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SUMMARY This paper proposes a novel pseudo multi-
exposure image fusion method based on a single image. Multi-
exposure image fusion is used to produce images without satura-
tion regions, by using photos with different exposures. However,
it is difficult to take photos suited for the multi-exposure im-
age fusion when we take a photo of dynamic scenes or record a
video. In addition, the multi-exposure image fusion cannot be
applied to existing images with a single exposure or videos. The
proposed method enables us to produce pseudo multi-exposure
images from a single image. To produce multi-exposure images,
the proposed method utilizes the relationship between the expo-
sure values and pixel values, which is obtained by assuming that
a digital camera has a linear response function. Moreover, it is
shown that the use of a local contrast enhancement method allows
us to produce pseudo multi-exposure images with higher quality.
Most of conventional multi-exposure image fusion methods are
also applicable to the proposed multi-exposure images. Experi-
mental results show the effectiveness of the proposed method by
comparing the proposed one with conventional ones.
key words: Multi-Exposure Image Fusion, Image Enhancement,
Contrast Enhancement, Tone Mapping

1. Introduction

The low dynamic range (LDR) of the imaging sensors
used in modern digital cameras is a major factor pre-
venting cameras from capturing images as good as those
with human vision. For this reason, the interest of high
dynamic range (HDR) imaging has recently been in-
creasing. Various research works on HDR imaging have
so far been reported [1–8]. The research works are clas-
sified into two categories. The first one aims to generate
HDR images having an extremely wide dynamic range.
However, HDR display devices are not popular yet due
to the high cost of the technologies. Hence, the second
one focuses on tone mapping operations which generate
standard LDR images from HDR ones [9–11]. Conse-
quently, in order to generate high quality LDR images
via HDR images, it is necessary not only to generate
HDR ones but also to map them into LDR ones.

To generate LDR images more simply, multi-
exposure image fusion methods have been proposed
[12–18]. The reported fusion methods use a stack of
differently exposed images, “multi-exposure images,”
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and fuse them to produce an image with high qual-
ity. The advantage of these methods, compared with
the ones via HDR images, is that they eliminate three
operations: generating HDR images, calibrating a cam-
era response function (CRF), and preserving the expo-
sure value of each photograph. However, the conven-
tional multi-exposure image fusion methods have sev-
eral problems due to the use of a stack of differently
exposed images. If the scene is dynamic or the cam-
era moves while pictures are being captured, the multi-
exposure images in the stack will not line up properly
with one another. This misalignment results in ghost-
like artifacts in the fused image. Although a number of
methods have been proposed [4, 16] to eliminate these
artifacts, the effectiveness of these methods is limited
because it is difficult to apply them to videos. In ad-
dition, multi-exposure image fusion methods cannot be
applied to existing images with a single exposure or
videos.

Because of such a situation, this paper proposes a
novel pseudo multi-exposure image fusion method us-
ing a single image. The proposed method enables us
to produce pseudo multi-exposure images from a sin-
gle image and to improve the image quality by fus-
ing them. To produce multi-exposure images, the pro-
posed method use the relationship between the expo-
sure values and pixel values, which is obtained by as-
suming that a digital camera has a linear response func-
tion. Moreover, the use of a local contrast enhance-
ment method improves the quality of the pseudo multi-
exposure images. Most of conventional multi-exposure
image fusion methods are also applicable to the pro-
posed pseudo multi-exposure images. Furthermore, the
proposed method is useful for both reducing the num-
ber of input images used in conventional fusion ones,
and improving the quality of multi-exposure images.

We evaluate the effectiveness of the proposed
method in terms of the quality of generated images by
a number of simulations. In the simulations, the pro-
posed method is compared with existing multi-exposure
image fusion methods and typical contrast enhance-
ment methods. The results show that the proposed
method can produce high quality images, as well as
conventional fusion methods with multi-exposure im-
ages. In addition, the proposed method outperforms
typical contrast enhancement methods in terms of the
color distortion.
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Fig. 1 Imaging pipeline of digital camera

2. Preparation

Multi-exposure fusion methods use images taken un-
der different exposure conditions, i.e., multi-exposure
images. Here we discuss the relationship between expo-
sure values and pixel values. For simplicity, we focus
on grayscale images.

2.1 Relationship between exposure values and pixel
values

Figure 1 shows the imaging pipeline for a digital cam-
era [19]. The radiant power density at the sensor, i.e.,
irradiance E, is integrated over the time ∆t the shut-
ter is open, producing an energy density, commonly
referred to as exposure X. If the scene is static during
this integration, exposure X can be written simply as
the product of irradiance E and integration time ∆t
(referred to as ”shutter speed”):

X(p) = E(p)∆t, (1)

where p = (x, y) indicates the pixel at point (x, y). A
pixel value I(p) ∈ [0, 1] in the output image I is given
by

I(p) = f(X(p)), (2)

where f is a function combining sensor saturation and a
camera response function (CRF). The CRF represents
the processing in each camera which makes the final
image I(p) look better.

Camera parameters, such as shutter speed and lens
aperture, are usually calibrated in terms of exposure
value (EV) units, and the proper exposure for a scene
is automatically selected by the camera. The exposure
value is commonly controlled by changing the shutter
speed although it can also be controlled by adjusting
various camera parameters. Here we assume that the
camera parameters except for the shutter speed are
fixed. Let 0[EV] and ∆t0EV be the proper exposure
value and shutter speed under the given conditions,
respectively. The exposure value vi[EV] of an image
taken at shutter speed ∆ti is derived from

vi = log2 ∆ti − log2 ∆t0EV. (3)

From eq. (1) to eq. (3), images I0EV and Ii exposed at
0[EV] and vi[EV], respectively, are written as

I0EV(p) = f(E(p)∆t0EV) (4)

Ii(p) = f(E(p)∆ti) = f(2viE(p)∆t0EV). (5)

Assuming function f is linear, we obtain the following
relationship between I0EV and Ii:

Ii(p) = 2viI0EV(p). (6)

Therefore, the exposure can be varied artificially by
multiplying I0EV by a constant. This ability is used
in our proposed pseudo multi-exposure fusion method,
which is described in the next section.

3. Proposed pseudo multi-exposure image fu-
sion

In this paper, we propose a novel pseudo multi-exposure
image fusion method which fuses multi-exposure im-
ages generated form a single image. The outline of the
proposed method is shown in Fig. 2. In the proposed
method, local contrast enhancement is applied to the
luminance L calculated from the original image I and
then pseudo exposure compensation and tone mapping
are also applied. Next, image I ′ with improved quality
is produced by multi-exposure image fusion.

3.1 Local contrast enhancement

If pseudo multi-exposure images are generated form a
single image, the quality of an image fused from them
will be lower than that of an image fused from gen-
uine multi-exposure images. Therefore, the dodging
and burning algorithm is used to enhance the local con-
trast [20]. The algorithm is given by

Lc(p) =
L2(p)

La(p)
, (7)

where La(p) is the local average of luminance L(p)
around pixel p. It is obtained by applying a low-pass
filter to L(p). Here, a bilateral filter is used for this
purpose.

La(p) is calculated using the bilateral filter

La(p) =
1

c(p)

∑
q∈Ω

L(q)gσ1
(q − p)gσ2

(L(q)− L(p)), (8)

where Ω is the set of all pixels, and c(p) is a normaliza-
tion term such as

c(p) =
∑
q∈Ω

gσ1
(q − p)gσ2

(L(q)− L(p)), (9)

where gσ is a Gaussian function given by

gσ(p|p = (x, y)) = Cσ exp

(
−x

2 + y2

σ2

)
(10)

using a normalization factor Cσ. Parameters σ1 =
16, σ2 = 3/255 are set in accordance with [20].
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Fig. 2 Outline of proposed method

3.2 Pseudo exposure compensation

The pseudo exposure compensation consists of two
steps: estimating luminance L0EV from Lc and cal-
culating luminance Li(1 ≤ i ≤ N, i ∈ N) of the ith
image, where L0EV is the luminance of the properly
exposed image i.e. with 0[EV], and N is the number
of pseudo multi-exposure images produced by the pro-
posed method.

In the first step, there are two approaches A and
B to estimate the luminance L0EV. Approach A es-
timates L0EV on the basis of automatic exposure al-
gorithms in digital cameras, so that it enables us to
avoid color distortions between a resulting image and
the original image. On the other hand, approach B es-
timates L0EV by using all luminance values of the scene
unlike the automatic exposure algorithms which gener-
ally use luminance values in specific area of the scene.
Hence, approach B allows us to strongly enhance the
contrast in all image regions. Note that approach A
is only available when the exposure value v[EV] of the
original image I is known. In contrast, approach B is
available regardless whether the exposure value v[EV]
of I is known or not.

A. Estimating L0EV with exposure value v
In approach A, according to eq. (6), L0EV is estimated
as

L0EV(p) = 2−vLc(p). (11)

B. Estimating L0EV without exposure value v
In approach B, we map the geometric mean Lc of lu-
minance Lc to middle-gray of the displayed image, or
0.18 on a scale from zero to one, as in [21], where the
geometric mean of the luminance values indicates the
approximate brightness of the image.

The luminance L0EV is derived from

L0EV(p) =
0.18

Lc
Lc(p) (12)

where the geometric mean Lc of Lc(p) is calculated us-
ing

Lc = exp

 1

|Ω|
∑
p∈Ω

logLc(p)

. (13)

If eq. (13) has singularities at some pixels i.e. Lc(p) =
0, Lc is calculated by

Lc = exp

 1

|Ω|

∑
p/∈B

logLc(p) +
∑
p∈B

log ε

 (14)

where B = {p|Lc(p) = 0} and ε is a small value.

The second step of the pseudo exposure compensa-
tion is carried out according to eq. (6). The luminance
Li of the ith image Ii is obtained by

Li(p) = 2viL0EV(p), (15)

so that the image Ii could have the exposure value
vi[EV]. To generate high quality images, multi-
exposure images should represent bright, middle and
dark regions of the original image I, respectively. Since
the image having 0[EV] represents the middle region
clearly, a negative value, zero and a positive value
should be used as the parameters vi. In this paper,
we use N = 3, and vi = −1, 0,+1[EV].

3.3 Tone mapping

Since the luminance value Li(p) calculated by the
pseudo exposure compensation often exceeds the max-
imum value of the common image format. Pixel values
might be lost due to truncation of the values. This
problem is overcome, by using a tone mapping opera-
tion to fit the luminance value into the interval [0, 1].

The luminance L′i of a pseudo multi-exposure im-
age is obtained, by applying a tone mapping operator
Fi to Li:

L′i(p) = Fi(Li(p)). (16)

Reinhard’s global operator is used here as tone mapping
operator Fi [21].

Reinhard’s global operator is given by

Fi(L(p)) =

L(p)

(
1 + L(p)

L2
whitei

)
1 + L(p)

, (17)

where parameter Lwhitei > 0 determines luminance
value L(p) as L′(p) = Fi(L(p)) = 1. Note that Rein-
hard’s global operator Fi is a monotonically increasing
function. Here, let Lwhitei = maxLi(p). We obtain
L′i(p) ≤ 1 for all p. Therefore, truncation of the lumi-
nance values can be prevented.

Combining L′i, luminance L of the original image
I, and RGB pixel values C(p) ∈ {R(p), G(p), B(p)}
of I, we obtain RGB pixel values C ′i(p) ∈
{R′i(p), G′i(p), B′i(p)} of pseudo multi-exposure images
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I ′i:

C ′i(p) =
L′i(p)

L(p)
C(p). (18)

3.4 Fusion of pseudo multi-exposure images

Pseudo multi-exposure images I ′i can be used as input
for any multi-exposure image fusion method. While nu-
merous methods for fusing images have been proposed,
here we use those of Mertens et al. [13], Sakai et al. [17],
and Nejati et al. [18]. A final image I ′ is produced using

I ′ = F (I ′1, I
′
2, · · · , I ′N ), (19)

where F (I1, I2, · · · , IN ) indicates a function to fuse N
images I1, I2, · · · , IN into a single image.

3.5 Proposed procedure

The procedure for generating an image I ′ from the orig-
inal image I by the proposed method is summarized as
follows (see Fig. 2).

1. Calculate luminance L of the original image I.
2. Calculate Lc by using eq. (7) to eq. (10).
3. Calculate Li according to eq. (15).

Approach A. Calculate L0EV by eq. (11).

Approach B. Calculate L0EV by eqs. (12) and
(14).

4. Calculate luminance values L′i of pseudo multi-
exposure images I ′i from eqs. (16) and (17).

5. Generate I ′i according to eq. (18).
6. Obtain an image I ′ with a multi-exposure image

fusion method F as in eq. (19).

4. Simulation

Using two simulations, “Simulation 1” and “Simulation
2,” we evaluated the quality of the images produced by
the proposed method, the three fusion methods men-
tioned above, and typical single image based contrast
enhancement methods, i.e. the histogram equalization
(HE), the contrast limited adaptive histograph equal-
ization (CLAHE) [22], and the contrast-accumulated
histogram equalization (CACHE) [23].

4.1 Comparison with conventional methods

To evaluate the quality of the images produced by each
method, objective metrics are needed. Typical metrics
such as the peak signal to noise ratio (PSNR) and the
structural similarity index (SSIM) are not suitable for
this purpose because they use the target image with the
highest quality as a reference one. We therefore used
TMQI [24] and CIEDE2000 [25] as the metrics as they
do not require any reference images.

TMQI represents the quality of images tone
mapped from an HDR image; the index incorporates

structural fidelity and statistical naturalness. An HDR
image is used as a reference to calculate structural fi-
delity. Any references are not needed to calculate sta-
tistical naturalness. Since the processes of tone map-
ping and photographing are similar, TMQI is also useful
for evaluating photographs. CIEDE2000 represents the
distance in a color space between two images. We used
CIEDE2000 to evaluate the color distortion caused by
the proposed method.

4.2 Simulation conditions

4.2.1 Simulation 1 (using HDR images)

In Simulation 1, HDR images were used to prepare the
input images for the proposed method. The following
procedure was carried out to evaluate the effectiveness
of the proposed method.

1. Map HDR image IH to three multi-exposure im-
ages IMk, k = 1, 2, 3 with exposure values vMk =
k − 2[EV] by using a tone mapping operator (see
Fig. 3).

2. Obtain I ′ from I according to the proposed proce-
dure as in 3.5, under I = IM2 having vM2 = 0[EV].

3. Compute TMQI values between I ′ and IH .
4. Compute CIEDE2000 values as an error measure

between I ′ and IM2.
In step 1), the tone mapping operator corresponds to
function f in eqs. (4) and (5) (see Fig. 1). As assumed
for eq. (6), a linear operator was used as the tone map-
ping operator. In addition, the properly exposed image,
having 0[EV], for each scene was defined as an image
in which the geometric mean of the luminance equals
to 0.18.

We used 60 HDR images selected from available
online databases [26,27].

4.2.2 Simulation 2 (photographing directly)

In Simulation 2, four photographs taken by Canon EOS
5D Mark II camera and eight photographs selected from
an available online database [28] were directly used as
input images IMk (see Fig. 4). Since there were no
HDR images for Simulation 2, the first step in Simula-
tion 1 was not needed. In addition, structural fidelity
in TMQI could not be calculated due to the non-use of
HDR images. Thus, we used only statistical natural-
ness in TMQI as a metric.

4.3 Simulation results

Here, the effectiveness of the proposed method is dis-
cussed on the basis of objective assessments.

4.3.1 Simulation 1

Tables 1, 2 and 3 summarize TMQI score, statistical
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(a) IM1

(vM1 = −1[EV])
(b) IM2

(vM2 = 0[EV])
(c) IM3

(vM3 = +1[EV])

Fig. 3 Examples of multi-exposure images IMk

(Memorial) mapped from IH

(a) IM1

(vM1 = −1.3[EV])
(b) IM2

(vM2 = 0[EV])
(c) IM3

(vM3 = +1.3[EV])

Fig. 4 Examples of multi-exposure images IMk (Es-
tate rsa) for Simulation 2

naturalness score, and CIEDE2000 score for Simula-
tion 1, respectively. For TMQI ∈ [0, 1] (and statistical
naturalness ∈ [0, 1]), a larger value means higher qual-
ity. For CIEDE2000 ∈ [0,∞), a smaller value intends
that the color difference between two images is smaller.

a) Comparison with multi-exposure fusion methods
Table 1 shows the results of evaluating three multi-
exposure fusion methods (MEF), three conventional
contrast enhancement methods (CE), and the proposed
method, in terms of TMQI, where the proposed method
has six variations. Here CE and the proposed method
utilized a single image IM2 having 0[EV] as the input
image, although MEF used three multi-exposure im-
ages IM1, IM2 and IM3 as input ones. By comparing
MEF with approach A and B (e.g. comparing MEF [13]
with the proposed method using [13]), it is confirmed
that both approach A and B provide higher TMQI
scores than MEF, even though the proposed ones used
a single image as an input image. Statistical natural-
ness scores (in Table 2) also show a similar trend to
Table 1.

By considering CIEDE2000 scores in Table 3, it
is also confirmed that approach A has better CIEDE
scores than MEF.

Figure 5 shows an example of images generated by
each method. In this figure, the results of approach A
are not shown because there were few visual differences
between approach A and approach B. This is because
exposure values of input images were determined in the

same way as that utilized in approach B for estimating
L0EV (given by eq. 12), in Simulation 1. From the
figure, it is confirmed that the proposed method can
produce an image with almost the same as ones fused
by MEF.

These results demonstrate that the proposed
method is effective as well as MEF. Moreover,
CIEDE2000 scores denote that approach A can pro-
duce images with higher quality, in terms of the color
distortion, than approach B.

b) Comparison with contrast enhancement methods
Contrast enhancement also allows us to enhance the
quality of images from a single image. To clearly show
the effectiveness of the proposed method, we compared
the proposed method with typical contrast enhance-
ment methods.

Contrast enhancement methods provided higher
TMQI and statistical naturalness scores than that of
the proposed ones as shown in Tables 1 and 2. Es-
pecially, CACHE which is the state-of-the-art method
has the best scores in all methods. However, they have
the worst CIEDE2000 scores (see Table 3). The re-
sult means that the use of a contrast enhancement
method would produce some serious color distortion.
By comparing Fig. 5 with Fig. 3, it is also confirmed
that contrast enhancement methods bring color distor-
tion, e.g. the carpet on stairs (boxed by red line). In
addition, since contrast enhancement methods aim to
maximize image contrast, the resulting images some-
times have unnatural contrast due to over-enhancement
(see regions boxed by blue line in Fig. 5). By con-
trast, the proposed method can prevent both the color
distortion and the over-enhancement. Therefore, the
proposed methods outperforms contrast enhancement
methods in terms of the color distortion and the over-
enhancement.

The results of Simulation 1 show that the proposed
method enables us to produce high-quality images as
well as conventional MEF, even when a single image is
used as an input image. Besides, the proposed method
also outperforms CE in therms of the color distortion
and the over-enhancement. Comparison between ap-
proach A and B demonstrate that approach A can pro-
vide better CIEDE2000 scores than approach B, al-
though approach B can strongly enhance the contrast
of images as described later.

4.3.2 Simulation 2

In Simulation 2, statistical naturalness scores also show
a similar trend to Simulation 1 (see Table 4). Besides,
Table 5 shows that proposed methods using approach
B as in 3.2 has worse CIEDE2000 scores than CLAHE
and CACHE. This is due to the difference of estimat-
ing method for L0EV between digital cameras and the
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proposed method using approach B. In approach B, es-
timated L0EV is differ from ones estimated by digital
cameras. As a result, brightness of images produced by
the proposed one using approach B is differ substan-
tially from the input image as shown in Fig. 6. On
the other hand, approach A enables us to avoid color
distortions since it estimates L0EV by using exposure
values calculated by digital cameras. Thus, approach
A has the lowest CIEDE2000 scores in the methods (see
Table 5).

From Fig. 6, it is also confirmed that CE methods
(He and CACHE) cause the loss of details in bright
regions boxed by red line. This is due to the fact that
these CE methods decrease the number of gradations
assigned for bright regions, to enhance dark regions. By
contrast, both approaches A and B can enhance images
without the loss of details, as well as conventional MEF.

From these results, the proposed method enables
us to generate images with high quality, as well as
conventional MEF, from a single image. In addition,
approach A outperforms typical contrast enhancement
methods in terms of the color distortion. On the other
hand, approach B can strongly enhance the contrast of
images without loss of details, unlike conventional CE
methods.

5. Conclusion

Our proposed method produces pseudo multi-exposure
images from a single image and the use of a local con-
trast enhancement method improves their quality. The
proposed method is done by utilizing the relationship
between the exposure values and pixel values. Ap-
proaches A and B used in the proposed method en-
ables us to avoid color distortions and to strongly en-
hance the image contrast, respectively. Approach B
is available even when the exposure value of an input
image is unknown, while approach A is only available
when the exposure value is known. Experimental re-
sults showed that the proposed method can effectively
enhances images as well as conventional multi-exposure
image fusion methods, without multi-exposure images.
In addition, the proposed approach A outperforms typi-
cal contrast enhancement methods in terms of the color
distortion. On the other hand, approach B allows us to
strongly enhance the contrast of images without loss
of details, unlike conventional contrast enhancement
methods.
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Table 1 Experimental results for Simulation 1 (TMQI). “MEF,” and “CE”
indicate multi-exposure fusion and contrast enhancement, respectively.

Methods
Input
image

MEF CE Proposed
[13] [17] [18] HE [22] [23] [13] [17] [18]

A B A B A B

AtriumNight 0.8388 0.8514 0.8510 0.8402 0.8536 0.8236 0.8710 0.8579 0.8604 0.8576 0.8601 0.8449 0.8473
MtTamWest 0.7189 0.7784 0.7785 0.7718 0.7838 0.8838 0.8133 0.7990 0.8215 0.7964 0.8182 0.7885 0.8139
SpheronNapa 0.7239 0.7485 0.7483 0.7515 0.7423 0.7933 0.7734 0.7633 0.7670 0.7624 0.7660 0.7572 0.7610
Memorial 0.8404 0.8427 0.8429 0.8396 0.8381 0.7872 0.8415 0.8461 0.8522 0.8473 0.8538 0.8379 0.8438
Rend 11 0.7932 0.8242 0.8231 0.8142 0.8649 0.8908 0.8994 0.8312 0.8563 0.8303 0.8552 0.8207 0.8474

Average
0.7830 0.8090 0.8088 0.8034 0.8165 0.8358 0.8397 0.8195 0.8315 0.8188 0.8307 0.8099 0.8227

(5 images)

Average
0.8088 0.8151 0.8151 0.8130 0.8376 0.8248 0.8581 0.8294 0.8355 0.8290 0.8353 0.8236 0.8301

(60 images)

Table 2 Experimental results for Simulation 1 (Statistical Naturalness)
“MEF,” and “CE” indicate multi-exposure fusion and contrast enhancement,
respectively.

Methods
Input
image

MEF CE Proposed
[13] [17] [18] HE [22] [23] [13] [17] [18]

A B A B A B

AtriumNight 0.1672 0.2185 0.2176 0.1644 0.3110 0.1398 0.4060 0.2411 0.2530 0.2398 0.2518 0.1829 0.1931
MtTamWest 0.1972 0.2326 0.2328 0.2531 0.2231 0.7518 0.4140 0.3027 0.3781 0.2906 0.3612 0.2931 0.3681
SpheronNapa 0.0116 0.0106 0.0105 0.0149 0.0418 0.1694 0.0720 0.0367 0.0430 0.0345 0.0403 0.0315 0.0368
Memorial 0.2094 0.2113 0.2122 0.1945 0.2544 0.0444 0.2890 0.2311 0.2609 0.2367 0.2684 0.1935 0.2209
Rend 11 0.1637 0.2425 0.2365 0.2054 0.4703 0.5784 0.7145 0.2555 0.3645 0.2507 0.3576 0.2129 0.3197

Average
0.1498 0.1831 0.1819 0.1665 0.2601 0.3368 0.3791 0.2134 0.2599 0.2105 0.2558 0.1828 0.2277

(5 images)

Average
0.2078 0.2000 0.2002 0.1903 0.3283 0.2683 0.4496 0.2543 0.2839 0.2528 0.2826 0.2278 0.2575

(60 images)

Table 3 Experimental results for Simulation 1 (CIEDE2000) “MEF,” and
“CE” indicate multi-exposure fusion and contrast enhancement, respectively.

Methods
Input
image

MEF CE Proposed
[13] [17] [18] HE [22] [23] [13] [17] [18]

A B A B A B
AtriumNight 0.000 2.872 2.816 1.628 8.769 7.536 10.127 2.231 2.511 2.208 2.490 1.176 1.357
MtTamWest 0.000 3.881 3.864 2.715 5.875 4.994 5.869 1.891 3.832 1.879 3.826 1.335 2.806
SpheronNapa 0.000 4.565 4.561 2.821 4.204 8.724 5.024 2.346 2.627 2.334 2.617 1.472 1.794
Memorial 0.000 2.984 2.932 3.544 6.795 9.617 9.105 1.762 2.690 1.742 2.682 2.443 3.213
Rend 11 0.000 3.447 3.403 2.947 7.418 7.343 8.766 2.892 5.582 2.862 5.560 2.212 4.827
Average

0.000 3.550 3.515 2.731 6.612 7.643 7.778 2.224 3.448 2.205 3.435 1.727 2.800
(5 images)
Average

0.000 3.353 3.326 2.433 7.527 7.397 8.785 2.417 3.434 2.400 3.424 1.912 2.839
(60 images)
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Table 4 Experimental results for Simulation 2 (Statistical Naturalness)
“MEF,” and “CE” indicate multi-exposure fusion and contrast enhancement,
respectively.

Methods
Input
image

MEF CE Proposed
[13] [17] [18] HE [22] [23] [13] [17] [18]

A B A B A B

Arno 0.0031 0.0264 0.0243 0.0360 0.2246 0.0448 0.1291 0.0095 0.0947 0.0092 0.0903 0.0072 0.1200
Cave 0.0006 0.0188 0.0174 0.0527 0.3231 0.0034 0.0070 0.0004 0.0009 0.0004 0.0011 0.0005 0.0001
Chinese garden 0.0772 0.1076 0.1141 0.1341 0.3460 0.0880 0.2298 0.1044 0.2267 0.1034 0.2552 0.0904 0.1739
Corridor 1 0.0000 0.0000 0.0000 0.0000 0.3556 0.0000 0.0015 0.0000 0.2112 0.0000 0.2076 0.0000 0.2371
Corridor 2 0.0000 0.0085 0.0077 0.0053 0.3031 0.0006 0.0473 0.0001 0.0854 0.0001 0.0817 0.0000 0.1066
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Laurenziana 0.4360 0.3424 0.3261 0.3799 0.3967 0.6133 0.9213 0.5328 0.8753 0.5232 0.8799 0.4939 0.8344
Lobby 0.0006 0.0037 0.0032 0.0043 0.4276 0.0031 0.0206 0.0008 0.4635 0.0008 0.4733 0.0008 0.4448
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Window 0.0020 0.0068 0.0065 0.0070 0.2777 0.0133 0.0397 0.0043 0.3515 0.0042 0.3401 0.0036 0.4653

Table 5 Experimental results for Simulation 2 (CIEDE2000) “MEF,” and
“CE” indicate multi-exposure fusion and contrast enhancement, respectively.

Methods
Input
image

MEF CE Proposed
[13] [17] [18] HE [22] [23] [13] [17] [18]

A B A B A B
Arno 0.000 8.621 8.601 10.319 12.433 8.593 12.896 3.317 12.391 3.293 12.365 2.289 13.228
Cave 0.000 15.858 15.826 19.969 31.178 6.045 9.757 1.353 31.862 1.290 31.881 1.297 32.508
Chinese garden 0.000 11.954 11.882 10.922 16.282 13.556 15.954 2.594 15.706 2.470 15.660 2.294 15.231
Corridor 1 0.000 3.794 3.785 2.551 40.235 6.738 19.344 1.347 36.950 1.335 36.948 0.944 37.685
Corridor 2 0.000 22.179 22.164 19.810 30.185 9.368 24.636 3.377 27.568 3.364 27.558 1.812 28.086
Estate rsa 0.000 11.064 11.025 8.969 17.134 14.656 21.380 3.916 15.092 3.877 15.071 2.999 13.963
Kluki 0.000 11.081 11.017 5.740 3.103 12.403 12.160 2.457 5.412 2.389 5.356 1.870 4.945
Laurenziana 0.000 10.809 10.789 7.449 6.372 9.849 11.054 2.097 7.696 2.032 7.667 1.711 7.269
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Window evaluative 0.000 5.077 5.057 4.537 22.795 6.531 8.342 2.246 21.415 2.230 21.422 1.477 21.859
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(a) Mertens [13] (b) HE

(c) CACHE [23] (d) Proposed (A)
with [13]

(e) Proposed (B)
with [13]

Fig. 6 Images I ′ generated from image “Estate rsa”
(top) and zoom-in views of their upper right corner
(bottom).
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