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Abstract—In the present paper, we propose a broadcast ARQ
protocol based on the concept of index coding. In the proposed
scenario, a server wishes to transmit a finite sequence of packets
to multiple receivers via a broadcast channel with packet erasures
until all of the receivers successfully receive all of the packets.
In the retransmission phase, the server produces a coded packet
as a retransmitted packet based on the side-information sent
from the receivers via feedback channels. A notable feature
of the proposed protocol is that the decoding process at the
receiver side has low decoding complexity because only a small
number of addition operations are needed in order to recover an
intended packet. This feature may be preferable for reducing the
power consumption of receivers. The throughput performance
of the proposed protocol is close to that of the ideal FEC
throughput performance when the erasure probability is less
than 0.1. This implies that the proposed protocol provides almost
optimal throughput performance in such a regime.

I. INTRODUCTION

Recent strong demand for handing data sets of extremely
large size has produced a number of situations in which
a server must send a huge file to multiple clients over an
unreliable channel. A simple example is the distributed backup
of a mission-critical file system. In order to avoid a devastating
incident due to a natural disaster, distributed backups at distant
locations are of critical importance. It is common to use
multicast protocols to reduce the bottleneck traffic at the server
for such applications. Since IP multicast is based on the User
Data Protocol (UDP), which is not so reliable over an IP
network, an IP multicast protocol, such as a reliable multicast
protocol, is proposed in order to ensure reliable content distri-
bution. Another possible scenario is content distribution, such
as HD video streams in cellular wireless systems. Suppose
that a base station (i.e., server) wishes to share a large file
or bitstream with multiple mobile terminals. In such a case,
careful design of a protocol is necessary in order to achieve
sufficient throughput while maintaining a certain degree of
reliability.

These situations can be abstracted as a problem of sharing
identical content with multiple receivers over an unreliable
broadcast channel. A broadcast channel is a channel over
which receivers can listen to what a server has sent over
common media: wireless signals on a specific band or a
multicast network. In order to achieve high reliability (i.e., low
error probability) of data and high throughput, several coding
techniques and protocols have been proposed for broadcast
channels [1][2][3][4][5][6].

A prominent example is Automatic Repeat reQuest (ARQ)

protocols, which are often used for reliable content distribution
over a broadcast channel. In an ARQ protocol, a receiver sends
a request for retransmission to the sever if a receiver receives
a broken packet or detects a packet loss. The server resends
the corresponding packets when it receives a request from a
receiver. Simple protocols for single-to-single communication,
such as a Go-Back-N protocol and a selective-repeat protocol,
can also be used for broadcast channels. However, direct
application of such protocols to a broadcast channel often
causes significant degradation of the throughput performance
because such protocols do not consider packet losses in distinct
receivers.

On the other hand, a specialized ARQ protocol using For-
ward Error Correcting (FEC) code provides excellent through-
put performance over broadcast channels. Metzner proposed
an ARQ protocol based on Reed-Solomon codes for broadcast
channels [1]. His protocol yields much higher throughputs
than those of single-to-single ARQ protocols applied to a
broadcast channel. Chandran and Lin presented a Selective-
Repeat ARQ protocol for broadcast channels [2]. Sakakibara
and Kasahara introduced the concept of hybrid ARQ based on
GMD decoding to Metzner’s protocol and reported improved
throughput performance [3]. Recently, growing demand for
real-time multicast, such as video streaming, have stimulated
research on FEC-based protocols based on Reed-Solomon
codes or sparse graph codes. For example, digital fountain
codes [7] [8] provide high throughput performance without in-
troducing complex encoding/decoding operations at the server
and receiver sides [4] [5].

The concept of index coding proposed by Bark and Kol
[9] has had a significant impact on research into coding for
broadcast channels. Index coding is a coding technique to
achieve better bandwidth efficiency of a broadcast channel. In-
dex coding can use side-information to improve the throughput
of the protocol. The concept of index coding is described as
follows. Let us assume a broadcast channel with one server
and multiple receivers. The server has a packet sequence, and
each receiver knows a part of the packet sequence, which is
referred to as side-information. A receiver is assumed to have
its own need for packets, i.e., each receiver wants to know
a part of the packet sequence. The server perfectly knows
the desired part of the packet sequence and side-information
for each receiver. Based on such knowledge, the server can
produce coded packets by combining the original packets,
which are sent to the channel. Appropriately coded packets
using index coding can satisfy all of the demands of receivers
and reduce the number of packets to be sent. Theoretical
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aspects of linear index coding are discussed in Bar-Yossef et
al. [10], who showed that the minrank of the side-information
graph gives the shortest code length of linear index coding.
A number of theoretical studies on index coding have been
conducted. For example, the relationship between index coding
and network coding is discussed in [11]. From a practical
point of view, finding appropriate combinations of packets is
the most difficult part of the index coding process. Bark and
Kol [9] proposed a greedy type algorithm for searching large
cliques in a given side-information graph. Several efficient
algorithms based on a graph algorithm or SAT solver are
discussed in [12].

In the present paper, for reliable content distribution over
broadcast channels with symbol (i.e., packet) erasure, we
propose an ARQ protocol, referred to as index ARQ protocol,
based on the concept of index coding. The goal of the proposed
scenario is to share a packet sequence with all receivers
participating in the protocol. Due to packet erasure, some of the
received packets are missing at certain receivers. The proposed
protocol does not rely on conventional FEC to compensate
such packet losses. However, unlike conventional ARQ proto-
cols, the proposed protocol performs an encoding procedure
similar to index coding to produce a retransmitted packet. The
states of the receivers are fed back to the server and such state
information is used to make an appropriate coded packet. A
coded packet is constructed by superimposing several packets
over a finite field. This coding process resembles index coding
based on the greedy clique algorithm proposed by Bark and
Kol [9]. Successfully received packets at each receiver act as
side-information, and these packets can be used to improve the
bandwidth efficiency of the system. In the proposed protocol,
one packet may compensate several packet losses at several
receivers. Another notable feature of the proposed protocol is
that the decoding process at the receiver side has low decoding
complexity because a small number of addition operations are
needed in order to recover an intended packet. This feature may
be preferable for reducing power consumption in receivers.

II. PRELIMINARIES

In this section, we introduce the notation and definitions
used throughout the present paper.

A. Broadcast channel

Figure 1 represents the broadcast channel assumed in the
present paper. A server S wishes to share a packet sequence
p = (p1, p2, . . . , pn) ∈ Fn

q with m receivers R1, . . . , Rm. The
symbol Fq denotes the finite field with q elements, where q is a
prime power. An element in p, pi, is said to be a packet. Each
receiver wishes to obtain whole packets in p. In other words,
the goal of communication over this channel is to distribute p
to all of the receivers.

For simplicity, we assume that the server S can send a
coded packet (or an uncoded packet) xt ∈ Fn

q to the channel at
the discrete time instant t ∈ N, where N is the set of positive
integers. The time interval between two consecutive packet
transmissions is assumed to be sufficient to accommodate a
packet. In other words, two consecutive transmitted packets
never collide with each other. The receiver Ri(i ∈ [1,m])
receives the received packet yti = xt with probability 1 −
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Fig. 1. Broadcast channel with symbol (packet) erasure

ε(0 < ε < 1); otherwise yti = E with probability ε, where the
symbol E represents the erasure symbol. An erasure can be
considered as the occurrence of a packet loss on the channel.
The occurrences of erasures (i.e., packet losses) are assumed to
be independent (i.e., the channel is memoryless). The notation
[a, b] represents the set of consecutive integers from a to b.

In the initial state of the protocol, none of the receivers have
knowledge of the contents of the packet sequence p. The sever
continues to send a sequence of coded packets x1, x2, x3, . . .
until all of the receivers successfully obtain all of the packets
in p. At time t, the packet indices corresponding to the packets
that were successfully received by Ri are denoted by Kt

i ⊂
[1, n] (known indices). The indices of unknown packets are
represented as Wt

i ⊂ [1, n] (wanted indices). Based on these
definitions, Kt

i ∪Wt
i = [1, n] holds for any i ∈ [1,m] and for

any t ∈ N.

For any time t, the information on Wt
i (or equivalently

Kt
i) is fed back to the sever via a noiseless feedback channel

before xt+1 is sent to the channel. In other words, the server
S always has perfect knowledge of the known packets for
all receivers. Here, we assume that the size of a packet is
much larger than the index information communicated via the
noiseless feedback channel. This means that the capacity of the
feedback channel can be much smaller than that of the forward
broadcast channel. For example, in a multicast scenario, the
noiseless feedback channel can be implemented using reliable
TCP connections.

B. State matrix

As described in the previous section, the server S perfectly
knows the states of the receivers. The state matrix is a matrix
representation of the knowledge of the server. The definition
is given as follows.

Definition 1 (State matrix): An m× n binary matrix C =
{Ci,j} is said to be a state matrix if (i, j) element Ci,j(i ∈
[1,m], j ∈ [1, n]) is given by

Ci,j =

{
1, Ri knows the content of packet pj ,
0, otherwise. (1)



If the context requires the time instant (or time index) to be
specified, we will use the notation Ct, which clarifies the
dependency on the time index t. Otherwise, we omit the time
index in order to simplify the notation. A row of a state
matrix corresponds to a receiver, and a column corresponds to
a packet. For example, assume that the server S has a packet
sequence p = (p1, p2, p3) and wants to distribute the sequence
to two receivers R1, R2. At a certain time, the state matrix is
given by

C =

[
0 0 1
1 1 0

]
, (2)

which represents the state of the entire system. In this case, the
receiver R1 knows packet p3, and receiver R2 knows packets
p1 and p2.

C. Clique matrix

Let I = (i1, i2, . . . , i`) ⊂ [1, n] be an index sequence
(i.e., ordered set) satisfying i1 < i2 < · · · < i`, where
`(≤ n) is a positive integer. Assume that a state matrix
C = (c1, c2, . . . , cn)(ci ∈ {0, 1}m) is given, where ci
represents the ith column vector of C. The submatrix of C
indexed by I , which is denoted by CI , is defined as

CI = (ci1 , ci2 , . . . , ci`). (3)

The following definition describes clique matrices that play
an important role in encoding and decoding processes of the
proposed protocol.

Definition 2 (Clique matrix): If an s× r binary matrix A
satisfies the following two conditions: (1) every row of A has
a weight greater than or equal to r−1; (2) A does not contain
a column with column weight s, then the matrix A is said to
be a clique matrix.

For a given state matrix C, if an index sequence I provides a
clique matrix CI , then I is called a set of clique indices of C.
The term “clique matrix” comes from the clique based-index
coding method presented by Bark and Kol [9]. A state matrix
can be seen as the adjacency matrix of a side-information
graph. Under such an interpretation, a clique matrix corre-
sponds to a clique in a given side-information graph. Next,
we present an example. Assume that the system has the state
represented by (2). A sub-matrix indexed by I = (1, 3)

CI =

[
0 1
1 0

]
(4)

is a clique matrix. Therefore, I = (1, 3) is a set of clique
indices in this case.

III. INDEX ARQ PROTOCOL

A. Encoding process of index ARQ protocol

We assume that the server S can send a coded packet to the
channel at any time index until all of the receivers successfully
obtain the entire packet sequence. The encoding process of the
index ARQ at the server side is summarized as Algorithm 1.

The key of the encoding process is (5) and (6) in Algorithm
1. We here focus on these steps. The function f t : Fm×n

q →
2[1,n] finds a set of clique indices from a given state matrix. In

Algorithm 1 Encoding process at the server side
1: t := 0.
2: Ct := 0m×n. (0m×n represents m× n zero matrix)
3: while Ct contains a zero element do
4:

It := f t(Ct). (5)

5: A coded packet is constructed as

xt :=
∑
j∈It

pj . (6)

6: Send xt to the broadcast channel.
7: t := t+ 1.
8: Ct is obtained based on the feedback information.
9: end while

other words, CI is a clique matrix in C, where I = f t(C). The
function f t is referred to as an index generator. The details
of an implementation of an index generator are discussed in
Subsection III-C. The encoding process at the server side
continues until the state matrix C has no elements with the
value one.

According to (6), a coded packet xt ∈ Fq is encoded
by adding packets having indices in I . Several packets are
superimposed over Fq to produce a coded packet. This coded
packet can thus satisfy the demands from several receivers
simultaneously, i.e., a coded packet can compensate multiple
unknown packets in several receivers. This provides the ad-
vantage of the proposed protocol in terms of throughput and
bandwidth efficiency.

B. Decoding process of index ARQ protocol

The receiver Ri receives symbol yti from the channel. We
assume that each receiver knows It via the header information
attached to a transmitted coded packet. The decoding process at
time index t in the receiver Ri is summarized in Algorithm 2.
The packet pk is an unknown packet before decoding because

Algorithm 2 Decoding process at the receiver Ri

1: if yti = E then
2: Quit the decoding process.
3: end if
4: if It ∩Wt

i = ∅ then
5: Quit the decoding process.
6: else
7: Let k be a unique index in It ∩Wt

i .
8: end if

pk := yti −
∑

j∈It\{k}

pj . (7)

9: Wt+1
i :=Wt

i \{k}.
10: Send Wt+1

i to the server via the feedback channel.

k ∈ Wt
i . Note that Ri knows the packet pj for any j ∈ It\{k}

due to the definition of the clique matrix and clique indices.
The reconstruction rule (7) is an immediate consequence of
the encoding rule (6). As an example, encoding and decoding
processes are depicted in Fig. 2.



side-infomation

Fig. 2. Encoding and decoding processes of the index ARQ protocol. The
server broadcasts a coded packet xt. The receiver R1 obtains yt1 and attempts
to retrieve the packet p2 using the side-information. In a similar manner, the
receiver R2 can recover intended packets.

C. Index generator

As described in the previous subsections, a coded packet
consists of several original packets. In order to improve the
bandwidth efficiency, we need to increase the number of
superimposed packets in an encoding process. This means that
an index generator that is able to find a larger clique matrix
from a state matrix is a preferable choice. In this subsection,
we will present such an index generator.

In the present paper, we use the following strategy to design
an index generator. The first phase of the protocol is defined as
a sequence of time indices (1, 2, . . . , n). The index generator
outputs {t} if t is in the first phase, i.e., t ∈ [1, n]. In other
words, the original packets p1, p2, . . . , pn are sent directly to
the channel in the first phase. The second phase of the protocol
(t > n) can be considered to be a retransmission phase. In
the second phase, unreceived packets due to packet losses are
gradually compensated as the decoding process proceeds. The
index generator used in the second phase is based on a greedy
algorithm to find a large clique matrix. The problem of finding
the largest (in terms of the number of columns) clique matrix
is closely related to the problem of finding the largest clique
in a given undirected graph (maximal clique problem). As in
the case of the maximal clique problem, we cannot expect the
existence of efficient algorithms for this problem. In the present
paper, a heuristic greedy algorithm for finding a clique matrix
is used in the second phase. In summary, our index generator
has the following form:

f t(C) =

{
{t}, t ∈ [1, n]
F (C), otherwise, (8)

where the function F represents a greedy process to compute
clique indices.

The greedy search algorithm presented below is a random-
ized greedy algorithm for finding a set of clique indices. This
algorithm is used to implement the function F (C).

The concept of the algorithm is simple. In line 6 of
Algorithm 3, a column of the state matrix ck is randomly
chosen and is appended to the current candidate of clique
matrix A if (A, ck) does not violate the condition of the clique
matrix. This process continues until all of the columns in C
are tested. The overall time complexity of this greedy search is
O(n2) when n = m. The randomness on the column selection
is incorporated because it provides robust system performance
with regard to the delay of feedback information.

Next, we consider a simple example. Assume that we have
the state matrix C, as in (2), and that the order of the random

Algorithm 3 Greedy search algorithm
1: S := {c1, c2, . . . , cn} (C = (c1, c2, . . . , cn)).
2: A := ().
3: I := ∅.
4: while S 6= ∅ do
5: Select a vector ck from S uniformly at random.
6: if ck is not the all-ones vector then
7: A′ := (A, ck).
8: if A′ is a clique matrix then
9: A := A′.

10: I := I ∪ {k}.
11: end if
12: end if
13: S := S\{ck}.
14: end while
15: Output I .

column choice is second column → first column → third
column. In such a case, the second column is first accepted
and the first column is rejected because it forms a non-clique
matrix. Finally, the third column is accepted, and the algorithm
outputs I = (2, 3).

Although this algorithm depends on a simple greedy strat-
egy, the greedy algorithm has been empirically observed to
produce clique indices near the optimal (i.e., largest) size.

IV. COMPUTER EXPERIMENTS

A. Details of experiments

In this subsection, we describe the details of computer
experiments for evaluating the throughput performance of the
proposed protocol. We assume the broadcast channel shown in
Fig. 1. As benchmarks, we evaluate the performance not only
of the proposed protocol but also of the Selective-Repeat (SR)
protocol and the Metzner protocol.

The SR protocol may be the simplest ARQ protocol for
compensating the packet loss under this channel model. The
details of the SR protocol are as follows. As in the proposed
protocol, the server transmits the original packet pt when
t = 1, 2, . . . , n (phase 1). At every time interval, each receiver
reports its demands (i.e., state of the unreceived packets) to
the sever via the reliable feedback channel. In phase 2 of this
protocol, the packet with the smallest index among all of the
requested packet indices is sent to the channel at time index
t > n. When the server receives ACK from all of the receivers,
the server terminates the transmission process. The advantage
of the SR protocol is its simplicity. No special operations are
required for encoding and decoding. However, the SR protocol
cannot provide a coding advantage to improve the throughput.

The Metzner protocol is an FEC-based ARQ protocol for
broadcast channels that is based on the erasure correcting
capability of Reed-Solomon codes. In the Metzner protocol,
Reed-Solomon coded packets are sent to the channel, and a
receiver that obtains n packets from the channel can execute
an erasure correcting process (i.e., solving simultaneous linear
equations over Fq) to recover the packet sequence that the
server possesses. The primary benefit of this protocol is the
near-optimal bandwidth efficiency it provides. A drawback
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Fig. 3. Relationship between throughput and erasure probability (ε : 0 ≤
ε ≤ 0.1, number of receivers m = 100, number of packets n = 1000).

of the protocol is that every receiver requires to solve an
erasure correcting problem based on a Reed-Solomon code that
requires a certain computational power at the receiver side.

In the present paper, we adopt throughput as the main
performance measure. The throughput of a protocol is directly
related to the bandwidth efficiency of the protocol. Let N be
the total number of transmitted packets from the server until
the protocol terminates (i.e., all of the receivers obtain the
entire packet sequence). Note that this number N is a random
variable depending on the randomness of the erasure channels.
The throughput τ is defined as τ = E [n/N ] which represents
average amount of information per transmitted packet. In the
following subsections, the throughput τ is estimated through
computer simulations of these protocols.

The capacity of a single erasure channel with erasure
probability ε is given by 1 − ε. The coding theorem proved
by Shannon [15] guarantees the existence of sufficiently long
FEC-codes with coding rates below 1−ε that achieve arbitrarily
small error probabilities. Suppose that a server uses such an
FEC-code with a coding rate close to 1− ε. Although such a
system suffers from large latency due to long code length, a
throughput close to 1 − ε can be achieved. In the following
discussion, we use such a system as a benchmark for the
throughput performance. The upper bound of the throughput
τ = 1− ε is referred to hereinafter as the ideal FEC bound.

B. Results of computer experiments

Figure 3 shows the relationship between throughput and
erasure probability ε (0 ≤ ε ≤ 0.1). In these experiments,
100 trials were conducted for each point on the curves. The
number of receivers and packets are assumed to be m = 100
and n = 1000, respectively. The results for three protocols,
including the proposed protocol (labeled by index-ARQ), the
selective repeat (SR) protocol, and the Metzner protocol, are
included in Fig. 3.

The Metzner protocol is confirmed to achieve the best
throughput performance among these three protocols at all
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Fig. 4. Relationship between throughput and erasure probability (ε : 0 ≤
ε ≤ 0.1, number of receivers m = 50, number of packets n = 2000).

erasure probabilities. The throughput of the Metzner protocol
are quite close to the ideal FEC bound τ = 1 − ε. This
fact indicates that the Metzner protocol provides excellent
bandwidth efficiency that is close to optimal. On the other
hand, the SR protocol offers poor throughput performance
compared with the Metzner protocol. For example, the Metzner
protocol provides τ = 0.877, whereas the SR protocol yields
τ = 0.365 at ε = 0.1. This result implies that the SR
protocol cannot achieve a bandwidth efficiency close to the
optimal performance, although it is the simplest to implement.
The proposed protocol, index-ARQ, provides slightly smaller
throughput compared with the Metzner protocol but the dif-
ference is fairly small, especially when the erasure probability
is small, such as ε < 0.05. Even for a relatively large erasure
probability ε = 0.1, the proposed protocol achieves 92% of
the throughput performance of the Metzner protocol.

Figure 4 show the case in which m = 50 and n = 2000.
In this case, we can also observe the same tendency seen in
Fig. 3.

In order to observe the relationship between the number of
packets and the throughput, we conducted several experiments.
Figure 5 shows such a relationship under the condition in
which the erasure probability is ε = 0.05 and the number
of receivers is m = 100. The horizontal axis indicates
the number of packets, and the vertical axis indicates the
throughput. In the case of the SR protocol, the throughputs are
approximately constant, regardless of the number of packets.
On the other hand, in the case of the index ARQ protocol
and the Metzner protocol, the throughputs increase slightly as
the number of packets increases. Moreover, the difference in
throughput of these two protocols and the ideal FEC bound
becomes negligible as the number of packets increases. The
experimental results suggest a system design principle for the
index ARQ protocol such that the number of packets should be
larger than the number of receivers in order to achieve higher
throughput.
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V. CONCLUDING SUMMARY

In the preset paper, we proposed an ARQ protocol, referred
to as index ARQ, for broadcast channels. In the proposed
protocol, the server incorporates a coded packet by adding
several packets over Fq based on the knowledge of the de-
mands of all of the receivers. In order to find an appropriate
set of indices for the packets to be added, a randomized
greedy algorithm is devised. The bandwidth efficiency of the
proposed protocol derives from the fact that a coded packet
can compensate multiple packet losses in several receivers. A
practical advantage of the proposed protocol is the simplicity
of its decoding process at the receiver side. A decoding process
only constitutes several additions over Fq and results in a small
computational load at the receiver side. If q = 2m, then only
exclusive OR operations are required to recover packet losses.

Based on the results of computer experiments, we con-
firmed that the proposed protocol achieves much higher
throughputs than the SR protocol. The proposed protocol re-
quires a certain computational load to encode at the server side.
This computational load at the server side can be considered
as a cost to be paid in order to achieve better bandwidth
efficiency than the SR protocol. The throughput performance
of the proposed protocol is close to that of the Metzner protocol
and the ideal FEC bound when the erasure probability is in the
range of 0 < ε < 0.1, which implies that the proposed protocol
provides approximately optimal throughput performance in
such a regime. If a receiver is a mobile terminal with lower
computational power or prefers a low power consumption, the
proposed protocol would be a preferable choice in order to
achieve both high bandwidth efficiency and lower computation
load at the receiver side.
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