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PAPER Special Section on Smart Multimedia & Communication Systems

Binary Sparse Representation Based on Arbitrary Quality Metrics
and Its Applications

Takahiro OGAWA†a), Sho TAKAHASHI††, Naofumi WADA†††, Akira TANAKA†,
and Miki HASEYAMA†, Members

SUMMARY Binary sparse representation based on arbitrary quality
metrics and its applications are presented in this paper. The novelties of
the proposed method are twofold. First, the proposed method newly derives
sparse representation for which representation coefficients are binary val-
ues, and this enables selection of arbitrary image quality metrics. This new
sparse representation can generate quality metric-independent subspaces
with simplification of the calculation procedures. Second, visual saliency
is used in the proposed method for pooling the quality values obtained for
all of the parts within target images. This approach enables visually pleas-
ant approximation of the target images more successfully. By introducing
the above two novel approaches, successful image approximation consid-
ering human perception becomes feasible. Since the proposed method
can provide lower-dimensional subspaces that are obtained by better image
quality metrics, realization of several image reconstruction tasks can be
expected. Experimental results showed high performance of the proposed
method in terms of two image reconstruction tasks, image inpainting and
super-resolution.
key words: image approximation, binary sparse representation, image
quality metrics, visual saliency

1. Introduction

Image approximation in lower-dimensional subspaces can
afford a number of fundamental applications such as im-
age coding, super-resolution and restoration. Generally, the
performance of these applications depends on image ap-
proximation performance in the given low-dimensional sub-
spaces. Therefore, methods for accurate image approxima-
tion in such subspaces are desirable for satisfying demands
in the applications.

In recent years, image representation based on mul-
tivariate analysis has been intensively studied. The most
traditional method is principal component analysis (PCA),
which can provide optimal approximation of target samples
in the least-square criterion. Due to the rapid development of
kernel methods, several image approximationmethods based
on kernel PCA (KPCA) [1], [2] have also been developed.
The methods based on KPCA are suitable for approximating
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nonlinear visual features in images. Many new approxima-
tion methods based on sparse representation [3], [4], which
can realize adaptive generation of subspaces, have also been
proposed. Other methods using non-negative matrix factor-
ization [5] and manifold learning techniques [6] have also
been proposed.

In most studies, image representation was performed
on the basis of minimization of approximation errors. The
mean square error (MSE) is one of the representative and
simplest metrics used for monitoring approximation errors,
i.e., quality metrics. On the other hand, it has been reported
that the MSE cannot reflect perceptual distortions [7], [8],
andMSE-optimal approximationmethods do not necessarily
output images of high visual quality. For solving the above
problems, many image quality metrics have been proposed
[9]–[12], and they are widely used for several kinds of ap-
plications, e.g., image restoration [13], [14]. Some simple
metrics such as the mean absolute error (MAE) and other
distances can also improve image approximation. Although
optimal quality metrics should be selected for target appli-
cations, there remains a big problem. When adopting a new
metric, we have to derive a new approximation method. Fur-
thermore, if a target quality metric is not differentiable, it
becomes difficult to perform its derivation.

In this paper, binary sparse representation based on arbi-
trary quality metrics and its applications are presented. The
proposed method performs sparse representation for which
the image quality metric is arbitrary to enable generation
of better low-dimensional subspaces. Specifically, binary
sparse representation for which representation coefficients
are binary values is newly introduced, and it is the main
contribution of this paper. This approach can simplify “cal-
culation of representation coefficients” to “a nearest neigh-
bor search from candidate signal-atoms”. It also simplifies
“update of the dictionary” to “calculation of average vec-
tors from given samples”. Therefore, since the proposed
method does not need differentiation of target quality met-
rics, arbitrary quality metrics can be adopted for the sparse
representation. Furthermore, the proposed method uses a
new approach that performs pooling of the quality values
based on visual saliency, which can reflect human attention
[15]–[17]. Then this enables more visually pleasant approx-
imation of the target images. By introducing the above two
novel approaches, successful image approximation becomes
feasible. Consequently, since the proposed method spans
better subspaces, improvement in the performance of several
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image reconstruction tasks can be expected.
This paper is organized as follows. In Sect. 2, a new

image approximation method based on binary sparse repre-
sentation is presented. In Sect. 3, we discuss the effectiveness
of the proposed method and realization of its applications.
In Sect. 4, results of experiments are shown for verifying the
effectiveness of the proposed method. In this section, we
also show results of inpainting and super-resolution (SR) as
applications of the proposed method. Finally, concluding
remarks are given in Sect. 5.

2. Binary Sparse Representation Based on Arbitrary
Quality Metrics

Binary sparse representation based on arbitrary quality met-
rics is presented in this section. The proposed method sim-
plifies the estimation of sparse representation coefficients
and the dictionary by fixing the sparse representation coeffi-
cients to binary values. This enables selection of an arbitrary
quality metric. Our cost function for the sparse representa-
tion is defined by pooling values of a given image quality
metric obtained for all of the parts within a target image, with
weighting factors for the pooling being determined from vi-
sual saliency. This enables the estimation of the dictionary
that can successfully approximate visually important features
within the target image.

In 2.1, we first show the problem formulation of the
proposed method. Then update of the dictionary with binary
sparse presentation coefficients is explained in 2.2.

2.1 Problem Formulation

The problem formulation of our method is presented in this
subsection. Given a target image, we clip small patches with
the same intervals, and their intensity vectors are defined as
xi ∈ RM (i = 1, 2, · · · , N ; N being the number of clipped
patches), where M is the dimension of xi . Then the proposed
method tries to solve the following problem:

min
D,A

N∑
i=1

wi IQM (xi,Dai + µi1M )

subject to | |ai | |0 ≤ T and ai (k) = 1 or 0, (1)

where IQM (·, ·) is an arbitrary image qualitymetric, with the
assumption that IQM (·, ·) represents dissimilarity between
two given vectors. Then D = [d1, d2, · · · , dK ] ∈ RM×K

is the dictionary matrix including K signal-atoms, and
A = [a1, a2, · · · , aN ] ∈ RK×N includes all of the representa-
tion coefficients ai (k) (i = 1, 2, · · · , N ;k = 1, 2, · · · , K). The
vector 1M = [1, 1, · · · , 1]> ∈ RM is used for representing
the direct current component, with its corresponding coef-
ficient being µi and equivalent to the average value of xi ,
i.e., 1

M 1>Mxi , where > is a vector/matrix transpose. Further-
more, | | · | |0 represents the l0-norm counting the number of
non-zero elements.

In Eq. (1), wi is a weighting factor that is determined
for each patch based on visual saliency. For determining the

quality of the target image, it is necessary to pool quality
values calculated from small regions/pixels. Most methods
perform pooling by using the same weight, i.e., the impor-
tance of each region becomes the same. However, since it is
well known that the importance of each region is different,
Ninassi et al., for example, introduced gaze information for
pooling image quality values obtained for the whole image
[18]. Furthermore, gaze information obtained when staring
at images can bemodelled as visual saliency [15]–[17], [19]–
[21]. Therefore, in the proposed method, visual saliency is
adopted for the pooling of quality values. The calculation of
wi based on visual saliency is shown below.

Given a saliency map, the proposed method clips
patches including saliency values and calculates their vec-
tors mi ∈ R

M (i = 1, 2, · · · , N) that correspond to xi . Then
vi =

1
M 1>Mmi is defined. The weighting factor wi is defined

by using its empirical distribution function of vi as follows:

wi =
1
N

N∑
j=1

Fj (vi) , (2)

where

Fj (x) =



1 if vsj ≤ x
0 otherwise

. (3)

In the above equation, we sort vi (i = 1, 2, · · · , N) in as-
cending order and denote them by vsj ( j = 1, 2, · · · , N). The
transformation using the empirical distribution function in
Eq. (2) corresponds to a histogram equalization operator of
vi (i = 1, 2, · · · , N). Thus, the weight wi can be obtained
by using arbitrary saliency maps since the histogram equal-
ization provides almost the same distribution regardless of
different saliency maps.

2.2 Estimation of Binary Sparse Representation Coeffi-
cients and Dictionary

The method for solving Eq. (1) is shown in this subsection.
For obtaining the optimal results of D and A in Eq. (1), we
iteratively update one side while fixing the other side in the
same manner as the well-known KSVD algorithm [3]. Al-
though the KSVD algorithm requires complex calculation
procedures as reported in [22], [23], much simpler proce-
dures are used in our method, the details of which are shown
below.

2.2.1 Update of Binary Sparse Representation Coefficients

The proposed method fixes the dictionary matrix D and per-
forms update of the representation coefficient vector ai for
each patch xi . Specifically, in a way similar to some match-
ing pursuit algorithms [24], [25], we iteratively estimate the
non-zero elements in ai . It should be noted that since all of
the non-zero elements are one in the proposed method, we
only have to perform selection the non-zero elements.

The proposed method selects tth (t = 1, 2, · · · ,T) opti-
mal non-zero elements for a patch xi as
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min
k={1,2, · · · ,K |k<Ii (t−1) }

IQM *.
,
xi , dk +

∑
k′∈Ii (t−1)

dk′ + µi1M
+/
-
,

(4)

where Ii (t − 1) provides a set of indices of signal-atoms
previously selected in the t − 1 iterations for xi . The above
problem is the selection of the signal-atom dk optimizing
the quality metric, i.e., the dissimilarity between xi and dk +∑

k′∈Ii (t−1) dk′+µi1M . Note that since
∑

k′∈Ii (t−1) dk′+µi1M

is the approximation result obtained by the t − 1 iterations,
its elements are constants in the tth iteration. As shown in
Eq. (4), since the non-zero elements are all one, we do not
have to calculate the representation coefficients. Therefore,
the approximation result of xi becomes only the simple sum
of the selected signal-atoms.

Several matching pursuit algorithms generally select
the optimal signal-atoms and then calculate the optimal rep-
resentation coefficients in each iteration. Note that in the
procedures for searching for the optimal signal-atoms, repre-
sentation coefficients of candidate signal-atoms also have to
be calculated. Furthermore, in the calculation of the optimal
representation coefficients, update of the non-zero elements
for the previously selected signal-atoms is necessary. On the
other hand, by constraining the non-zero elements to one,
our method can drastically simplify the update procedure.
In addition, since this procedure corresponds to the nearest
neighbor search, our method does not involve any differen-
tiation of the quality metric. Therefore, arbitrary quality
metrics can be adopted in the above algorithm.

2.2.2 Update of Dictionary

The proposedmethod fixes the representation coefficientma-
trix A and performs update of the dictionary matrix D. Gen-
erally, update of the dictionary is performed for each signal-
atom dk (k = 1, 2, · · · , K). For optimizing the signal-atom
dk , it is necessary to take the derivative of the cost function
shown in Eq. (1) for dk . However, several image quality met-
rics may not be differentiable functions of dk . On the other
hand, in [13], Rehman et al. performed update of the dic-
tionary based on the KSVD algorithm [3] since estimation
of the sparse representation coefficients is more important
than update of the dictionary. The cost function for updating
the dictionary in the KSVD algorithm is based on the MSE,
but when concerning the tradeoff between the performance
and its complexity, their choice is reasonable. Therefore, by
adopting their approach, the proposed method updates the
dictionary on the basis of the KSVD algorithm. It should
be noted that in the binary sparse representation, update of
the KSVD algorithm becomes much simpler. Its details are
shown below.

Based on the KSVD algorithm, each signal-atom dk

is updated with its corresponding non-zero representation
coefficients in such a way that the following problem is op-
timized:

min
dk

����
����

{
dkaR

k

>
−

(
XR
k − DR

k̄
AR
k̄

)}
W

1
2
k

����
����
2

F
, (5)

where aR
k
∈ RNk is a vector including only non-zero sparse

representation coefficients, Nk being the number of patches
for which sparse representation coefficients corresponding
to dk are not zero. Furthermore, XR

k
∈ RM×Nk is a matrix

including the above patches, and DR
k̄
∈ RM×K−1 and AR

k̄

∈ RK−1×Nk are a dictionary matrix in which dk is removed
and a sparse representation coefficient matrix in which the
kth row is removed, respectively. The matrix W

1
2
k
∈ RNk×Nk

is a diagonal matrix including the square root of weight
factors in Eq. (1) corresponding to the above patches. Note
that the weight matrix is newly introduced since the proposed
method adopts the weight factors in Eq. (1).

It should be noted that in the KSVD algorithm in [3],
W

1
2
k
is the identity matrix, and singular value decomposition

of XR
k
−DR

k̄
AR
k̄
is performed for simultaneously updating dk

and aR
k
. On the other hand, all of the non-zero elements

are one, i.e., aR
k
= 1Nk

, in the proposed method. Then
since aR

k
is fixed, we do not have to perform singular value

decomposition. Then the update of dk can be simplified
as calculation of the weighted average of the columns of
XR
k
− DR

k̄
AR
k̄
, and it is written by

dk ←
1

1>Nk
Wk1Nk

(
XR
k − DR

k̄
AR
k̄

)
Wk1Nk

, (6)

where Wk1Nk

1>Nk
Wk1Nk

corresponds to the operator calculating
the weighted average. In this way, the simplified update
algorithm of the dictionary is realized.

3. Discussion of the Effectiveness and Applications

The discussion of the effectiveness of the proposed method
(see 3.1) and its applications (see 3.2) are discussed in this
section.

3.1 Effectiveness of Binary Sparse Representation

The most effective point of our binary sparse representation
is the use of arbitrary quality metrics. By replacing the
calculation of non-zero representation coefficients with only
the selection of optimal signal-atoms, we do not have to
performoptimization involving the differentiation of adopted
image quality metrics. Generally, since we have to take
derivatives of the quality metrics with respect to the sparse
representation coefficients for the optimization, many quality
metrics may not be adopted. Therefore, this is the biggest
barrier for realizing sparse representation using better quality
metrics. On the other hand, since the non-zero coefficients
are all one in our method, we have to determine only which
signal-atoms are used. Therefore, the proposed method can
adopt any quality metrics without concern about whether
their derivatives with respect to the sparse representation



OGAWA et al.: BINARY SPARSE REPRESENTATION BASED ON ARBITRARY QUALITY METRICS AND ITS APPLICATIONS
1779

coefficients can be obtained or not.
It should be noted that although the binary sparse rep-

resentation realizes the use of arbitrary quality metrics, its
representation performance becomes worse compared to that
of general sparse representation since the representation co-
efficients are restricted to binary values. Thus, for reducing
this problem, it is necessary to set the number of signal-atoms
K and the number of non-zero representation coefficients T
to larger values. Nevertheless, update of the sparse repre-
sentation coefficients becomes iteration of the simple nearest
neighbor search as shown in Eq. (4). Furthermore, update
of the signal-atoms in the dictionary is only calculation of
the weighted average as shown in Eq. (5). Therefore, the two
important update procedures in the sparse representation can
be easily simplified.

In the proposedmethod, pooling of quality values based
on visual saliency is used. In most image representation
tasks, bases spanning subspaces are calculated in such a way
that the pooled quality values become optimal. For example,
when using the MSE as the quality metric, bases minimizing
the sum of the MSEs calculated for all of the small patches
within target images are generally calculated. Generally,
PCA, KPCA and sparse representation provide orthonormal
bases and an overcomplete dictionary minimizing the sum
of MSEs for all small patches, where the weights of these
patches are the same. However, as described above, since
the importance of each small patch is different, pooling of
the quality values should be performed on the basis of vi-
sual saliency. The effectiveness of using visual saliency for
pooling the quality values has been shown in several reports
[12].

3.2 Applications of Binary Sparse Representation

As shown in the previous section, the proposed method can
perform image approximation based on binary sparse rep-
resentation, i.e., approximation in lower-dimensional sub-
spaces becomes feasible. Therefore, application of the pro-
posed method to several image reconstruction tasks is ex-
pected. Specifically, given an original patch and its corre-
sponding corrupted patch in a target image as x and y ∈ RM ,
respectively, their relationship can be simply written as

y = Hx + n, (7)

where H ∈ RM×M is a corruption matrix, and n ∈ RM

represents noise, with n becoming a zero vector in our appli-
cations shown in the following section. If the target recon-
struction tasks are inpainting and SR, H becomes a diagonal
binary matrix and a matrix representing a low-pass filter,
respectively. Given a dictionary D, the estimation result x̂ is
obtained as

x̂ = Dâ + µ̂1D, (8)

where â and µ̂ are obtained as

{â, µ̂} = arg min
a, µ

IQM (y,H {Da + µ1D })

subject to | |a| |0 ≤ T and a(k) = 1 or 0. (9)

By using the above simple procedures, the proposed method
can realize several fundamental applications. As described
above, binary sparse representation enables the use of arbi-
trary image quality metrics. Furthermore, the obtained dic-
tionary enables visually pleasant approximation of images by
using visual saliency. Then, based on the lower-dimensional
subspaces, successful reconstruction can be expected.

4. Results of Experiments

In this section, we show results of experiments for verify-
ing the effectiveness of the proposed method. First, in 4.1,
we verify the performance of image representation by the
proposed method. Specifically, we select several quality
metrics and saliency maps and verify the image representa-
tion performance for determining the optimal combination.
Furthermore, in 4.2 and 4.3, we apply the proposed method
to image inpainting and SR, respectively. By comparing
recent methods, we show the effectiveness of the proposed
method in terms of applicability as well as reconstruction
performance.

4.1 Image Representation Performance Evaluation

In this experiment, we selected 16 images, which are shown
in Fig. 1, from theLIVE ImageQualityAssessmentDatabase
[9], [26], [27]. For each image, we clipped patches of 8 × 8
pixels in size and generated 192-dimensional vectors, i.e.,
D = 192, since each pixel included RGB color values. Fur-
thermore, the clipping interval of each patch was set to 8
pixels in width and 8 pixels in height. In the binary sparse
representation, K and T were set to 800 and 5, respectively.
In this experiment, we used over-complete DCTs for the ini-
tial dictionary, and this condition was also adopted in the
experiments shown in 4.2 and 4.3. It should be noted
that we selected the above conditions in such a way that the
difference in the representation performance became clearer.

In the proposed method, we have to provide an image
quality metric and a saliency map. We used three kinds of
quality metrics, MSE, MAE and lp-distance with p set to
1.5 (l1.5-dist), where MSE and MAE correspond to the lp-
distance with p values of 2 and 1, respectively. Although
many image quality metrics have been proposed, they gen-
erally try to measure the quality of the whole image. On the
other hand, since we calculated the quality of small patches,
we used simpler and general metrics in this experiment.
Next, two kinds of saliency maps obtained by representative
and benchmarking methods (Itti and Hou) [16], [17] were
used. For comparison, we adopted a condition in which
a saliency map was not used (No saliency), i.e., all of the
weights wi in Eq. (2) were the same value.

Thirteen subjects participated in this experiment, and
each subject performed rating for the approximated images
with rating scores ranging from 1 (worst) to 5 (best). The re-
sults of the subjective evaluation are shown in Table1. From
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Fig. 1 Sixteen test images used for evaluating image representation performance of binary sparse
representation.

Table 1 Results of subjective evaluation. Average and standard deviation correspond to those of the
evaluation scores rated by 13 subjects for 16 test images shown in Fig. 1.

MSE MSE MSE l1.5-dist l1.5-dist l1.5-dist MAE MAE MAE
+ + + + + + + + +

No saliency Itti [16] Hou [17] No saliency Itti [16] Hou [17] No saliency Itti [16] Hou [17]
Average 2.51 2.68 2.78 2.26 2.26 3.09 2.58 2.75 3.32

Standard deviation 0.925 1.09 0.969 1.16 1.19 1.04 1.23 1.31 0.992

Fig. 2 Test images used for verifying inpainting performance: (a)–(c) original images with sizes of
480 × 360 pixels, (d)–(f) corrupted images obtained by adding missing areas to (a)–(c).

the obtained results, it can be seen that the average evaluation
score becomes highest when adopting the combination of
MAE and Hou [17]. This best combination was statistically
superior to the other combinations by Welch’s t-test with
p < 0.01 given a significance level α = 0.01. Therefore,
in the following subsections, we adopted the combination of
MAE and Hou [17] for the proposed method.

4.2 Performance Verification of Image Inpainting

In this subsection, we show results of image inpainting
obtained by the proposed method. For images shown in
Figs. 2(a)–(c), we added missing areas to obtain their cor-
rupted images as shown in Figs. 2(d)–(f), where the posi-

tions of missing pixels were known. From the other known
regions within the target image, we clipped patches and per-
formed construction of the dictionary in our method, where
we set K to 1000 and T to 10 and used a patch size of 8 × 8
pixels, with a clipping interval half the size of patches. Then
for patches including missing pixels, which were selected by
patch priority based on [28], the proposedmethod performed
their recovery to obtain the inpainting results. Note that we
calculated the average value µ̂ in Eq. (9) from the known
parts within the target patch.

In the following, we explain the details of the exper-
imental procedures for inpainting in our method. From a
target image including missing areas, we clipped training
patches from only known areas to obtain xi ∈ R192, where
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Fig. 3 Results of inpainting obtained by using the proposed method and the comparative methods:
(a)–(c) results obtained by the method in [28], (d)–(f) results obtained by the method in [29], (g)–(i)
results obtained by the proposed method. The values shown in each caption represent the SSIM index
[9] calculated from only the recovered regions.

these vectors include RGB pixel values. Furthermore, the
weights wi were obtained from the target image, where the
weights became the same for the elements corresponding
to the same pixels. By using the training patches xi and the
weightswi , the dictionaryD ∈ R192×1000 was obtained. From
a clipped patch includingmissing pixels selected by the patch
priority, we defined its pixel value vector y ∈ R192. Then
its reconstruction result x̂ ∈ R192 in Eq. (8) was obtained
by solving Eq. (9). Note that H became a binary diagonal
matrix. Its diagonal elements were one if the corresponding
pixels were known. Otherwise, the diagonal elements were
zero. By the above procedures, the inpainting was realized.

Experimental results are shown in Fig. 3. For com-
parison, we used the methods in [28] and [29] as recent and
state-of-the-art methods. From the obtained results, it can be
seen that the proposed method successfully recovers missing
areas by using binary sparse representation in which MAE
and Hou [17] are used as the quality metric and saliency
map, respectively. Even though the sparse representation

coefficients are binary values, the proposed method enables
accurate approximation of the target images and can success-
fully realize the representation of textures.

4.3 Performance Verification of Image Super-Resolution

In this subsection, we show results of SR obtained by the
proposed method. In this experiment, we prepared three
original high-resolution images shown in Figs. 4(a)–(c) and
then performed their downsampling using the well-known
Lanczos filter to obtain their quarter-sized images as shown
in Figs. 4(d)–(f). These low-resolution images are enlarged
to the original sizes in this figure. From the target low-
resolution image, we clipped patches for constructing the dic-
tionary and then recovered the high-resolution image patch-
by-patch from its upsampled images based on Eq. (9). Note
that we could calculate the average value µ̂ in Eq. (9) from
the low-resolution images. In our method, we set K to 1000
and T to 10 and used a patch size of 8 × 8 pixels. The high-
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Fig. 4 Test images used for verifying SR performance: (a)–(c) original high-resolution images with
sizes of 640 × 480 pixels, (d)–(f) corresponding low-resolution images for which resolution is a quarter
of the original size. In this figure, the low-resolution images in (d)–(f) are enlarged to the same size as
that of their original images.

Fig. 5 Relationship between (a) original ground truth high-resolution
image, (b) small-size image (target image) and (c) blurred enlarged image.

resolution images were recovered by sliding patches whose
sliding interval was 2 pixels in height and 2 pixels in width.
Note that since each pixel had multiple results, we output
their average values as the final output.

In the following, we explain the details of the experi-
mental procedures for SR in our method. Given an original
ground truth high-resolution image (Fig. 5(a)), we downsam-
pled this image to obtain its small-size image (Fig. 5(b)). We
denote this low-resolution image as a target image. From this
target image (Fig. 5(b)), we clipped patches as training high-
resolution patches. Then, from the training high-resolution

patches, we obtained intensity vectors xi ∈ R64, where the
SRwas performed for only the luminance components in our
method. Furthermore, theweights wi were obtained from the
small-size image (Fig. 5(b)). From xi and wi , the dictionary
D ∈ R64×1000 could be obtained. In our method, by apply-
ing up-sampling to the target image (Fig. 5(b)), we obtained
a blurred enlarged image (Fig. 5(c)). From this image, we
clipped a patch and defined its intensity vector y. The inten-
sity vector x̂ in Eq. (8) of the corresponding high-resolution
patch in the original high-resolution image (Fig. 5(a)) was
estimated based on Eq. (9), where H was the operator of
the low-pass filter (Lanczos filter). In this way, our method
realized SR for the target image (Fig. 5(b)) to estimate its
high-resolution image (Fig. 5(a)). It should be noted that for
chroma components, we simply used those of the blurred
enlarged image (Fig. 5(b)) which could be directly obtained
from the target image (Fig. 5(b)).

In Fig. 6, the results of SR obtained by the state-of-the-
art methods [30]–[32] and the proposed method are shown.
Compared to the results of inpainting shown in the previous
subsection, the difference between the proposed method and
other comparative methods does not seem to be significant,
but the proposed method tends to preserve the sharpness in
the recovery results of the obtained high-resolution images.

5. Conclusions

A binary sparse representation method based on arbitrary
image quality metrics was presented in this paper. The pro-
posed method newly derives binary sparse representation for
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Fig. 6 Results of SR obtained by using the proposed method and the comparative methods: (a)–(c)
results obtained by the method in [30], (d)–(f) results obtained by the method in [31], (g)–(i) results
obtained by the method in [32], (j)–(l) results obtained by the proposed method. The values shown in
each caption represent the SSIM index [9] calculated from the obtained results.

which sparse representation coefficients are binary values.
This approach realizes the use of arbitrary image quality
metrics, and it is the main contribution of this paper. Fur-
thermore, visual saliency is used in the proposed method
for pooling the quality values to construct a dictionary that
can successfully approximate visually important parts. By
using these two novel approaches, the proposed method can
realize successful approximation of patches within images in
lower-dimensional subspaces. Therefore, high performance

in several image reconstruction tasks can be also realized. In
experiments, the effectiveness and applicability of the pro-
posed method were shown by applying it to image inpainting
and SR.

Finally, we refer to the computation cost of our method.
The average computation time for the dictionary learning and
the reconstruction in inpainting were 24.6 sec and 209.8 sec,
respectively. Furthermore, those in SR were 12.2 sec and
100.9 sec, respectively. The experiments were performed
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on a personal computer using Intel(R) Core(TM) i7 980
CPU 3.33 GHz with 4.0 Ggytes RAM. The implementation
was performed by using Matlab. Although one of the ad-
vantage of our method is simplicity, the implementation of
our method was not optimized for the fast processing. The
computation time will become faster by improving this im-
plementation. Furthermore, as stated above, calculation
of the sparse representation coefficients becomes a nearest
neighbor search in our method. In recent years, many fast
searching algorithms have been proposed in the field of data
mining and multimedia data retrieval. Therefore, by intro-
ducing these algorithms into the proposed method, a faster
version could be implemented. This will be addressed in our
future work.
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