
114
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

PAPER Special Section on Cryptography and Information Security

No-Dictionary Searchable Symmetric Encryption∗

Wakaha OGATA†a), Member and Kaoru KUROSAWA††b), Fellow

SUMMARY In the model of no-dictionary searchable symmetric en-
cryption (SSE) schemes, the client does not need to keep the list of keywords
W . In this paper, we first show a generic method to transform any passively
secure SSE scheme to a no-dictionary SSE scheme such that the client can
verify search results even if w <W . In particular, it takes only O(1) time
for the server to prove that w < W . We next present a no-dictionary SSE
scheme such that the client can hide even the search pattern from the server.
key words: searchable symmetric encryption, dictionary, verifiable, search
pattern

1. Introduction

1.1 Background

The notion of searchable symmetric encryption (SSE)
schemes was introduced by Song et al. [34]. In the store
phase, a client encrypts a set of files and an index table by
a symmetric encryption scheme, and then stores them on
an untrusted server. In the search phase, he can efficiently
retrieve the matching files for a search keyword w keeping
the keyword and the files secret.

Since then, single keyword search SSE schemes [15],
[16], [19], [24], [26], dynamic SSE schemes [13], [21], [22],
[25], [27], [30], verifiable SSE schemes [24]–[27], [35], mul-
tiple keyword search SSE schemes [1], [7], [12], [20], [23],
[36] and more [14] have been studied extensively by many
researchers.

Curtmola, et al. [16], [17] gave a rigorous definition of
privacy against honest but curious servers. Kurosawa and
Ohtaki [24], [26] showed a definition of reliability against
malicious servers who may return incorrect search results to
the client, or may delete some encrypted files to save her
memory space. An SSE scheme is called verifiable if it
satisfies both privacy and reliability.

Let D = {D1, . . . , DN } be the set of files and W =

{w1, . . . , wm} be the set of keywords, where each keyword w
is contained in some file(s). We callW a dictionary.

Let ID (w) = { j | D j contains w}. Then an index

Manuscript received March 20, 2018.
Manuscript revised June 19, 2018.
†The author is with Tokyo Institute of Technology, Tokyo, 152-

8552 Japan.
††The author is with Ibaraki University, Hitachi-shi, 316-8511

Japan.
∗A part of this paper was published at Financial Cryptography

and Data Security 2017 [31].
a) E-mail: ogata.w.aa@m.titech.ac.jp
b) E-mail: kaoru.kurosawa.kk@vc.ibaraki.ac.jp

DOI: 10.1587/transfun.E102.A.114

table T is defined as T = (ID (w1), . . . ,ID (wm)), where
wi ∈ W . Let I be an encryption of T . In the store phase,
the client sends I and an encryption of D to the server.

We say that an SSE scheme is a no-dictionary SSE
scheme if the client does not need to keepW . In usual SSE
schemes, the client does not need to keep W . However,
there are some exceptional cases. In this paper, we study
two cases in which it is non-trivial to design an efficient no-
dictionary SSE scheme. (The notion of no-dictionary SSE
schemes was first studied by Taketani and Ogata [35] in the
setting of verifiable SSE schemes.)

1.2 No-Dictionary SSE with Search Pattern Hiding

The search pattern is the information on which past queries
are the same as the current one, where a query is an encryp-
tion of a search word w. In usual SSE schemes, the search
pattern is leaked to the server.

If the client keeps a dictionaryW , we can construct a
search pattern hiding SSE scheme by using the technique of
private information retrieval (PIR) [29], [32]† (The cost for
it is that the communication complexity and the computation
complexity increase.).

In the store phase, the client stores an encrypted index
table I0 = (I0[1], . . . ,I0[m]) such that I0[i] is an encryption
of T [i](= ID (wi)), where wi ∈ W for each i. In the search
phase, by using PIR, he obtains I0[i] from the server without
revealing any information on the search word wi ∈ W . This
means that the search pattern is hidden from the server. He
finally retrieves encryptions of all D j such that j ∈ T [i]
from the server.

If the client does not want to keepW (i.e. no-dictionary
SSE), there is a simple way to modify the above scheme.
Let b be the bit length of the longest keyword in W ,
and let π : {0, 1}≤b → {0, 1}ℓ be an injection for some
ℓ. The client constructs an extended index table Te of
size 2ℓ such that Te[π(w)] = ID (w). Then he stores
Ie = (Ie[1], . . . ,Ie[2ℓ]) such that Ie[i] is an encryption of
Te[i] to the server, and keeps only (b, π). In this way, we can
obtain a no-dictionary search-pattern hiding SSE scheme.
However, Ie is much larger than I0 because 2ℓ ≫ |W| in
general.

†The connection between SSE and PIR was suggested by Curt-
mola et al. [16], [17].

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

OGATA and KUROSAWA: NO-DICTIONARY SEARCHABLE SYMMETRIC ENCRYPTION
115

1.3 No-Dictionary Verifiable SSE

Consider a verifiable SSE scheme such as follows. The client
stores I1 = ((a1, b1, c1), . . . , (am, bm, cm)) to the server such
that

(ai, bi, ci) = (Fk1 (wi), Fk2 (wi) + ID (wi),MAC(ai, bi))

for each wi ∈ W , where F is a pseudorandom function and
k1, k2 are keys. To search on w, the client sends

(a′, b′) = (Fk1 (w), Fk2 (w))

to the server. The server finds i such that a′ = ai and returns
the search result with MAC(ai, bi).

Is it a no-dictionary verifiable SSE scheme? The answer
is no because a malicious server can cheat by saying that a′ <
{a1, . . . , am} (namely w < W) even if a′ ∈ {a1, . . . , am}.
The client has no way to check this.

We can prevent this cheating by using the extended
index table Te defined in Sect. 1.2. However, the encrypted
Ie gets much larger than I1 (see Sect. 1.2).

For this problem, Taketani and Ogata [35] showed a
no-dictionary verifiable SSE scheme such that the encrypted
index table is almost the same size as I1. In this scheme,
however, the server takes O(N log(Nm)) time to prove that
w <W , where N = |D| and m = |W|.

1.4 Our Contribution

In this paper, we first show a generic method to transform any
passively secure SSE scheme to a no-dictionary verifiable
SSE scheme. In the transformed scheme, the encrypted index
table is only a few times larger than that of the underlying
SSE scheme, and the server takes only O(1) time to prove
that w < W , which is more efficient than the scheme in
[35]. The search time for w ∈ W remains almost the same
as that of the original SSE scheme. We also prove that the
transformed scheme is UC-secure in Appendix similarly to
[24], [26].

We next present a no-dictionary search-pattern hiding
SSE scheme such that the encrypted index table is only a few
times larger than I0 (As in the corresponding dictionary SSE
scheme, the cost for it is that the communication complexity
and the computation complexity increase.)†.

We use Cuckoo Hashing [33] in both our results as a
main technical tool.

1.5 Remark

In the verifiable SSE schemes of [24]–[27], the set of key-
words is defined as W = {0, 1}ℓ . In reality, however, key-
words have various length. Therefore we must use the tech-
nique of Sect. 1.2 in practice.
†This part was not written in the conference version [31] of this

paper.

If we use an oblivious RAM (ORAM) in a dynamic
SSE scheme [18] (in which the client can update files), we
can hide the search pattern and the access pattern. In such
a scheme, however, the client must keep the dictionary (or a
corresponding list). The communication cost is also large.

2. Verifiable Searchable Symmetric Encryption

In this section, we define a no-dictionary (verifiable) SSE
scheme and its security. Basically, we follow the notation
used in [12], [24], [26].

• Let D = {D1, . . . , DN } be the set of files.
• LetW be the set of keywords, where each keyword w

is contained in some file(s).
• For w ∈ {0, 1}∗, define as follows:

D(w) =
{
{Di | Di contains w} if w ∈ W
∅ otherwise

• Let C = {C1, . . . ,CN }, where Ci is a ciphertext of Di .
• Let

C(w) = {Ci | Ci is a ciphertext of Di ∈ D (w)}.
(1)

Note that C(w) = ∅ if w <W .

If X is a bit string, |X | denotes the bit length of X . If
X is a set, |X | denotes the cardinality of X . “PPT” refers to
probabilistic polynomial time, and “PT” refers to polynomial
time.

2.1 Model

An SSE scheme has two phases, the store phase (which is
executed only once) and the search phase (which is executed
a polynomial number of times). In the store phase, the client
encrypts all files in D and stores them on the server. In the
search phase, the client sends a ciphertext of a word w, and
the server returns C(w). If there is a mechanism to verify
the validity of C(w), the scheme is called a verifiable SSE
(vSSE).

Formally, a vSSE scheme consists of the fol-
lowing four polynomial-time algorithms vSSE =

(Setup, Trpdr, Search, Dec) as follows:

• (K,I, C) ← Setup(1λ,D,W, {(w,D (w)) | w ∈
W}): a PPT algorithm that generates a key K , an
encrypted index I, and the set of encrypted files
C = {C1, . . . ,CN }, where λ is a security parameter.
This algorithm is run by the client in the store phase.
He then stores (I, C) on the server.

• t(w) ← Trpdr(K, w): a PPT algorithm that outputs a
trapdoor t(w) for w ∈ {0, 1}∗.
This algorithm is run by the client in the search phase.
t(w) is sent to the server.

• (C∗,Proof) ← Search(I, C, t(w)): a PT algorithm
that outputs the search result C∗ and Proof for the va-
lidity check.

116
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

This algorithm is run by the server in the search phase.
She then returns (C∗,Proof) to the client.

• D∗/⊥ ← Dec(K, t(w), C∗,Proof): a PT algorithm that
decrypts C∗ and verifies its validity based on Proof. If
not valid, output is ⊥. This algorithm is run by the
client in the search phase.

We say that a vSSE satisfies correctness if the following
holds for any K,D,W, {(w,D (w)) | w ∈ W} and any word
w ∈ {0, 1}∗.

• If

(K,I, C) ← Setup(1λ,D,W,
{(w,D(w)) | w ∈ W}),

t(w) ← Trpdr(K, w),
(C∗,Proof) ← Search(I, C, t(w)),

D∗ ← Dec(K, t(w), C∗,Proof),

then

D∗ = D(w).

We assume that C∗ is equal to C(w)(⊂ C) as in most existing
schemes.

An (not verifiable) SSE scheme is defined by omitting
Proof.

2.2 Security Definition

We next define the security of vSSE schemes. Note that a
search word w does not need to belong to the setW .

Privacy. In a (v)SSE, the server should learn almost
no information on D,W , and the search word w. Let
L1(D,W) denote the information that the server can learn
in the store phase, and let L2(D,W,w, w) denote that in
the search phase, where w is the current search word and
w = (w1, w2, . . .) is the list of the past search words queried
so far.

In most existing SSE schemes, L1(D,W) =

(|D1 |, . . . , |DN |, |W|), and L2(D,W,w, w) consists of { j |
D j ∈ D (w)} and the search pattern

SPattern((w1, . . . , wq−1), w) = (sp1, . . . , spq−1),

where

spj =

{
1 if w j = w,
0 if w j , w.

The search pattern reveals which past queries are the same
as w.

Let L = (L1, L2). The client’s privacy is defined by
using two games: a real game Gamereal and a simulation
game GameLsim, as shown in Figs. 1 and 2, respectively.
Gamereal is played by a challenger C and an adversary A,
and GameLsim is played by C, A, and a simulator S.

Definition 1 (L-privacy): We say that a vSSE scheme has

� �
1. Adversary A chooses (D,W) and sends them to challenger

C.
2. C generates (K, I, C) ← Setup(1λ, D,W, {(w, D(w)) |

w ∈ W}) and sends (I, C) to A.
3. For i = 1, . . . , q, do:

a. A chooses a word wi ∈ {0, 1}∗ and sends it to C.
b. C sends the trapdoor t (wi) ← Trpdr(K, wi) back to A.

4. A outputs bit b.� �
Fig. 1 Real game Gamereal .

� �
1. Adversary A chooses (D,W) and sends them to challenger

C.
2. C sends L1 (D,W) to simulator S.
3. S computes (I, C) from L1 (D,W), and sends them to C.
4. C relays (I, C) to A.
5. For i = 1, . . . , q, do:

a. A chooses wi ∈ {0, 1}∗ and sends it to C.
b. C sends L2 (D,W, w, wi) to S, where w =

(w1, . . . , wi−1).
c. S computes t (wi) from L2 (D,W, w, wi) and sends it

to C.
d. C relays t (wi) to A.

6. A outputs bit b.� �
Fig. 2 Simulation game GameLsim .

L-privacy, if there exists a PPT simulator S such that

| Pr[A outputs b = 1 in Gamereal]
− Pr[A outputs b = 1 in GameLsim]| (2)

is negligible for any PPT adversary A.

Reliability. In an SSE scheme, a malicious server might
cheat a client by returning a false result C̃∗(, C(w)) during
the search phase. (Weak) reliability guarantees that the client
can detect such a malicious behavior. Formally, reliability is
defined by game Gamereli shown in Fig. 3, which is played
by an adversary B = (B1,B2) (malicious server) and a chal-
lenger C. B1 and B2 are assumed to be able to communicate
freely.

Definition 2 (Reliability): We say that B wins in Gamereli
if B1 receivesD∗i such that D̃∗i < {D (wi),⊥} for some i. We
say that a vSSE scheme satisfies reliability if for any PPT
adversary B,

Pr[B wins in Gamereli]

is negligible.

For SSE schemes in which C∗ = C(w) is assumed to be
returned as a search result, strong reliability was also defined
in [26]. In strong reliability, the server has to answer a wrong
pair (C̃∗,IProof)(, (C(w),Proof)) that will be accepted in the
search phase to win the game.

OGATA and KUROSAWA: NO-DICTIONARY SEARCHABLE SYMMETRIC ENCRYPTION
117

� �
(Store phase)

1. B1 chooses (D,W) and sends them to C.
2. C generates (K, I, C) ← Setup(1λ, D,W, {(w, D(w)) |

w ∈ W}), and sends (I, C) to B2.

(Search phase) For i = 1, . . . , q, do
1. B1 chooses wi ∈ {0, 1}∗ and sends it to C.
2. C sends the trapdoor t (wi) ← Trpdr(K, wi) to B2.
3. B2 returns (C̃∗i , JProofi) to C.
4. C computes

D̃∗i ← Dec(K, t (wi), C̃∗i , JProofi)

and returns D̃∗i to B1. D̃∗i can be ⊥.� �
Fig. 3 Gamereli .

Definition 3 (Strong Reliability): We say that B strongly
wins in Gamereli if there exists i, such that both
Dec(K, t(wi), C̃∗i ,IProofi) , ⊥ and (C̃∗i ,IProofi) ,
(C(wi),Proofi) hold. We say that a vSSE scheme satisfies
strong reliability if for any PPT adversary B,

Pr[B strongly wins in Gamereli]

is negligible.

3. Building Blocks

3.1 Cuckoo Hashing

Cuckoo Hashing [33] is a hashing algorithm with the ad-
vantage that the search time is constant. To store n keys, it
uses two tables T1 and T2 of size m, and two independent
random hash functions h1 and h2 with the range {1, . . . ,m}.
Every key x is stored at one of two positions, T1(h1(x)) or
T2(h2(x)). So we need to inspect at most two positions to
search x.

It can happen that both possible places T1(h1(x)) and
T2(h2(x)) of a given key x are already occupied. This prob-
lem is solved by allowing x to throw out the key (say y)
occupying the position T1(h1(x)). Next, we insert y at its
alternative position T2(h2(y)). If it is already occupied, we
repeat the above steps until we find an empty position. If
we failed after some number of trials, we choose new hash
functions and rebuild the data structure.

Let n = m(1 − ϵ) for some ϵ ∈ (0, 1). Then the above
algorithm succeeds with probability 1−c(ϵ)/m+O(1/m2) for
some explicit function c(·) [28]. The expected construction
time of (T1,T2) is bounded above by [28]

2n
1 − eϵ−1

(1 − eϵ−1) + ϵ
. (3)

3.2 Pseudo-Random Function

Let R be a family of all functions f : {0, 1}∗ → {0, 1}n. We
say that F : {0, 1}ℓ × {0, 1}∗ → {0, 1}n is a pseudo-random

function if for any PPT distinguisher D,����Pr[k
$← {0, 1}ℓ : DF (k, ·) = 1] − Pr[f

$← R : D f (·) = 1]
����

is negligibly small.
It is well known that a pseudo-random function works

as a MAC which is existentially unforgeable against chosen
message attack.

4. Generic Transformation from SSE to vSSE

In this section, we show a generic method to transform any
SSE which satisfies privacy to a no-dictionary verifiable
SSE. In the transformed scheme, the encrypted index ta-
ble is only a few times larger than that of the underlying SSE
scheme, and the server takes only O(1) time to prove that
w < W . The search time for w ∈ W remains almost the
same as that of the original SSE scheme. We also prove that
the transformed scheme is UC-secure in Appendix similarly
to [24], [26].

4.1 Construction

Let SSE0 = (Setup0, Trpdr0, Search0, Dec0) be an SSE
scheme. We construct a no-dictionary verifiable SSE
vSSE1 = (Setup1, Trpdr1, Search1, Dec1) as follows. Let
F be a pseudo-random function.

• Setup1(1λ,D,W, {(w,D(w)) | w ∈ W}) : LetW =

{w1, w2, . . . , w |W | }.
1. Run Setup0(1λ,D,W, {(w,D (w)) | w ∈ W})

to obtain (K0,I0, C). Note that Ci ∈ C is a cipher-
text of each file Di ∈ D.

2. Randomly choose a key k of F. We write Fk (x)
instead of F (k, x).

3. Compute keyj ← Fk (0∥w j) for all w j ∈ W .
4. Construct cuckoo hash tables (T ′1,T

′
2) of size

|W|+1 which store {keyj } |W |j=1 . Let (h1, h2) be the
hash functions which are used to construct (T ′1,T

′
2).

This means that

T ′1 (h1(keyj)) = keyj or T ′2 (h2(keyj)) = keyj

for each keyj . When failing in constructing tables,
go back to step 2.

5. Construct two tables (T1,T2) of size |W| + 1 as
follows:
For a = 1, 2 and i = 1, . . . , |W|+1, ifT ′a (i) = keyj
for some keyj = Fk (0∥w j), then

Ta (i) ← ⟨keyj, Fk (a∥i∥keyj), Fk (3∥keyj ∥C(w j)⟩.

Otherwise

Ta (i) ← ⟨null, Fk (a∥i∥null), null⟩.

6. Output (K = (K0, k),I = (I0,T1,T2, h1, h2), C).

The client sends (I, C) to the server, and keeps K secret.

118
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

For each keyj = Fk (0∥w j), it holds that

T1(h1(keyj))
= ⟨keyj, Fk (1∥h1(keyj)∥keyj), Fk (3∥keyj ∥C(w j))⟩

or

T2(h2(keyj))
= ⟨keyj, Fk (2∥h2(keyj)∥keyj), Fk (3∥keyj ∥C(w j))⟩.

• Trpdr1((K0, k), w) : Compute key ← Fk (0∥w) and
t0(w) ← Trpdr0(K0, w). Output t(w) = (key, t0(w)).

The client sends t(w) to the server, where w is a search word.

• Search1((I0,T1,T2, h1, h2), C, t(w) = (key, token)):
Retrieve

⟨α1, β1, γ1⟩ ← T1(h1(key)),
⟨α2, β2, γ2⟩ ← T2(h2(key)).

Let

C∗ ←
{
Search0(I0, C, token) if key ∈ {α1, α2}
∅ otherwise

Proof←

γ1 if key = α1
γ2 if key = α2
(α1, β1, α2, β2) otherwise

Output (C∗,Proof).

The server returns (C∗,Proof) to the client.

• Dec1((K0, k), t(w) = (key, token), C∗,Proof) :
(Case 1) Proof = γ.
If γ , Fk (3∥key ∥C∗), then output ⊥.
(Case 2) Proof = (α1, β1, α2, β2).
If C∗ , ∅ or key ∈ {α1, α2} or β1 ,
Fk (1∥h1(key)∥α1) or β2 , Fk (2∥h2(key)∥α2), then
output ⊥.
Otherwise, compute D∗ ← Dec0(K0, token, C∗) and
output D∗.

The client obtains ⊥ or D∗.

4.2 Example

Suppose that there are 7 keywords W = {w1, . . . , w7} and
8 ciphertexts C = {C1, . . . ,C8} such that C(w j) are given
in Table 1. In the same table, h1(keyj) and h2(keyj) are
the hash values which are used to construct the cuckoo hash
tables (T ′1,T

′
2) for the set {keyj = Fk (0∥w j) | j = 1, . . . , 7}.

Then T1 and T2 are constructed as shown in Table 2. Note
that the size of each table is 8 = |W| + 1.

(Case 1) Suppose that a client searches for a keyword w3 ∈
W .

1. The client sends trapdoor (key3, t0(w3)) to the server.
2. Since h1(key3) = 6 and h2(key3) = 4, the server

retrieves

⟨α1, β1, γ1⟩ = T1(6)
= ⟨key3, Fk (1∥6∥key3), Fk (3∥key3∥C1,C4)⟩,
⟨α2, β2, γ2⟩ = T2(4)
= ⟨key2, Fk (2∥4∥key2), Fk (3∥key2∥C2)⟩

from T1 and T2.
Because α1 = key3, the server obtains the search result

C∗ = (C1,C4) ← Search0(I0, C, t0(w3)),
Proof = γ1 = Fk (3∥key3∥C1,C4),

and returns (C∗,Proof) to the client.
3. The client verifies if γ1 = Fk (3∥key3∥C∗).

(Case 2) Suppose that the client searches for w <W .

1. The client computes key ← Fk (0∥w) and t0(w) ←
Trpdr0(K0, w). He sends t(w) = (key, t0(w)) to the
server.

2. Suppose that h1(key) = 5 and h2(key) = 3. Then the
server retrieves

⟨α1, β1, γ1⟩ = T1(5)
= ⟨null, Fk (1∥5), null⟩,
⟨α2, β2, γ2⟩ = T2(3)
= ⟨key4, Fk (2∥3∥key4), Fk (3∥key4∥C1,C3,C7)⟩.

Because key < {α1, α2}, the server returns
C∗ = ∅ and Proof = (α1, β1, α2, β2) =

(null, Fk (1∥5), key4, Fk (2∥3∥key4)).

Table 1 Example.
keyword wj C(wj) h1 (keyj) h2 (keyj)

w1 C1,C4,C5,C8 6 1
w2 C2 2 4
w3 C1,C4 6 4
w4 C1,C3,C7 6 3
w5 C2,C6 7 8
w6 C5,C8 7 6
w7 C1 2 8

Table 2 Cuckoo hash tables (T1, T2).
i T1 (i)
1 ⟨ null , Fk (1∥1) , null ⟩
2 ⟨ key7, Fk (1∥2∥key7), Fk (3∥key7 ∥C1) ⟩
3 ⟨ null , Fk (1∥3) , null ⟩
4 ⟨ null , Fk (1∥4) , null ⟩
5 ⟨ null , Fk (1∥5) , null ⟩
6 ⟨ key3, Fk (1∥6∥key3), Fk (3∥key3 ∥C1,C4) ⟩
7 ⟨ key6, Fk (1∥7∥key6), Fk (3∥key6 ∥C5,C8) ⟩
8 ⟨ null , Fk (1∥8) , null ⟩

i T2 (i)
1 ⟨ key1, Fk (2∥1∥key1), Fk (3∥key1 ∥C1,C4,C5,C8) ⟩
2 ⟨ null , Fk (2∥2) , null ⟩
3 ⟨ key4, Fk (2∥3∥key4), Fk (3∥key4 ∥C1,C3,C7) ⟩
4 ⟨ key2, Fk (2∥4∥key2), Fk (3∥key2 ∥C2) ⟩
5 ⟨ null , Fk (2∥5) , null ⟩
6 ⟨ null , Fk (2∥6) , null ⟩
7 ⟨ null , Fk (2∥7) , null ⟩
8 ⟨ key5, Fk (2∥8∥key5), Fk (3∥key5 ∥(C2,C6)) ⟩

OGATA and KUROSAWA: NO-DICTIONARY SEARCHABLE SYMMETRIC ENCRYPTION
119

3. The client verifies if key < {α1, α2}, β1 =

Fk (1∥h1(key)∥α1), and β2 = Fk (2∥h2(key)∥α2).

4.3 Efficiency

The efficiency of our transformed scheme vSSE1 is estimated
as follows:

• In the store phase, |W| keys are stored in two tables,
where each table has size m = |W| + 1. Therefore, the
client takes the expected time O(|W|) + time(Setup0)
to run Setup1 from Eq. (3).

• In the search phase, the search time for w ∈ W is
almost the same as that of the original scheme.

• The server takes only O(1) time to prove that w <W
because the search time is constant in cuckoo hashing.

To prove that w <W , in the method of [35], the server
takes O(N log N |W|) time. In the concrete method (Algo-
rithm 1+2) in [6], it takes O(log |W|) + time(Search0).

4.4 Security

Theorem 1: If the underlying scheme SSE0 has L =

(L1, L2)-privacy and F is a pseudorandom function, then
our scheme vSSE1 has L′ = (L′1, L

′
2)-privacy such that

L′1(D,W) = L1(D,W) ∪ {|W|},
L′2(D,W,w, wi) = L2(D,W,w, wi)

∪ {SPattern(w, wi), [wi ∈ W]}. (4)

In the all existing SSE schemes, |W| ∈ L1(D,W) and
{SPattern(w, wi), [wi ∈ W]} ⊆ L2(D,W,w, wi). (There
may be some exceptions which use oblivious RAM. But such
SSE schemes are inefficient.) So, the client’s privacy in our
vSSE scheme has the same level as that of the underlying
SSE scheme.

(Proof) Let S0 be a simulator of the underlining SSE scheme
which has (L1, L2)-privacy. We construct a simulator S of
our vSSE scheme which achieves (L′1, L

′
2)-privacy as fol-

lows.

(Store phase) In Gamesim, S takes L′1(D,W) =

L1(D,W) ∪ {|W|} as an input. S runs S0(L1(D,W))
and gets its output (I0, C). Next S constructs T1 and T2 as
follows. Note that the size of each T1,T2 is m = |W| + 1.

• Choose key ′1, . . . , key ′|W | randomly, where key ′i is
the simulated value of keyj = FK (0∥w j) such that
{key ′1, . . . , key ′|W | } = {key1, . . . , key |W | }.

• Construct the cuckoo hash tables (T ′1,T
′
2) which store

(key ′π(1), . . . , key ′
π(|W |)), where π is a random permu-

tation. Let h1, h2 be the two hash functions which are
used to construct (T ′1,T

′
2).

• For a = 1, 2 and i = 1, . . . , |W| + 1, if T ′a (i) = key ′j
for some j, then choose two random strings r and r ′,
and Ta (i) ← ⟨key ′j, r, r

′⟩. Otherwise, choose a random
string r and Ta (i) ← ⟨null, r, null⟩.

S sends (I0,T1,T2, h1, h2) and C to the challenger. Let
cntr ← 1, where cntr will denote the number of distinct
keywords which the client has queried.

(Search phase) In the ith search phase, S takes
L′2(D,W,w, w∗) = L2(D,W,w, w∗)∪{SPattern(w, w∗),
[w∗ ∈ W]} as an input. S first obtains t0(w∗) by running
S0(L2(D,W,w, w∗)), and sets

key∗i ←


key ′cntr if spj = 0 for all j and w∗ ∈ W,
key∗j if spj = 1 for some j,
random otherwise.

cntr ←
{

cntr + 1 if spj = 0 for all j and w∗ ∈ W,
cntr otherwise.

S outputs (key∗i , t0(w∗)) as a simulated trapdoor.

We will prove that there is no adversary A
who can efficiently distinguish between Gamereal
and Gamesim. We consider a game sequence
(Gamereal,Gamemid,Gamesim). Gamemid is the same as
Gamereal except that all values of Fk (·) are replaced with
random strings. For i ∈ {real,mid, sim}, define

Pi = Pr[A outputs b = 1 in Gamei].

Then |Preal − Pmid | is negligible because F is a pseudo-
random function. We can also see that |Pmid − Psim | is
negligible from the (L1, L2)-privacy of the underlying SSE
scheme. Consequently, |Preal − Psim | is negligible. 2

Theorem 2: Our vSSE scheme vSSE1 satisfies strong reli-
ability if F is a pseudorandom function.

(Proof) We look at the pseudorandom function F as a MAC.
Suppose that there exists an adversary B = (B1,B2)

who can break the strong reliability of our vSSE scheme,
and B runs the search phase q times. Let (C̃∗i ,IProofi) be
B2’s response to t(wi) = (keyi, t0(wi)) in the ith search
phase, and let

(C(wi),Proofi) = Search1(I, C, t(wi)).

From the definition, B strongly wins if there exists i ∈
{1, . . . , q} such that

(C̃∗i ,IProofi) , (C(wi),Proofi) and

Dec1(K, (keyi, t0(wi)), C̃∗i ,IProofi) , ⊥. (5)

By using B, we will construct a forger F against the
MAC, where F has oracle access to Fk .

First, F randomly chooses J ∈ {1, . . . , q}. Then, F runs
B by playing the role of the challenger C (see Fig. 3) until
the (J − 1)th search phase. During this simulation, when C
needs to compute Fk (x) for some x, F queries x to its oracle
Fk .

In the Jth search phase, there are three cases:

(1) IProofJ = γ̃.
In this case, F outputs m′ = (3∥keyJ ∥C̃∗J) and tag′ = γ̃

120
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

as a forgery of the MAC F.
(2) ProofJ = γ and IProofJ = (α̃1, β̃1, α̃2, β̃2).

Since ProofJ = γ, there exists a ∈ {1, 2} such that
Ta (ha (keyJ)) = ⟨keyJ, Fk (a∥ha (keyJ)∥keyJ), . . .⟩.
For this a, F outputs m′ = (a∥ha (keyJ)∥α̃a) and
tag′ = β̃a as a forgery.

(3) ProofJ = (α1, β1, α2, β2) and IProofJ = (α̃1, β̃1, α̃2, β̃2).
If there exists a ∈ {1, 2} s.t. (αa, βa) , (α̃a, β̃a), then,
F outputs m′ = (a∥ha (keyJ)∥α̃a) and tag′ = β̃a as a
forgery. Otherwise F outputs “fail.”

Now F succeeds in forgery if B strongly wins and F
correctly predicts i which satisfies Eq. (5), i.e., Eq. (5) holds
in i = J. Since F predicts J correctly with probability 1/q,
we obtain that

Pr[F succeeds in forgery]

≥ Pr[B strongly wins in Gamereli] ×
1
q
.

2

We prove the UC-security of vSSE1 in Appendix.

5. Search-Pattern Hiding

As mentioned before, the existing no-dictionary SSE
schemes leak search pattern. Namely, they have (L1, L2)-
privacy (Def. 1) such that L2 includes search pattern.

In this section, we show a no-dictionary search-pattern
hiding SSE scheme such that the encrypted index table is
only a few times larger than I0 which is defined in Sect. 1.2.

We consider a model such that the search phase con-
sists of two subprotocols. In the first subprotocol, the client
obtains

ID (w) = {i | Di contains w as a keyword}

for the search word w. In the second subprotocol, he obtains

C(w) = {Ci | i ∈ ID (w)}.

We focus on the first subprotocol, in which the search
pattern should be hidden. The definition of privacy is the
same as Def. 1.

If we use PIR in the second subprotocol in addition, we
can hide even the access pattern.

5.1 PIR

PIR is a two party protocol between a sender and a re-
ceiver such as follows. The sender has a database M =

(m1, . . . ,mN). The receiver wants to obtain midx without
revealing the index idx. A trivial solution is that the sender
sends the entire M to the receiver. In PIR, this must be
realized with less amount of communication. There ex-
ists a PIR scheme such that the communication overhead is
O((log N)2) [29], [32].

A PIR scheme consists of four algorithms

(GenPIR, QueryPIR, AnsPIR, DecPIR), where the first two are
PPT algorithms and the last two are PT algorithms.

• (pk, sk) ← GenPIR(1λ): The receiver runs this algo-
rithm, and sends pk to the sender. He keeps sk secret.

• Qidx ← QueryPIR(sk, idx): The receiver runs this al-
gorithm when he wants to obtain midx , and sends Qidx

to the sender.
• rsp ← AnsPIR(pk,M,Qidx): The sender runs this al-

gorithm, and sends rsp back to the receiver.
• res ← DecPIR(sk, rsp): The receiver runs this algo-

rithm, and obtains res = midx .

The sender should learn no information on idx from
(pk,Qidx).

More formally, a PIR scheme has to satisfy the following
property; For any idx and idx ′, (pk,Qidx) and (pk,Qidx′)
are computationally indistinguishable.

5.2 No-Dictionary Search-Pattern Hiding

We show our no-dictionary SSE scheme, SSE2, which can
hide even the search pattern. For each w j ∈ W , let
ID (w j) = {id1, . . . , idk j }.

SSE2 = (Setup2, Trpdr2, Search2, Dec2)

• Setup2:

1. Generate two PIR key pairs (sk1, pk1), (sk2, pk2).
2. Choose a key K ′ of a symmetric encryption scheme

(Enc, Dec) randomly.
3. For each Di ∈ D, compute Ci ← EncK′ (Di) and set
C = (C1, . . . ,CN).

4. Compute ID ′(w j) ← EncK′ (id1∥ · · · ∥idk j ∥00 · · · 00)
for all w j ∈ W , where 0s are padded so that
|ID ′(w1) | = |ID ′(w2) | = · · · = |ID ′(w |W |) |.

5. Choose a key k of pseudo-random function F randomly,
and compute keyj ← Fk (w j) for all w j ∈ W .

6. Construct cuckoo hash tables (T1,T2) that stores
⟨keyj,ID ′(w j)⟩. Note that

T1(h1(keyj)) = ⟨keyj,ID ′(w j)⟩

or

T2(h2(keyj)) = ⟨keyj,ID ′(w j)⟩

holds.
7. Output ((K ′, sk1, sk2, k), (T1,T2, pk1, pk2), C).

The client sends (T1,T2, pk1, pk2) and C to the server, and
keeps (K ′, sk1, sk2, k) secret.

• Trpdr2:

1. Compute key ← Fk (w).
2. Compute Qb ← QueryPIR(skb, hb (key)) for b = 1, 2.
3. Output t(w) = (Q1,Q2)

The client sends t(w) = (Q1,Q2) to the server, where w is a
search word.

OGATA and KUROSAWA: NO-DICTIONARY SEARCHABLE SYMMETRIC ENCRYPTION
121

• Search2:

1. Compute rspb ← AnsPIR(pkb,Tb,Qb) for b = 1, 2.
2. Output (rsp1, rsp2).

The server returns (rsp1, rsp2) to the client.

• Dec2:

1. Compute resb ← DecPIR(skb, rspb) for b = 1, 2.
2. If res1 = ⟨Fk (w),ID ′1⟩, then decrypt ID ′1 and obtain
ID (w).

3. If res2 = ⟨Fk (w),ID ′2⟩, then decrypt ID ′2 and obtain
ID (w).

4. Otherwise output ID (w) = ∅, which means that “w <
W .”

The client obtains ID (w) even if w <W .
If w = w j , the trapdoor t(w) = (Q1,Q2) is a pair of

queries to retrieve T1(h1(keyj)) and T2(h2(keyj)). There-
fore, either of res1 and res2 is equal to ⟨keyj,ID ′(w j)⟩
from the property of cuckoo hashing and PIR.

We can use arbitrary encoding methods to represent
ID (w). For example, ID (w) = {2, 4, 5} can be encrypted
as ID ′(w) = EncK′ (010110 · · ·). In this case, padding is
unnecessary because the length of plaintext is constant. This
encoding is more efficient when hit rate is relatively large.

The following theorem shows that vSSE2 does not leak
the search pattern.

Theorem 3: Define

L′′1 (D,W) = (|W|, |D1 |, . . . , |DN |, Lmax),
L′′2 (D,W,w, wi) = (),

where

Lmax = max
wi ∈W

|ID (wi) |.

If

• (GenPIR, QueryPIR, AnsPIR, DecPIR) is a secure PIR
scheme,

• F is a pseudorandom function, and
• (Enc, Dec) is an IND-CPA secure symmetric encryp-

tion scheme,

then our scheme SSE2 has L = (L′′1 , L
′′
2)-privacy.

(Proof) We construct a simulator S2 which achieves
(L′′1 , L

′′
2)-privacy as follows.

(Store phase)
On input L′′1 (D,W) = (|W|, |D1 |, . . . , |DN |, Lmax),

S2 computes (T ′1,T
′
2, pk ′1, pk ′2) and C′ as follows.

1. As in Setup2, generate two PIR key pairs
(sk ′1, pk ′1), (sk ′2, pk ′2), and choose K ′.

2. For each i ∈ {1, . . . , N }, compute C ′i ← EncK′ (0 |Di |)
and set C′ = (C ′1, . . . ,C

′
N).

3. Compute ID ′′j ← EncK′ (0Lmax) for all j ∈
{1, . . . , |W|}.

4. Choose a random string key ′j for all j ∈ {1, . . . , |W|}

as the simulated value of Fk (w j).
5. Construct cuckoo hash tables (T ′1,T

′
2) that stores

⟨key ′j,ID
′′
j ⟩.

S2 sends (T ′1,T
′
2, pk ′1, pk ′2) and C′ as the simulated values of

(T1,T2, pk1, pk2) and C to the challenger.

(Search phase)
S2 outputs t ′(w) = (Q′1,Q

′
2), where

Q′b ← QueryPIR(skb, 1).

We will prove that there is no adversary
who can efficiently distinguish between Gamereal
and Gamesim. We consider a game sequence
(Gamereal,Game1,Game2,Gamesim).

Game1 is the same as Gamereal except that all
queries Qb in search phases are replaced with Q′

b
←

QueryPIR(skb, 1). From the security of PIR, Gamereal and
Game1 are indistinguishable.

Game2 is the same as Game1 except that all values
of Fk (w j) are replaced with random strings key ′j as in
Gamesim. From the pseudorandomness of F, Game1 and
Game2 are indistinguishable.

The difference between Game2 and Gamesim is that

• In Game2, Ci = EncK′ (Di) and ID ′(w j) =

EncK′ (ID (w j)), where ID (w j) are padded so that
|ID (w j) | = Lmax .

• In Gamesim, C ′i = EncK′ (0
|Di |) and ID ′′(w j) =

EncK′ (0Lmax).

Therefore, Game1 and Game2 are indistinguishable from
IND-CPA security of (Enc, Dec).

Consequantly, |Preal − Pmid | is negligibly small. 2

The above theorem shows that SSE2 leaks no informa-
tion in the search phase. However, if a user downloads the
hit files Ci ∈ C(w) without using PIR, the server may learn
some information about the search result. In such a case,
total leakage becomes L′′2 (D,W,w, w) = ID (w).

In general, efficiency must be sacrificed to obtain
search-pattern hiding with/without dictionary.

• The search process needs two round-trip communica-
tion to complete keyword search process.

• In general, PIR is built by using asymmetric technique.
So, the scheme needs high computation/communication
cost.

5.3 How to Add Reliability

By using the same idea as in Sect. 4, we can add the reliability
to the above scheme. The client generates cuckoo hash tables
(T1,T2) such that

T1(h1(keyj))
= ⟨keyj,ID ′(w j), Fk (1∥h1(keyj)∥keyj ∥ID ′(w j))⟩

or

122
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

T2(h2(keyj)
= ⟨keyj,ID ′(w j), Fk (2∥h2(keyj)∥keyj ∥ID ′(w j))⟩

holds, where keyj = Fk (0∥w j). Then the client checks the
validity of the answer from the server in the same way as in
Sect. 4.

6. Conclusion

In this paper, we studied two cases in which construction
of efficient no-dictionary SSE schemes is not trivial, and
showed that the cuckoo hashing technique can be used to
solve the problem in both cases.

First, we proposed a generic transformation from any
passively secure SSE scheme to a no-dictionary verifiable
SSE scheme. The efficiency of the transformed scheme is
almost the same as the underlying SSE scheme.

We next presented a no-dictionary search-pattern hiding
SSE scheme that has a compact encrypted index table. In
addition, we showed that our no-dictionary search-pattern
hiding scheme can be modified to a verifiable scheme with
small cost.

References

[1] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient con-
junctive keyword searches over encrypted data,” 7th International
Conference on Information and Communication Security (ICICS
2005), pp.414–426, 2005.

[2] N. Baric and B. Pfitzmann, “Collision-free accumulators and fail-
stop signature schemes without trees,” EUROCRYPT 1997, LNCS,
vol.1233, pp.480–494, 1997.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” FOCS 1997, pp.394–403, 1997.

[4] M. Bellare, R. Guerin, and P. Rogaway, “XOR MACs: New methods
for message authentication using finite pseudorandom functions,”
CRYPTO 1995, LNCS, vol.963, pp.15–28, 1995.

[5] S. Bellovin and W. Cheswick, “Privacy-enhanced searches using
encrypted bloom filters,” Technical Report 2004/022, IACR ePrint
Cryptography Archive, https://eprint.iacr.org/2004/022, 2004.

[6] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic
symmetric searchable encryption: Optimality and forward secu-
rity,” Technical Report 2016/62, IACR ePrint Cryptography Archive,
https://eprint.iacr.org/2016/062, 2016.

[7] J.W. Byun, D.H. Lee, and J. Lim, “Efficient conjunctive keyword
search on encrypted data storage system,” EuroPKI, LNCS, vol.4043,
pp.184–196, 2006.

[8] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials,” CRYPTO
2002, LNCS, vol.2442, pp.61–76, 2002.

[9] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” FOCS 2001, pp.136–145, 2001.

[10] R. Canetti, “Universally composable signatures, certification and
authentication,” Technical Report 2003/239, IACR ePrint Cryptog-
raphy Archive, https://eprint.iacr.org/2003/239, 2003.

[11] Full version of [9]: Technical Report 2000/067, IACR ePrint Cryp-
tography Archive, https://eprint.iacr.org/2000/067, last revised 16
July 2013.

[12] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M. Rosu, and M.
Steiner, “Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,” CRYPTO 2013, Part I, LNCS, vol.8042,
pp.353–373, 2013.

[13] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C.

Rosu, and M. Steiner, “Dynamic searchable encryption in very-large
databases: Data structures and implementation,” Symposium on Net-
work and Distributed Systems Security (NDSS 2014), 2014.

[14] D. Cash and S. Tessaro, “The locality of searchable symmetric en-
cryption,” EUROCRYPT 2014, LNCS, vol.8441, pp.351–368, 2014.

[15] Y. Chang, M. Mitzenmacher, “Privacy preserving keyword searches
on remote encrypted data,” Applied Cryptography and Network Se-
curity (ACNS 2005), LNCS, vol.3531, pp.442–455, 2005.

[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient construc-
tions,” ACM Conference on Computer and Communications Security
2006, pp.79–88, 2006.

[17] Full version of [16]: Technical Report 2006/210, IACR ePrint Cryp-
tography Archive, https://eprint.iacr.org/2006/210, 2006.

[18] S. Garg, P. Mohassel, and C. Papamanthou, “TWORAM: Efficient
oblivious RAM in two rounds with applications to searchable en-
cryption,” CRYPTO 2016, Part III, LNCS, vol.9816, pp.563–592,
2016.

[19] E.-J. Goh, “Secure indexes,” Technical Report 2003/216, IACR
ePrint Cryptography Archive, https://eprint.iacr.org/2003/216, 2003.

[20] P. Golle, J. Staddon, B.R. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” Applied Cryptography and Network
Security (ACNS 2004), LNCS, vol.3089, pp.31–45, 2004.

[21] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable
symmetric encryption,” Financial Cryptography and Data Security
(FC 2013), LNCS, vol.7859, pp.258–274, 2013.

[22] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” ACM Conference on Computer and Com-
munications Security 2012, pp.965–976, 2012.

[23] K. Kurosawa, “Garbled searchable symmetric encryption,” Finan-
cial Cryptography and Data Security (FC 2014), LNCS, vol.8437,
pp.234–251, 2014.

[24] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric en-
cryption,” Financial Cryptography and Data Security (FC 2012),
LNCS, vol.8437, pp.285–298, 2012.

[25] K. Kurosawa and Y. Ohtaki, “How to update documents verifiably
in searchable symmetric encryption,” Cryptology and Network Se-
curity (CANS 2013), LNCS, vol.8257, pp.309–328, 2013.

[26] The final version of [24]. Technical Report 2015/251, IACR ePrint
Cryptography Archive, https://eprint.iacr.org/2015/251, 2015.

[27] K. Kurosawa, K. Sasaki, K. Ohta, and K. Yoneyama, “UC-secure
dynamic searchable symmetric encryption scheme,” Advances in In-
formation and Computer Security (IWSEC 2016), LNCS, vol.9836,
pp.73–90, 2016.

[28] R. Kutzelnigg, “Bipartite random graphs and cuckoo hashing,”
Fourth Colloquium on Mathematics and Computer Science Algo-
rithms, Trees, Combinatorics and Probabilities, DMTCS Proceed-
ings, pp.403–406, 2006.

[29] H. Lipmaa, “An oblivious transfer protocol with log-squared com-
munication,” Information Security (ISC 2005), LNCS, vol.3650,
pp.314–328, 2005.

[30] M. Naveed, M. Prabhakaran, and C. Gunter, “Dynamic searchable
encryption via blind storage,” IEEE Symposium on Security and
Privacy 2014, pp.639–654, 2014.

[31] W. Ogata and K. Kurosawa, “Efficient no-dictionary verifiable
searchable symmetric encryption,” Financial Cryptography and Data
Security (FC 2017), LNCS, vol.10322, pp.498–516, 2017.

[32] R. Ostrovsky and W.E. Skeith, III, “A survey of single-database
private information retrieval: Techniques and applications,” Public
Key Cryptography 2007, LNCS, vol.4450, pp.393–411, 2007.

[33] R. Pagh and F.F. Rodler, “Cuckoo hashing,” J. Algorithms, vol.51,
no.2, pp.122–144, 2004.

[34] D. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” IEEE Symposium on Security and Privacy 2000,
pp.44–55, 2000.

[35] S. Taketani and W. Ogata, “Improvement of UC secure searchable
symmetric encryption scheme,” The 10th International Workshop on

http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/11602897_35
http://dx.doi.org/10.1007/3-540-69053-0_33
http://dx.doi.org/10.1007/3-540-69053-0_33
http://dx.doi.org/10.1007/3-540-69053-0_33
http://dx.doi.org/10.1109/sfcs.1997.646128
http://dx.doi.org/10.1109/sfcs.1997.646128
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1007/3-540-44750-4_2
http://dx.doi.org/10.1007/3-540-44750-4_2
https://eprint.iacr.org/2004/022
https://eprint.iacr.org/2004/022
https://eprint.iacr.org/2004/022
https://eprint.iacr.org/2016/062
https://eprint.iacr.org/2016/062
https://eprint.iacr.org/2016/062
https://eprint.iacr.org/2016/062
http://dx.doi.org/10.1007/11774716_15
http://dx.doi.org/10.1007/11774716_15
http://dx.doi.org/10.1007/11774716_15
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1007/3-540-45708-9_5
http://dx.doi.org/10.1109/sfcs.2001.959888
http://dx.doi.org/10.1109/sfcs.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.14722/ndss.2014.23264
http://dx.doi.org/10.14722/ndss.2014.23264
http://dx.doi.org/10.14722/ndss.2014.23264
http://dx.doi.org/10.14722/ndss.2014.23264
http://dx.doi.org/10.1007/978-3-642-55220-5_20
http://dx.doi.org/10.1007/978-3-642-55220-5_20
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/1180405.1180417
http://dx.doi.org/10.1145/1180405.1180417
https://eprint.iacr.org/2006/210
https://eprint.iacr.org/2006/210
https://eprint.iacr.org/2006/210
http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-662-53015-3_20
http://dx.doi.org/10.1007/978-3-662-53015-3_20
https://eprint.iacr.org/2003/216
https://eprint.iacr.org/2003/216
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1145/2382196.2382298
http://dx.doi.org/10.1145/2382196.2382298
http://dx.doi.org/10.1145/2382196.2382298
http://dx.doi.org/10.1007/978-3-662-45472-5_15
http://dx.doi.org/10.1007/978-3-662-45472-5_15
http://dx.doi.org/10.1007/978-3-662-45472-5_15
http://dx.doi.org/10.1007/978-3-642-32946-3_21
http://dx.doi.org/10.1007/978-3-642-32946-3_21
http://dx.doi.org/10.1007/978-3-642-32946-3_21
http://dx.doi.org/10.1007/978-3-319-02937-5_17
http://dx.doi.org/10.1007/978-3-319-02937-5_17
http://dx.doi.org/10.1007/978-3-319-02937-5_17
https://eprint.iacr.org/2015/251
https://eprint.iacr.org/2015/251
https://eprint.iacr.org/2015/251
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/978-3-319-44524-3_5
http://dx.doi.org/10.1007/11556992_23
http://dx.doi.org/10.1007/11556992_23
http://dx.doi.org/10.1007/11556992_23
http://dx.doi.org/10.1109/sp.2014.47
http://dx.doi.org/10.1109/sp.2014.47
http://dx.doi.org/10.1109/sp.2014.47
http://dx.doi.org/10.1007/978-3-319-70972-7_28
http://dx.doi.org/10.1007/978-3-319-70972-7_28
http://dx.doi.org/10.1007/978-3-319-70972-7_28
http://dx.doi.org/10.1007/978-3-540-71677-8_26
http://dx.doi.org/10.1007/978-3-540-71677-8_26
http://dx.doi.org/10.1007/978-3-540-71677-8_26
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1109/secpri.2000.848445
http://dx.doi.org/10.1109/secpri.2000.848445
http://dx.doi.org/10.1109/secpri.2000.848445
http://dx.doi.org/10.1007/978-3-319-22425-1_9
http://dx.doi.org/10.1007/978-3-319-22425-1_9

OGATA and KUROSAWA: NO-DICTIONARY SEARCHABLE SYMMETRIC ENCRYPTION
123

Security (IWSEC 2015), LNCS, vol.9241, pp.135–152, 2015.
[36] P. Wang, H. Wang, and J. Pieprzyk, “Keyword field-free conjunc-

tive keyword searches on encrypted data and extension for dynamic
group,” Cryptology and Network Security (CANS 2008), LNCS,
vol.5339, pp.178–195, 2008.

Appendix: UC-Security for No-Dictionary vSSE

If a protocol is secure in the universally composable (UC)
security framework, its security is maintained even if the
protocol is combined with other protocols [9]–[11]. The UC
security is defined based on ideal functionality F . Kurosawa
and Ohtaki introduced an ideal functionality of vSSE [24],
[26]. Taketani and Ogata [35] generalized it in order to
handle the general leakage functions L = (L1, L2) as shown
in Fig. A· 1.

In the no-dictionary verifiable SSE setting, the real
world is described as follows. We assume a real adver-
sary, Auc, can control the server arbitrarily, and the client is
always honest. For simplicity, we ignore session id.

In the store phase, an environment, Z, chooses (D,W)
and sends them to the client. The client computes
(K,I, C) ← Enc(1λ, K,D,W, {(w,D(w)) | w ∈ W}),
and sends (I, C) to the server. The client stores K† and
the server stores (I, C). In the search phase, Z chooses
a word w ∈ {0, 1}∗ and sends it to the client. The client
computes t(w) ← Trpdr(K, w) and sends it to the server.
The server, who may be controlled by real adversary Auc,
returns (C̃∗,IProof) to the client. The client computes
D̃ (w) ← Dec(K, t(w), C̃∗,IProof) and sends D̃(w) to Z.
Note that D̃(w) can be ⊥. After repeating several searches,
Z outputs a bit b.

On the other hand, the ideal world is described as fol-
lows: In the store phase, Z sends (D,W) to the dummy
client. The dummy client sends (store,D,W) to function-
ality F L

vSSE (see Fig. A· 1). In the search phase, Z sends w
to the dummy client. The dummy client sends (search, w)
to F L

vSSE , and receivesD(w) or⊥ (according to ideal adver-
sary Suc’s decision), which is relayed to Z. At last, Z outputs
a bit b

In both worlds, Z can communicate with Auc (in the
real world) or Suc (in the ideal world) in an arbitrary way.

� �
Store: Upon receiving the input (store, sid, D1, . . . , DN ,W)

from the dummy client, verify that this is the first input from
the client with (store, sid).
If it is, then store D = {D1, . . . , DN }, and send L1 (D,W)
to Suc. Otherwise, ignore this input.

Search: Upon receiving (search, sid, w) from the client, send
L2 (D,W, w, w) to Suc. Note that in a no-dictionary vSSE
scheme, the client may send w < W . If Suc returns accept,
then send D(w) to the client. If Suc returns reject, then send
⊥ to the client.� �

Fig. A· 1 Ideal functionality F L
vSSE

.

†He may forget D,W, C,I.

UC-security of no-dictionary vSSE scheme is defined
as follows.

Definition 4 (UC-security with leakage L): We say that a
given no-dictionary vSSE scheme has universally compos-
able (UC) security with leakage L against non-adaptive ad-
versaries, if for any PPT real adversary Auc, there exists a
PPT ideal adversary (simulator) Suc, and for any PPT envi-
ronment Z,

| Pr[Z outputs 1 in the real world]
− Pr[Z outputs 1 in the ideal world]|

is negligible.

We can show the following theorem.

Theorem 4: If a no-dictionary vSSE scheme satisfies L-
privacy and strong reliability for some L, it has UC security
with leakage L against non-adaptive adversaries.

(Proof) Assume that the scheme satisfies L-privacy and
strong reliability.

We consider four games Game0, . . . ,Game3. Let

pi = Pr[Z outputs 1 in Gamei]

for a fixed Auc. Game0 is equivalent to the real world in the
definition of UC security. So,

p0 = Pr[Z outputs 1 in the real world].

Game1 is different from Game0 in the following points.

• In the store phase, the client records (D,W,I) as well
as the key K .

• In the search phase, if Auc instructs the server to re-
turn (C̃∗,IProof) such that (C̃∗,IProof) , (C∗,Proof) ←
Search(I, C, t(w)), then the server returns reject to
the client. Otherwise the server returns accept.

• If the client receives accept from the server, he sends
D(w) to Z. Otherwise, he sends ⊥ to Z.

Game1 is the same as Game0 until Auc instructs the server
to return (C̃∗,IProof) such that

Dec(K, t(w), C̃∗,IProof) , ⊥ and
(C̃∗,IProof) , (C∗,Proof).

The above condition is the (strongly) winning condition of
B in Gamereli . So, we can obtain

|p0 − p1 | ≤ max
B

Pr[B strongly wins in Gamereli].

From the assumption, |p0 − p1 | is negligibly small.
In Game2, we split the client into two entities, client1

and client2, as follows: (See Fig. A· 2(a).)

• Both client1 and client2 receive all input from Z.
• In the store phase, only client2 sends (I, C) to the

server.
• In the search phase, only client2 sends t(w) to the server.

Then, only client1 receives accept/reject from the

http://dx.doi.org/10.1007/978-3-319-22425-1_9
http://dx.doi.org/10.1007/978-3-319-22425-1_9
http://dx.doi.org/10.1007/978-3-540-89641-8_13
http://dx.doi.org/10.1007/978-3-540-89641-8_13
http://dx.doi.org/10.1007/978-3-540-89641-8_13
http://dx.doi.org/10.1007/978-3-540-89641-8_13

124
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.1 JANUARY 2019

Z

�� ��client1

�� ��client2
�
�

�
�server

'

&

$

%Auc

-
-

-
�

? ?
6

(a)
Z

�� ��client1

�� ��client2
�
�

�
�server

'

&

$

%Auc

S-
-

- -
�

? ?
6

F L
vSSE

Suc

(b)
Fig. A· 2 (a) Game2, (b) Game3.

server, and sends D(w)/⊥ to Z.

This change is conceptual only. Therefore p2 = p1.
Now, we look at (Z, client1, server,Auc) and client2 as

an adversary A and a challenger C in the real game of pri-
vacy, respectively. Then, from the assumption, there exists a
simulator S such that Eq. (2) is negligible.

In Game3, client2 plays the role of the challenger in
the simulation game of privacy; he sends L1(D,W) or
L2(D,W,w, w) to the simulator S, and then S sends its out-
puts (the simulated message) to the server. (See Fig. A· 2(b).)
Again, we look at (Z, client1, server,Auc) as A. Then Game3
is the simulation game and Game2 is the real game. There-
fore

|p3 − p2 | ≤ | Pr[A outputs 1 in Gamereal]
− Pr[A outputs 1 in GameLsim]|,

and it is negligible from the assumption.
In Game3, (client1, client2) behaves exactly the same

way as F L
vSSE in the ideal world. So, considering

(S, server,Auc) as a simulator Suc, we obtain

p3 = Pr[Z outputs 1 in the ideal world]

for this simulator. Consequently, we can say that
for any Auc there exists Suc such that |p0 − p3 | =
| Pr[Z outputs 1 in the real world] − Pr[Z outputs 1 in the
ideal world]| is negligible. 2

Corollary 1: If SSE0 has L = (L1, L2)-privacy and F is a
pseudorandom function, the vSSE scheme vSSE1 obtained
from SSE0 using the transformation in Sect. 4 is UC-secure
with leakage L′ = (L′1, L

′
2) where L and L′ are given in

Theorem 1.

Wakaha Ogata received the B.S., M.E. and
D.E. degrees in electrical and electronic engi-
neering in 1989, 1991 and 1994, respectively,
from Tokyo Institute of Technology. From 1995
to 2000, she was an Assistant Professor at Himeji
Institute of Technology. Since 2000 she has been
working for Tokyo Institute of Technology, and
now she is a Professor from 2013. Her current
interests are cryptography and information secu-
rity.

Kaoru Kurosawa received the B.E. and
Dr. Eng. degrees in electrical engineering in
1976 and 1981, respectively, from Tokyo In-
stitute of Technology. From 1997 to 2001, he
was a Professor in Tokyo Institute of Technol-
ogy. He is currently a Professor in the Depart-
ment of Computer and Information Sciences at
Ibaraki University. His current research inter-
est is cryptography. He was Program Chair for
Asiacrypt 2007, PKC 2013 and some other con-
ferences. Dr. Kurosawa is a member of IEEE,

ACM, IACR, IEICE. He received the excellent paper award of IEICE in
1981, the young engineer award of IEICE in 1986, Telecom System Scien-
tific Award of Telecommnucations Avdancement Foundation in 2006 and
Achievement Award of IEICE in 2007.

