗
〈λ〉
(zzz)bbb′.

• The case pref(ddd) ⊀ f ′∗
〈λ〉
(zzz)bbb,pref(ddd) ≺ f ′∗

〈λ〉
(zzz)bbb′: By

(A· 111), we have

f ′∗
〈λ〉(zzz)bbb � f ′∗

〈λ〉(zzz)bbb
′. (A· 113)

By (A· 113) and pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb′, exactly one of

pref(ddd) ≺ f ′∗
〈λ〉
(zzz)bbb and pref(ddd) � f ′∗

〈λ〉
(zzz)bbb holds. Since

the former does not hold by pref(ddd) ⊀ f ′∗
〈λ〉
(zzz)bbb, the

latter holds:

f ′∗
〈λ〉(zzz)bbb � pref(ddd). (A· 114)

Thus, we have

ψzzz(bbb)
(A)
= bbb = f ′∗

〈λ〉(zzz)
−1 f ′∗
〈λ〉(zzz)bbb

(B)
� f ′∗

〈λ〉(zzz)
−1pref(ddd)

� f ′∗
〈λ〉(zzz)

−1dddpref(ddd)−1( f ′∗
〈λ〉(zzz)bbb

′)
(C)
= ψzzz(bbb′),

where (A) follows from the second case of (60) and
pref(ddd) ⊀ f ′∗

〈λ〉
(zzz)bbb, (B) follows from (A· 114), and

(C) follows from the first case of (60) and pref(ddd) ≺
f ′∗
〈λ〉
(zzz)bbb′.

• The case pref(ddd) ⊀ f ′∗
〈λ〉
(zzz)bbb,pref(ddd) ⊀ f ′∗

〈λ〉
(zzz)bbb′: We

have

ψzzz(bbb)
(A)
= bbb

(B)
� bbb′

(C)
= ψzzz(bbb′) (A· 115)

as desired, where (A) follows from the second case of
(60) and pref(ddd) ⊀ f ′∗

〈λ〉
(zzz)bbb, (B) follows from (A· 111),

and (C) follows from the second case of (60) and
pref(ddd) ⊀ f ′∗

〈λ〉
(zzz)bbb′.

(Proof of (ii)): We consider the following three cases
separately: (I) the case f ′∗

〈λ〉
(zzz) � pref(ddd) ≺ f ′∗

〈λ〉
(zxzxzx), (II)

the case f ′∗
〈λ〉
(zzzxxx) � pref(ddd) ≺ f ′∗

〈λ〉
(zzzxxx)ccc, and (III) the other
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case:

(I) The case f ′∗
〈λ〉
(zzz) � pref(ddd) ≺ f ′∗

〈λ〉
(zxzxzx): We have

f ′∗
〈λ〉(zzz) ≺ ddd � f ′∗

〈λ〉(zxzxzx) (A· 116)

since

pref(ddd)d̄l
(A)
< P∗F , 〈λ〉

(B)
= P∗F′, 〈λ〉, (A· 117)

where (A) follows from (47), and (B) follows from
Lemma 7 (ii) since ϕ defined in (50) is a homomor-
phism from F ′ to F. Therefore, by the second case of
(60), we obtain

f ′′∗
〈zzz 〉(xxx) = f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1( f ′∗

〈λ〉(zzzxxx)).
(A· 118)

We consider the following two cases separately: (I-A)
the case f ′∗

〈λ〉
(zzz) ≺ f ′∗

〈λ〉
(zxzxzx) = ddd,ccc = λ and (I-B) the

other case.

(I-A) The case f ′∗
〈λ〉
(zzz) ≺ f ′∗

〈λ〉
(zxzxzx) = ddd,ccc = λ: We have

f ′∗
〈λ〉(zzz) f

′′∗
〈zzz 〉(xxx)ccc

(A)
= f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1( f ′∗
〈λ〉(zzzxxx))ccc

(B)
= f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1dddccc
(C)
= pref(ddd)
� pref(ddd), (A· 119)

where (A) follows from (A· 118), (B) follows from
f ′∗
〈λ〉
(zxzxzx) = ddd, and (C) follows from ccc = λ.

Hence, we have

ψzzz( f ′′∗〈zzz 〉(xxx)ccc)
(A)
= f ′′∗

〈zzz 〉(xxx)ccc
(B)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1 f ′∗

〈λ〉(zzzxxx)ccc
(C)
= f ′∗

〈λ〉(zzz)
−1pref( f ′∗

〈λ〉(zzzxxx))ddd−1ddd
(D)
= f ′∗

〈λ〉(zzz)
−1 f ′∗
〈λ〉(zzz)pref( f ′∗

〈zzz 〉(xxx)))ddd
−1ddd

= pref( f ′∗
〈zzz 〉(xxx))

as desired, where (A) follows from the second case
of (60) and (A· 119), (B) follows from (A· 118),
(C) follows from f ′∗

〈λ〉
(zxzxzx) = ddd and ccc = λ, and

(D) follows from Lemma 1 (i), Lemma 16 (i), and
f ′∗
〈λ〉
(zzz) ≺ f ′∗

〈λ〉
(zxzxzx).

(I-B) The other case: Then by (A· 116), we have

ddd ≺ f ′∗
〈λ〉(zxzxzx)ccc, (A· 120)

since it does not hold that f ′∗
〈λ〉
(zzz) ≺ f ′∗

〈λ〉
(zxzxzx) =

ddd,ccc = λ by the assumption of the case (I-B).
We have

f ′∗
〈λ〉(zzz) f

′′∗
〈zzz 〉(xxx)ccc

(A)
= f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1( f ′∗
〈λ〉(zzzxxx))ccc

(B)
� f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1ddd

= pref(ddd) (A· 121)
(C)
� f ′∗

〈λ〉(zzz) (A· 122)

as desired, where (A) follows from (A· 118), (B)
follows from (A· 120), and (C) follows from the
assumption of the case (I).
Hence, we have

ψzzz( f ′′〈zzz 〉(xxx)ccc)
(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz) f
′′∗
〈zzz 〉(xxx)ccc)

(B)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz) f
′∗
〈λ〉(zzz)

−1

pref(ddd)ddd−1( f ′∗
〈λ〉(zzzxxx)ccc))

= f ′∗
〈zzz 〉(xxx)ccc

(C)
= f ′∗

〈zzz 〉(xxx)ψzxzxzx(ccc),

where (A) follows from the first case of (60),
(A· 121), and (A· 122), (B) follows from (A· 118),
and (C) follows from the second case of (60) and
the assumption of the case (I).

(II) The case f ′∗
〈λ〉
(zzzxxx) � pref(ddd) ≺ f ′∗

〈λ〉
(zzzxxx)ccc: Then since

ddd � f ′∗
〈λ〉
(zzzxxx), we have

f ′′∗
〈zzz 〉(xxx) = f ′∗

〈zzz 〉(xxx) (A· 123)

applying the second case of (53). Therefore, we have

f ′∗
〈λ〉(zzz) � f ′∗

〈λ〉(zzzxxx)
(A)
� pref(ddd) (A· 124)
(A)
≺ f ′∗

〈λ〉(zzzxxx)ccc
(B)
= f ′∗

〈λ〉(zzz) f
′∗
〈zzz 〉(xxx)ccc

(C)
= f ′∗

〈λ〉(zzz) f
′′∗
〈zzz 〉(xxx)ccc, (A· 125)

where (A)s follow from the assumption of the case (II),
(B) follows from Lemma 1 (i) and Lemma 16 (i), and
(C) follows from (A· 123).
Hence, we have

ψzzz( f ′′∗〈zzz 〉(xxx)ccc)
(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz) f
′′∗
〈zzz 〉(xxx)ccc)

(B)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zzz) f
′∗
〈zzz 〉(xxx)ccc)

(C)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1( f ′∗

〈λ〉(zxzxzx)ccc)

= f ′∗
〈zzz 〉(xxx) f

′∗
〈zzz 〉(xxx)

−1 f ′∗
〈λ〉(zzz)

−1dddpref(ddd)−1( f ′∗
〈λ〉(zxzxzx)ccc)
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(D)
= f ′∗

〈zzz 〉(xxx) f
′∗
〈λ〉(zxzxzx)−1dddpref(ddd)−1( f ′∗

〈λ〉(zxzxzx)ccc)
(E)
= f ′∗

〈zzz 〉(xxx)ψzxzxzx(ccc)

as desired, where (A) follows from the first case of
(60), (A· 124), and (A· 125), (B) follows from (A· 123),
(C) follows from Lemma 1 (i) and Lemma 16 (i), (D)
follows from Lemma 1 (i) and Lemma 16 (i), and (E)
follows from the first case of (60) and the assumption
of the case (II).

(III) The other case: The following implication holds:

f ′∗
〈λ〉(zzz) ≺ ddd � f ′∗

〈λ〉(zxzxzx)

=⇒ f ′∗
〈λ〉(zzz) � pref(ddd) ≺ f ′∗

〈λ〉(zxzxzx). (A· 126)

Now, it does not hold that f ′∗
〈λ〉
(zzz) � pref(ddd) ≺ f ′∗

〈λ〉
(zxzxzx)

by the assumption of the case (III). Hence, by the contra-
position of (A· 126), we see that f ′∗

〈λ〉
(zzz) ≺ ddd � f ′∗

〈λ〉
(zxzxzx)

does not hold. Therefore, we obtain

f ′′∗
〈zzz 〉(xxx) = f ′∗

〈zzz 〉(xxx) (A· 127)

applying the second case of (53).
By the assumption of the case (III), neither f ′∗

〈λ〉
(zzz) �

pref(ddd) ≺ f ′∗
〈λ〉
(zxzxzx) nor f ′∗

〈λ〉
(zzzxxx) � pref(ddd) ≺ f ′∗

〈λ〉
(zzzxxx)ccc

hold. Hence, the following condition does not hold:

f ′∗
〈λ〉(zzz) � pref(ddd) ≺ f ′∗

〈λ〉(zzzxxx)ccc
(A)
= f ′∗

〈λ〉(zzz) f
′′∗
〈zzz 〉(xxx)ccc,
(A· 128)

where (A) follows from (A· 127). Therefore, by the
second case of (60), we have

ψzzz( f ′′∗〈zzz 〉(xxx)ccc) = f ′′∗
〈zzz 〉(xxx)ccc. (A· 129)

Thus, we have

f ′∗
〈zzz 〉(xxx)ψzxzxzx(ccc)

(A)
= f ′′∗

〈zzz 〉(xxx)ψzxzxzx(ccc)
(B)
= f ′′∗

〈zzz 〉(xxx)ccc
(C)
= ψzzz( f ′′∗〈zzz 〉(xxx)ccc)

as desired, where (A) follows from (A· 127), (B) follows from
the second case of (60) since f ′∗

〈λ〉
(zzzxxx) � pref(ddd) ≺ f ′∗

〈λ〉
(zzzxxx)ccc

does not hold by the assumption of the case (III), and (C)
follows from (A· 129).

(Proof of (iii)): We have f ′∗
〈λ〉
(zzz) � pref(ddd) because

| f ′∗
〈λ〉
(zzz)| > |ddd | by Lemma 17 (iii). Hence, by the second case

of (60), we obtain ψ〈zzz 〉(bbb) = bbb as desired. �

Appendix D: List of Notations

A × B the Cartesian product of sets A and B, that is,
{(a, b) : a ∈ A, b ∈ B}, defined at the beginning
of Sect. 2.

|A| the cardinality of a set A, defined at the begin-
ning of Sect. 2.

Ak the set of all sequences of length k over a setA,
defined at the beginning of Sect. 2.

A≥k the set of all sequences of length greater than or
equal to k over a setA, defined at the beginning
of Sect. 2.

A≤k the set of all sequences of length less than or
equal to k over a setA, defined at the beginning
of Sect. 2.

A∗ the set of all sequences of finite length over a set
A, defined at the beginning of Sect. 2.

A+ the set of all sequences of finite positive length
over a setA, defined at the beginning of Sect. 2.

C the coding alphabet C = {0,1}, at the beginning
of Sect. 2.

c̄ the negation of c ∈ C, that is, 0̄ = 1, 1̄ = 0
defined at the beginning of the proof of Theorem
2.

f ∗i defined in Definition 2.
F simplified notation of a code-tuple F( f0, f1,

. . . , fm−1, τ0, τ1, . . . , τm−1), also written as
F( f , τ), defined below Definition 1.

F̄ an irreducible part of F, defined in Definition
14.

|F | the number of code tables of F, defined below
Definition 1.

[F] simplified notation of [|F |] = {0,1,2, . . . , |F | −
1}, defined below Definition 1.

F (m) the set of all m-code-tuples, defined after Defi-
nition 1.

F the set of all code-tuples, defined afterDefinition
1.

Fext the set of all extendable code-tuples, defined in
Definition 6.

Fk-opt defined in Definition 16.
Freg the set of all regular code-tuples, defined in Def-

inition 9.
h(F) defined after Lemma 14.
L(F) the average codeword length of a code-tuple F,

defined in Definition 10.
Li(F) the average codeword length of the i-th code

table of F, defined in Definition 10.
[m] {0,1,2, . . . ,m − 1}, defined at the beginning of

Sect. 2.
Pk
F ,i defined in Definition 3.
P̄k
F ,i defined in Definition 3.
P∗F ,i defined in Definition 4.
P̄∗F ,i defined in Definition 4.
Pk

F defined in Definition 15.
pref(xxx) the sequence obtained by deleting the last letter

of xxx, defined at the beginning of Sect. 2.
Q(F) the transition probability matrix, defined in Def-

inition 7.
Qi, j(F) the transition probability, defined in Definition

7.
R the set of all real numbers.
Rm the set of all m-dimensional real row vectors for

an integer m ≥ 1.
S the source alphabet, defined at the beginning of

Sect. 2.
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suff(xxx) the sequence obtained by deleting the first letter
of xxx, defined at the beginning of Sect. 2.

xxx � yyy xxx is a prefix of yyy, defined at the beginning of
Sect. 2.

xxx ≺ yyy xxx � yyy and xxx , yyy, defined at the beginning of
Sect. 2.

|xxx | the length of a sequence xxx, defined at the begin-
ning of Sect. 2.

xxx−1yyy the sequence zzz such that xxxzzz = yyy defined at the
beginning of Sect. 2.

λ the empty sequence, defined at the beginning of
Sect. 2.

µ(s) the probability of occurrence of symbol s, de-
fined at the beginning of Sect. 2.4.

πππ(F) defined in Definition 9.
σ the alphabet size, defined at the beginning of

Sect. 2.
τ∗i defined in Definition 2.
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