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Multi-Channel Convolutional Neural Networks for Image
Super-Resolution

Shinya OHTANI†, Nonmember, Yu KATO†, Student Member, Nobutaka KUROKI†a), Tetsuya HIROSE†,
and Masahiro NUMA†, Members

SUMMARY This paper proposes image super-resolution techniques
with multi-channel convolutional neural networks. In the proposed method,
output pixels are classified into K × K groups depending on their coordi-
nates. Those groups are generated from separate channels of a convolutional
neural network (CNN). Finally, they are synthesized into a K × K magni-
fied image. This architecture can enlarge images directly without bicubic
interpolation. Experimental results of 2×2, 3×3, and 4×4 magnifications
have shown that the average PSNR for the proposed method is about 0.2 dB
higher than that for the conventional SRCNN.
key words: super-resolution, resolution enhancement, convolutional neural
networks, CNN, deep learning

1. Introduction

Image upscaling techniques are important for a number of
applications, such as digital cameras, smart phones, and
televisions. Freeman [1] proposed an example-based super-
resolution that generates a high resolution image from a
single low resolution one with the help of a database learned
from many training images. Although it previously required
a huge database and a fast search algorithm, many improved
versions have overcome those problems. The sparse cord-
ing (SC)-based method [2]–[4] is one of the example-based
methods. This method generates a high resolution patch
with a linear combination of a few atoms in a dictionary.
The neighbor embedding (NE) method [5], [6] estimates
high resolution patches based on locally similar geometry.
Anchored Neighborhood Regression (ANR) [7] is sophisti-
cated by a combination of NE and SC. This method improves
the performance by precomputing a neighboring anchor in
the high resolution space. A+ [8] is an improved version
of ANR which increases the anchoring points. Naive Bayes
Super-Resolution Forest (NBSRF) [9] improves both speed
and quality by using a novel decision-tree approach to select
the best patch in a dictionary.

Recently, a neural network-based super-resolution (SR-
CNN) [10], [11] was proposed, and it improved image qual-
ities dramatically. In this method, the convolutional neural
network (CNN) generates a high frequency image from a low
frequency one which was previously enlarged by bicubic in-
terpolation. It enables an end-to-end training between low
and high frequency images by using the back propagation
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technique. Moreover, Gu [12] improved image qualities by
using a convolutional sparse cording (CSC) in CNN. Cur-
rently, CSC achieves the highest PSNR among the above
super-resolution methods.

However, the problem of the conventional SRCNN
and CSC is that they require bicubic interpolation for pre-
processing. The reason why bicubic method must be used to
prepare the low frequency image is that the following CNN
does not have an upsampling operation. Since the bicubic
filters are outside of the training process of the CNN, they
cannot be optimized. We think it will become a bottleneck
for improving image qualities.

This paper proposes new CNN architectures for image
super-resolution without the bicubic method. Our architec-
ture enables a perfect end-to-end training between small and
large images. All filter coefficients are optimized in the back
propagation process.

The remainder of this paper is organized as follows:
Section 2 explains the conventional SRCNN [10], [11].
Next, Sect. 3 presents three types of CNN architectures. Fi-
nally, Sect. 4 compares the performances of several super-
resolution techniques.

2. Conventional Super-Resolution with CNN

In this section, we give an overview and explain the problems
of conventional super-resolution with CNN (SRCNN) [11].

2.1 Overview

Figure 1 shows an overview of the conventional SRCNNs.
It requires the bicubic method for pre-processing. After
magnifying an input image, CNN generates a high frequency
image through three layers. The first and second layers,
F1(Y ) and F2(Y ), have multi-outputs which are defined as
feature maps. Each feature map is the filtering result for the
previous layer. The last layer, F (Y ), has a single-channel
image. The details of the calculation are as follows:

Let Y be the low frequency image which is magnified
by the bicubic method. The first layer is calculated as

F1(Y ) = max (0,W1 ∗ Y + B1) , (1)

where W1 is the filter for the convolution and B1 is the bias.
The size of W1 is 1 × f1 × f1 × n1, where f1 is the filter size
and n1 is the number of feature maps. The second layer is
calculated as

Copyright © 2017 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Overview of conventional SRCNN.

Fig. 2 16 coefficients of bicubic filter.

F2(Y ) = max (0,W2 ∗ F1(Y ) + B2) . (2)

The size of W2 is n1× f2× f2×n2, where n2 is the number of
feature maps in the second layer. Finally, the super-resolution
image of the third layer is calculated as

F (Y ) = W3 ∗ F2(Y ) + B3. (3)

The size of W3 is n2 × f3 × f3 × 1.
In the training process, parameters W1, W2, W3, B1, B2

and B3 are determined by the back propagation technique.

2.2 Problems

The conventional SRCNN requires the bicubic method for
pre-processing. This causes two problems. The first is
that 16 coefficients of the bicubic filter cannot be optimized
because they are outside of the training process of the CNN.
Figure 2 shows the location of four output pixels in 2×2
magnification and 16 filter coefficients for each location.
One output pixel is calculated by applying a 16-tap filter to

Fig. 3 Periodical degradation derived from the bicubic filter.

16 reference pixels. There are four types of output pixel
locations: (A) upper left, (B) upper right, (C) lower-left
and (D) lower-right of the nearest input pixel. Different
filter coefficients are prepared for (A), (B), (C) and (D). This
means that output pixels in odd columns, even columns, odd
rows and even rows are obtained by different calculations.
As a result, unnatural periodical patterns often appear on the
enlarged images, as shown in Fig. 3. We think this degrades
the performance of the SRCNN.

The other problem is the increase of memory and cal-
culation costs in the CNN. Since the output image of the
bicubic method is four times larger than the input image,
CNN also prepare four times larger feature maps in all lay-
ers. This wastes a lot of memory. Moreover, the learning
speed becomes slow because the filter sizes of f1, f2 and f3
also become large.

3. Proposed Method

To obtain a K × K magnified image without the bicubic
method, we need a new architecture which can generate
K × K pixels per one input pixel. In this section, three types
of CNN architectures are proposed.

3.1 Type A: Parallel CNNs

As mentioned in Sect. 2.2, output pixels of a 2×2 magnified
image are classified into four groups, (A), (B), (C), and
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Fig. 4 Separation and synthesis of pixels.

Fig. 5 Type A: Parallel CNNs.

(D), depending on their locations. In Fig. 2, we can find
that the groups are calculated with four different filters of
fixed coefficients. This means that a magnified image can
be obtained with four individual convolution processes, and
the results can be rearranged, as is shown in Fig. 4. Thus,
we have already proposed an architecture with four parallel-
CNNs [13], as shown in Fig. 5. We think each CNN should
be optimized for each group. More details are shown in
[13]. In this paper, we extend this architecture into K × K
magnification.

In the Type A architecture, K ×K images are generated
from K × K individual CNNs. For example, CNN-A gener-
ates only an image FA(Y ) consisting of the upper left pixel
group (A). The image FA(Y ) is calculated as

FA1(Y ) = max (0,WA1 ∗ Y + BA1) , (4)
FA2(Y ) = max (0,WA2 ∗ FA1(Y ) + BA2) , (5)
FA(Y ) = WA3 ∗ FA2(Y ) + BA3. (6)

Note that Y and FA(Y ) are the same size. The other images
FB(Y ), FC(Y ), FD (Y ) . . . are also calculated in the same
way. Finally, K × K images are synthesized into a K × K
magnified image F (Y ) as

F (Y ) = ↑ A(FA(Y ))+ ↑ B(FB(Y ))+ ↑ C(FC(Y )) +

Fig. 6 Type B: Multi-channel CNN.

↑ D(FD(Y )) + . . . , (7)

where ↑A( ), ↑B( ), ↑C( ), ↑D( ) . . . mean up-sampling to
their locations on the magnified image. Figure 4 shows the
example of a 2×2 synthesis.

3.2 Type B: Multi-Channel CNN

Next, we propose a single CNN architecture with multiple
output-channels, as shown in Fig. 6. While Type A architec-
ture obtains pixel groups (A), (B), (C), (D) . . . from individ-
ual CNNs, Type B architecture obtains them from separate
channels of a single CNN. They are calculated as

F1(Y ) = max (0,W1 ∗ Y + B1) , (8)
F2(Y ) = max (0,W2 ∗ F1(Y ) + B2) , (9)
F3(Y ) = W3 ∗ F2(Y ) + B3. (10)

Note that (10) is different from (3) because F3(Y ) has
K × K separate-channels. Namely, the size of W3 is
n2 × f3 × f3 × (K × K ). Let F3.1(Y ), F3.2(Y ), F3.3(Y ),
F3.4(Y ) . . . be separate-channels of F3(Y ). Then, the super-
resolution image F (Y ) is synthesized as

F (Y ) = ↑ A(F3.1(Y ))+ ↑ B(F3.2(Y ))+ ↑ C(F3.3(Y )) +
↑ D(F3.4(Y )) + . . . . (11)

Type B architecture can reduce the calculation costs com-
pared to Type A, because only the third layer has K × K
channels.

3.3 Type C: Multi-Channel CNN with Rotary-Averaging
Technique

Even if the user rotates images by 90, 180, or 270 degrees,
super-resolution must work at the same level of quality. Thus,
we propose a rotary-averaging technique, as shown in Fig. 7.

In the Type C architecture, an input image is rotated by
0, 90, 180 and 270 degrees and they are each magnified by
the Type B method. Then, four output images are reversed
by 0, −90, −180 and −270 degrees. Let Rθ (Y ) be a rotation
operator by θ. The four images are calculated as

Fθ (Y ) = R−θ (F (Rθ (Y ))) . (12)

The above process is equivalent to rotating the whole CNN
by 0, 90, 180 and 270 degrees. If the internal filters of the
CNN are symmetrical, the four images will be the same.
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Fig. 7 Type C: Multi-channel CNN with rotary-average technique.

However, it is very rare. So, we obtain the final output by
averaging them as

F̄ (Y ) = (F0◦ (Y ) + F90◦ (Y ) + F270◦ (Y ) + F180◦ (Y )) /4.
(13)

With this method, we can obtain a stable quality that does
not depend on the orientation of input images.

4. Experiments and Results

First, the four types of CNN-based super-resolutions for 2×2
magnification are trained by the back-propagation technique
in Sect. 4.2. Next, eight types of super-resolution techniques
including state-of-the-art methods are applied to the 19 test
images in Sect. 4.3. In Sect. 4.4, performances for 3×3 and
4×4 magnifications are shown. Finally in Sect. 4.5, total
performances are compared based on their processing speed
and PSNRs.

4.1 Experimental Conditions

Four types of CNN-based super-resolutions are
(i) Conventional SRCNN,
(ii) Type A: Parallel CNN,
(iii) Type B: Multi-channel CNN, and
(iv) Type C: Multi-channel CNN with a rotary-

averaging technique.
Parameter settings of every CNN for 2×2 magnification are
shown in Table 1. The filter sizes and the number of feature
maps of the conventional SRCNN are { f1, f2, f3} = {9, 5, 5}
and {n1, n2} = {64, 32} in accordance with [11]. Although
{ f1, f2, f3} = {9, 1, 5} is also recommended in [11], the
{9, 5, 5} model implemented by ourselves shows better per-
formance than the {9, 1, 5} model. The filter sizes for our
methods are { f1, f2, f3} = {5, 5, 3}. The reason why they are

Table 1 Parameter setting of CNN. (2 × 2 magnification).

Fig. 8 Average PSNR curve for the number of back propagations (2×2
magnification).

small is that the input image size of our method is four times
smaller than that of SRCNNs.

In all experiments, we focus only on the luminance
channel in the YCrCb space. PSNR (Peak Signal to Noise
Ratio) is calculated only at the center area of the luminance
channel to avoid the influence of the image boundaries. All
CNNs are implemented with a Caffe package [14] on our PC
(CPU: Intel Core i7-3770K with 8.00 GB of RAM and GPU:
NVIDIA GeFoerce GTX 970 with 4 GB RAM).

4.2 Training of CNNs

All CNNs are trained by the back propagation technique with
91 test images [11]. These images are reduced to 1/(2×2)
sizes with the bicubic method and again enlarged to original
sizes by the methods (i)–(iv). The original images are used
for teaching signals. The number of back propagation is 5
million × 32 (batch size) at the maximum. The learning rate
is 10−4 for the first and second layers and 10−5 for the third
layer. The above parameters are common for all methods.

Figure 8 shows the average PSNR curves for the number
of back-propagations. A horizontal dashed line at 33.66 dB
means PSNR for the bicubic method. We can find that Type
B and Type C rise more rapidly than SRCNN and Type A.
Since SRCNN and Type A have many filter coefficients in
their CNNs, they converge slowly. When the number of
back propagation achieves 5 million × 32, however, Type A
shows almost the same PSNR as Type B. We think Type A
has almost the same ability as Type B, but is inferior to Type
B in terms of calculation cost.

On the other hand, PSNRs of Type C are obviously
larger than other methods. This is owing to the rotary-
averaging technique. This means that Type B does not have
symmetric characteristics but Type C does. We think the
symmetric architecture is very important to improve image
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Table 2 PSNRs of 2×2 magnified images (Set 5).

Table 3 PSNRs of 2×2 magnified images (Set 14).

qualities.

4.3 PSNRs for Eight Types of Super-Resolutions

Next, we compare eight types of super-resolution techniques
including state-of-the-arts methods: ANR [7], A+ [8], NB-
SRF [9], SRCNN [11], CSC [12], Type A, Type B, and
Type C. Codes of ANR, A+, NBSRF, and CSC were imple-
mented and distributed by the authors. They were trained
with the same database consisting of 91 images [11]. The
filters in SRCNN and our CNNs are fixed after finishing the
back-propagation at 5 million × 32. The eight methods were
applied to image set of Set 5 and Set 14 [11]. Note that those
images are not included in the 91 training images.

Tables 2 and 3 show PSNRs for 2×2 magnified images
of Set 5 and Set 14, respectively. Bold letters mean the
highest PSNR in each image. We can see that Type C,
NBSRF and CSC show good results. Although Type C
is not always the best method, its average PSNR achieves
36.88 dB for Set 5 and 32.54 dB for Set 14, which are larger
than any of the other averages.

Table 4 Parameter setting of CNN for K × K magnification.

4.4 Image Quality for K × K Magnification

Next, we compare image qualities for K × K magnifications
(K = 3, 4). Table 4 shows the parameter settings of CNNs.
The filter sizes of our methods are { f1, f2, f3} = {5, 3, 1}.
They are small because the input image size is only 1/(K×K )
of the output image size. The number of feature maps of our
methods are {n1, n2} = {128, 64}. They are large because
Type B and C need K × K channels for the third layer of
CNN, while SRCNN needs only a single channel.

Figures 9, 10 and 11 show examples of magnified im-
ages. Visually good images are obtained by (d) A+, (e)
NBSRF, (g) CSC, and (j) Type C. In Fig. 11, however, (h)
Type A and (i) Type B generate some noises like a mosquito
around the edges, although their PSNRs are not so bad. This
phenomenon often appears when K is large. We think the
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Fig. 9 A part of “bird” by eight super-resolution techniques (3×3 magnification).

Fig. 10 A part of “Lenna” by eight super-resolution techniques (4×4 magnification).

Fig. 11 A part of “ppt3” by eight super-resolution techniques (4×4 magnification).
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Fig. 12 Processing speed and PSNR (2×2 magnification).

Fig. 13 Processing speed and PSNR (3×3 magnification).

Fig. 14 Processing speed and PSNR (4×4 magnification).
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reason is due to a variety of characteristics of K × K output-
channels. For example, Types A and B generate 16 output
images for 4×4 magnification. Since all parameters in CNNs
are randomly initialized before the back propagation process,
the variance of 16 networks becomes large and causes the
variance of 16 pixel values. One good way to improve this
deterioration is the rotary-averaging technique. In Fig. 11(j),
we can see Type C suppress these noises successfully because
the rotary-averaging technique smoothes the characteristics
of the 16 networks. Thus, Type C can generate visually good
images.

4.5 Processing Speed and PSNR

Finally, we show total performances based on processing
speed and PSNRs. In order to compare the eight methods
fairly, GPU acceleration is not used in this stage. Figure 12
is for 2×2 magnification. We can see that Type B is the
fastest among CNN-based methods. This is because Type
B consists of a single CNN and its internal filters are small.
Type A is about four times slower than Type B because it
consists of 2×2 individual CNNs. SRCNN is also slower
than Type B because the input image is enlarged 2×2 times
by the bicubic method before the CNN process.

In terms of PSNR, Type C achieves the highest value
of 32.54 dB, although it is four times slower than Type B,
owing to the rotary-averaging technique. The second highest
PSNR of 32.51 dB is achieved by NBSRF. It is faster than
CNN-based methods with no GPU acceleration. The third
highest PSNR of 32.42 dB is achieved by CSC, but it is 963
times slower than Type C.

Figures 13 and 14 are for 3×3 and 4×4 magnifications,
respectively. We can find that NBSRF is not very fast for 3x3
and 4x4 magnifications because it must enlarge input images
before the patch search process. Type B is about K×K times
faster than Type A because the former has a single CNN while
the latter has K ×K individual CNNs. Thus, a multi-channel
architecture is useful to reduce calculation costs. Moreover,
we can find that the Type C method achieves the highest
PSNR, although it is always four times slower than Type B
because of the rotary-averaging technique. Thus, Type C
is superior to other super-resolution techniques in terms of
PSNR. If we want high PSNRs, Type C would be the best
method.

5. Conclusion

In this paper, we proposed three types of super-resolution
techniques using CNNs: Type A (Parallel CNNs), Type B
(Multi-channel CNN), and Type C (Multi-channel CNN with
the rotary-averaging technique). Our techniques did not use
the bicubic interpolation but directly generated K × K mag-
nified images from CNNs. It enabled a perfect end-to-end
learning between low and high resolution images. In our ex-
periments, PSNRs for Type A were about 2 dB higher than
those for the bicubic method, but its processing speed was
not so fast because it needs K × K individual CNNs for

K × K magnification. Type B overcame the above problem
by using a single CNN architecture with K × K output-
channels. It worked about K × K times faster than Type A
while keeping image qualities. Moreover, Type C improved
image qualities with the rotary-averaging technique and was
the best method among the eight super-resolution techniques
in terms of PSNR. We have ensured the utilities of our CNN
architectures. Implementation for color images will be our
future work.
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