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On the Construction of Balanced Boolean Functions with Strict
Avalanche Criterion and Optimal Algebraic Immunity

Deng TANG†,††a), Member

SUMMARY Boolean functions used in the filter model of stream ci-
phers should have balancedness, large nonlinearity, optimal algebraic im-
munity and high algebraic degree. Besides, one more criterion called strict
avalanche criterion (SAC) can be also considered. During the last fifteen
years, much work has been done to construct balanced Boolean functions
with optimal algebraic immunity. However, none of them has the SAC
property. In this paper, we first present a construction of balanced Boolean
functions with SAC property by a slight modification of a known method
for constructing Boolean functions with SAC property and consider the
cryptographic properties of the constructed functions. Then we propose
an infinite class of balanced functions with optimal algebraic immunity
and SAC property in odd number of variables. This is the first time that
such kind of functions have been constructed. The algebraic degree and
nonlinearity of the functions in this class are also determined.
key words: Boolean function, balancedness, algebraic immunity, strict
avalanche criterion, nonlinearity

1. Introduction

Boolean functions play a central role in the security of stream
ciphers. To resist all the known attacks on each model of
stream cipher, Boolean functions used in stream ciphersmust
satisfy several criteria (hopefully, all) simultaneously. The
following criteria of cryptographic Boolean functions are
mandatory [1], [2]: balancedness, high nonlinearity, high
algebraic degree, optimal algebraic immunity, and good im-
munity to fast algebraic attacks. Besides, one more criterion
can be also considered: the strict avalanche criterion (SAC).
In this paper, Boolean functionswith SACproperty are called
SAC Boolean functions for short.

Up to now, there are many classes of balanced Boolean
functions with optimal algebraic immunity which have been
proposed, for instance in [3]–[20]. However, none of them
has the SAC property. In this paper, we construct an infinite
class of balanced SAC Boolean functions in odd number
of variables with optimal algebraic immunity, which is the
first time that such functions have been constructed. We
also determine the algebraic degree and nonlinearity of the
functions in this class.

The organization of the remainder of this paper is as
follows. In Sect. 2, the notations and the necessary prelim-
inaries required for the subsequent sections are reviewed.
In Sect. 3, we fist recall a known method for constructing
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SAC Boolean functions and then present a construction of
balanced SAC Boolean functions. The cryptographic prop-
erties of the constructed functions are considered. Sect. 4
proposes an infinite class of Balanced SAC functions with
optimal algebraic immunity in odd number of variables. Fi-
nally, Sect. 5 concludes the paper.

2. Preliminaries

Let Fn2 be the vector space of n-tuples over the finite field F2.
For any positive integer n, we shall denote by 0n (respectively
1n) the all-zero vector (respectively all-one vector) of Fn2 . A
Boolean function in n variables is a function from Fn2 into F2.
Denote by Bn the set of all the 22n Boolean functions in n
variables. The basic representation of an n-variable Boolean
function f is by its truth table, i.e.,

f =
[

f (0, 0, · · · , 0), f (1, 0, · · · , 0), · · · , f (1, 1, · · · , 1)
]
.

The support of f , denoted by Supp( f ), is defined as the set
{x ∈ Fn2 | f (x) , 0}. The Hamming weight of f , denoted by
wt( f ), is defined as the Hamming weight of the truth table
of f , or equivalently, the size of the support of f .

It is well-known that any Boolean function f ∈ Bn

can be uniquely represented by the algebraic normal form
(ANF), i.e., f (x1, · · · , xn) =

⊕
u∈Fn2

au
(∏n

j=1 xu j

j

)
, where

au ∈ F2 and u = (u1, · · · , un). It is well-known [1], [21] that

au =
∑
v�u

f (v ), (1)

where v = (v1, · · · , vn) and v � u means that vi ≤ ui for
all 1 ≤ i ≤ n. The algebraic degree, denoted by deg( f ),
is the maximal value of wt(u) such that au , 0, where the
Hamming weight wt(u) of a binary vector u ∈ Fn2 is the
number of its nonzero coordinates, or in other words, the
size of its support {1 ≤ i ≤ n | ui , 0}). A Boolean function
is called an affine function if its algebraic degree is at most
1. The set of all affine functions is denoted by An.

The nonlinearity nl ( f ) of a Boolean function f ∈ Bn

is the minimum Hamming distance from f to all the affine
functions An, i.e, nl ( f ) = ming∈An (dH ( f , g)), where
dH ( f , g) is the Hamming distance between f and g, i.e.,
dH ( f , g) = |{x ∈ Fn2 | f (x) , g(x)}|. The nonlinearity can
also be computed bymeans of theWalsh transform of f . The
Walsh transform of a Boolean function f ∈ Bn at a is de-
fined as W f (a) =

∑
x∈Fn2

(−1) f (x)+a ·x . It can be easily seen
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that f is balanced if and only if W f (0n) = 0. By the Walsh
transform the nonlinearity of a Boolean function f ∈ Bn can
be computed as

nl ( f ) = 2n−1 −
1
2

max
a∈Fn2

|W f (a) |.

For resisting the standard algebraic attack [22], a new
cryptographic criterion for Boolean functions used in stream
ciphers, called algebraic immunity, has been proposed.

Definition 1 ([23]). Given two n-variable Boolean functions
f and h, we say that h is an annihilator of f if f (x)h(x) =
f h = 0. We denote by AN ( f ) the set of nonzero annihilators
of f . The algebraic immunity AI ( f ) of Boolean function f
is defined to be the minimum algebraic degree of AN ( f ) ∪
AN ( f + 1).

It was proved in [22] that AI ( f ) ≤ d n2 e for any n-
variable Boolean function f . In this paper, a Boolean func-
tion f of n variables is said to have optimal algebraic im-
munity if it achieves this bound with equality, and to have
almost optimal algebraic immunity if AI ( f ) = d n2 e − 1.

The autocorrelation function of a Boolean function f
at a point α is defined as

Cf (α) =
∑
x∈Fn2

(−1) f (x)+ f (x+α) .

A Boolean function f ∈ Bn is said to satisfy strict avalanche
criterion (SAC) [24] if

Cf (α) = 0 for all wt(α) = 1.

3. Balanced SAC Functions and Their Cryptographic
Properties

In this section, we first recall a known method for construct-
ing SAC Boolean functions and then study the main cryp-
tographic properties of the Boolean functions generated by
this method.

3.1 AKnownMethod forConstructing SACBooleanFunc-
tions

For simplicity, we denote x ′ = (x1, · · · , xn) for a given vector
x = (x1, · · · , xn+1) ∈ Fn+1

2 from now on.
We now recall a known method for constructing

Boolean functions with SAC property, which was intro-
duced in [25]. Let µ0 ∈ Bn be an arbitrary Boolean func-
tion of variables x1, · · · , xn and ν ∈ Bn be the function
µ0(x) + 1n · x + c, where c ∈ F2. It was proved in [25] that
the function h0 ∈ Bn+1 on variables x1, · · · , xn+1 of the form

h0(x ′, xn+1) = (1 + xn+1)µ0(x ′) + xn+1ν(x ′) (2)

satisfies the SAC property.

3.2 Balanced SAC Functions and Their Cryptographic
Properties

From cryptographic viewpoints, we are interested in the bal-
anced SAC functions with optimal algebraic immunity, high
algebraic degree, and high nonlinearity. According to (2),
we shall get balanced SAC functions from the following con-
struction.

Construction 1. Let n ≥ 2 be a positive integer and µ1 ∈ Bn

be a function such thatwt(µ1+1n·x) ∈ {wt(µ1), 2n−wt(µ1)}.
Then we construct the Boolean function h1 ∈ Bn+1 as follows

h1(x ′, xn+1)= (1 + xn+1)µ1(x ′)+xn+1
(
µ1(x ′)+1n · x ′+c

)
,

where

c =
{

0 if wt(µ1 + 1n · x ′) = 2n − wt(µ1)
1 if wt(µ1 + 1n · x ′) = wt(µ1) .

3.2.1 Balancedness, Algebraic Degree and Nonlinearity

We can see that the truth table of h1 ∈ Bn+1 is the concate-
nation of the truth tables of µ1(x ′) and µ1(x ′) + 1n · x ′ + c.
Therefore, wt(h1) = wt(µ1) + wt

(
µ1(x ′) + 1n · x ′ + c

)
=

wt(µ1)+2n−wt(µ1) = 2n. This implies that h1 is balanced.
We can easily get the following theorem. Its proof is

routine and we omit it here.

Theorem 1. For every Boolean function h1 ∈ Bn+1, we
have:

nl (h1) ≥ 2nl (µ1) and

deg(h1) =
{

deg(µ1), if deg(µ1) ≥ 2
2, if deg(µ1) < 2 .

3.2.2 Algebraic Immunity

We now show the relation from the viewpoints of algebraic
immunity between h1 and µ1. To this end, we first give some
preliminary results.

Lemma 1 ([26]). Let n be an odd integer and f be a bal-
anced Boolean function of n variables. Then, f has optimal
algebraic immunity n+1

2 if and only if AN ( f ) does not con-
tain any function of degree strictly less than n+1

2 .

Lemma 2 ([27]). Let g, h be two Boolean functions on
variables x1, x2, · · · , xn with AI (g) = d1 and AI (h) = d2.
Let f (x1, · · · , xn, xn+1) = (1 + xn+1)g(x ′) + xn+1h(x ′) ∈
Bn+1. Then

1) if d1 , d2 then AI ( f ) = min{d1, d2} + 1.
2) if d1 = d2 = d, then d ≤ AI ( f ) ≤ d + 1. Further,

AI ( f ) = d if and only if there exists g1, h1 ∈ Bn of
algebraic degree d such that {gg1 = 0, hh1 = 0} or
{(1+g)g1 = 0, (1+h)h1 = 0} and deg(g1+h1) ≤ d−1.

By Lemmas 1 and 2, we can easily deduce the following
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corollary.
Corollary 1. Let n be an even number and g, h ∈ Bn+1 be
two Boolean functions such that min{d | d = deg(s), 0 , s ∈
AN (g)} = d1 and min{d | d = deg(s), 0 , s ∈ AN (h)} =
d2. Let f = (1 + xn+1)g + xn+1h ∈ Bn+1. Then
1) if d1 , d2 then AI ( f ) = min{d1, d2} + 1.
2) if d1 = d2 = d, then d ≤ AI ( f ) ≤ d + 1. Further,

AI ( f ) = d if and only if there exists g1, h1 ∈ Bn of
algebraic degree d such that {gg1 = 0, hh1 = 0} and
deg(g1 + h1) ≤ d − 1.

4. A Class of Balanced SAC Functions with Optimal
Algebraic Immunity in Odd Variables

Let us first recall the definition of the majority function and
introduce some basic known results on themajority function.
Definition 2. An n-variable Boolean function f0 on vari-
ables x1, x2, · · · , xn defined by

f0(x) =
{

0 if wt(x) < d n2 e
1 if wt(x) ≥ d n2 e

is called the majority function.
For any positive integer n, we define the Boolean func-

tion f1 ∈ Bn as follows:

f1(x) =
{

0 if wt(x) ≤ b n2 c
1 otherwise .

In [3], the authors have studied the cryptographic prop-
erties of f1:
Lemma 3 ([3]). The function f1 ∈ Bn has the following
cryptographic properties:
1) deg( f1) = 2 blog2 nc;
2) AI ( f1) = d n2 e;
3) nl ( f1) = 2n−1 −

(
n−1
b n2 c

)
.

Note that f0(x) = f1(x+1n)+1 for even n and note that
the algebraic immunity, algebraic degree and nonlinearity are
affine invariant. Therefore, the majority function f0 has the
same these cryptographic properties as the function f1.

We now present our construction and give their crypto-
graphic properties.
Construction 2. Let n ≥ 4 be an even number. Let µ2 ∈ Bn

be the majority function f0 on variables x1, x2, · · · , xn. Then
we construct the Boolean function f2 ∈ Bn+1 as follows

f2(x1, · · · , xn+1) = (1 + xn+1)µ2 + xn+1(µ2 + l + c),

where

c =
{

0 if n = 2 (mod 4)
1 if n = 0 (mod 4)

and l = 1n · x ′.
By (2), we can see that the functions f2 ∈ Bn+1 gener-

ated by Construction 2 satisfy the SAC. In what follows, we
will discuss the balancedness, nonlinearity, algebraic immu-
nity, and algebraic degree of f2, respectively.

4.1 Balancedness

First, we consider the balancedness of f2. To this end, we
need some preliminary results. For any positive integer n
and a fixed ω ∈ Fn2 with wt(ω) = k, we have

∑
wt(x)=i

(−1)ω ·x =
i∑

j=0
(−1) j

(
k
j

) (
n − k
i − j

)
= Ki (k, n),

where Ki (x, n) is the Krawtchouk polynomial [28]. The
following two lemmas about Krawtchouk polynomial will
be useful to prove the balancedness of f2.

Lemma 4 ([28]). The Krawtchouk polynomials have the
following properties.

1. Ki (k, n) = (−1)iKi (n − k, n);
2.

(
n
k

)
Ki (k, n) =

(
n
i

)
Kk (i, n).

Lemma 5 ([8]). The equality
r∑
i=0

Ki (k, n) = Kr (k − 1, n − 1)

holds for 0 ≤ r ≤ n and n, k ≥ 1.

Theorem 2. Let f2 be an (n+ 1)-variable Boolean function
given by Construction 2, then f2 is a balanced SAC Boolean
function.

Proof. It follows from Sect. 3.1 that f2 has the SAC property.
So we only need to prove that f2 is balanced. Note that
Wµ2+l+c (0n) = (−1)cWµ2 (1n). Then we have

W f2 (0n+1) =
{

Wµ2 (0n) +Wµ2 (1n) = 0, n = 2 mod 4
Wµ2 (0n) −Wµ2 (1n) = 0, n = 0 mod 4.

We can easily get that Wµ2 (0n) = −
(

n
n/2

)
and Wµ2+1(1n) =

−2
∑n/2−1

i=0 Ki (n, n). Then by Lemma 5 we have∑n/2−1
i=0 Ki (n, n) = Kn/2−1(n − 1, n − 1). Moreover, by item

1 of Lemma 4, we have

Kn/2−1(n − 1, n − 1) = (−1)n/2−1Kn/2−1(0, n − 1).

Therefore, we get that

Wµ2+1(1n) = (−1)n/22Kn/2−1(0, n − 1)

= (−1)n/22
(

n − 1
n/2 − 1

)
= (−1)n/2

(
n

n/2

)
.

This implies that

Wµ2 (1n) = (−1)n/2+1
(

n
n/2

)
= (−1)c

(
n

n/2

)
.

By the above discussion, we conclude that W f2 (0n+1) =
0 and therefore f2 ∈ Bn+1 is a balanced SAC function. This
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completes the proof. �

4.2 Nonlinearity

Theorem 3. Let f2 be an (n+1)-variable Boolean function
generated by Construction 2. Then we have nl ( f2) = 2n −(

n
n/2

)
.

Proof. For any α = (α′, αn+1) ∈ Fn+1
2 , we have

W f2 (α) = Wµ2 (α′) + (−1)c+αn+1Wµ2 (1n + α′). (3)

Then we have |W f2 (α) | ≤ 2|Wµ2 (α′) | for every α =
(α′, αn+1) ∈ Fn+1

2 . By Lemma 3 we have maxα′∈Fn2 |Wµ2 | =

2
(
n−1
n/2

)
=

(
n
n/2

)
. Then we have maxα∈Fn+1

2
|W f2 (α) | ≤

2
(

n
n/2

)
. Furthermore, by (3) we can see that W f2 (0n, 1) =

Wµ2 (0n) − (−1)cWµ2 (1n). Recall from the proof of Theo-
rem 2 that Wµ2 (0n) = −

(
n
n/2

)
and Wµ2 (1n) = (−1)c

(
n
n/2

)
.

Thus, we have W f2 (1, 0n) = −2
(

n
n/2

)
. So we have

maxα∈Fn+1
2
|W f2 (α) | = 2

(
n
n/2

)
and hence nl ( f2) = 2n −(

n
n/2

)
. �

4.3 Algebraic Immunity and Algebraic Degree

Lemma 6. Let n be an even integer and f0 be the majority
function. Then AI ( f0) = n/2. Furthermore, f0 has no
nonzero annihilators of algebraic degrees strictly less that
n/2 + 1.

Proof. It suffices to prove that f ′0(x1, · · · , xn) = f0(x1 +
1, · · · , xn + 1) has no nonzero annihilator with algebraic de-
gree less than n/2+1 since if there exists a nonzero function
g of degree strictly less than n/2+1 such that f ′0g = 0 thenwe
have f0g

′ = 0 where g′(x1, · · · , xn) = g(x1+1, · · · , xn+1).
Assume that g is an annihilator of f ′0 with deg(g) ≤ n/2.

Let the ANF of g(x) be

g(x) =
⊕

u∈Fn2 ,wt(u)≤n/2
au

( n∏
j=1

xu j

j

)
.

Since g is an annihilator of f ′0, g(x) = 0 for every x ∈ W ≤n/2.
Then we have au = 0 for any u ∈ Fn2 with wt(u) ≤ n/2 by
(1). This implies that g = 0 and hence f ′0 has no nonzero
annihilator with algebraic degree less than n/2 + 1. �

Theorem 4. Let f2 be an (n + 1)-variable Boolean func-
tion given by Construction 2, then f2 has optimal algebraic
immunity.

Proof. It was shown that the Boolean function µ2(x) + l (x)
has optimal algebraic immunity (see Item C-1 of Theorem
12 in [15]). This implies that µ2(x) + l (x) has no nonzero
annihilators of degrees strictly less than n/2. Moreover, it
is follows from Lemma 6 that µ2(x) has no nonzero anni-
hilators of degrees strictly less than n/2 + 1. Assume that

min{d | d = deg(s), 0 , s ∈ AN
(
µ2(x) + l (x)

)
} = n/2.

By item 1) of Corollary 1, we have AI ( f2) = n/2 + 1. If
min{d | d = deg(s), 0 , s ∈ AN

(
µ2(x) + l (x)

)
} ≥ n/2 + 1,

then by item 2) of Corollary 1 we have AI ( f2) ≥ n/2+1 and
hence AI ( f2) = n/2 + 1 since the AI ( f2) is upper-bounded
by n/2 + 1. �

We shall give the algebraic degree of f2.

Theorem 5. Let f2 be an (n + 1)-variable Boolean func-
tion generated by Construction 2. Then we have deg( f2) =
2 blog2 nc .

Proof. By Theorem 1, we have deg( f2) = deg(µ2). Fur-
ther, we have deg( f2) = deg(µ2) = 2 blog2 nc , according to
Lemma 3. �

5. Conclusion

In this paper, we proposed an infinite class of Balanced SAC
functions with optimal algebraic immunity in odd number
of variables and determined the algebraic degree and non-
linearity of the functions in this class. This is the first time
that such functions have been constructed. This work was an
attempt to construct balanced SAC Boolean functions with
all desired cryptographic criteria and it would be very in-
teresting to construct balanced SAC Boolean functions with
optimal algebraic immunity and higher nonlinearity.

Acknowledgments

We wish to thank the anonymous reviewers for their de-
tailed comments that improved the editorial as well as tech-
nical quality of this paper. The first author is supported by
the National Natural Science Foundation of China (grants
61602394 and 61872435) and Guangxi Key Laboratory of
Cryptography and Information Security (No. GCIS201724).

References

[1] C. Carlet, “Boolean functions for cryptography and error correcting
codes,” Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, vol.2, pp.257–397, 2010.

[2] C. Ding, G. Xiao, and W. Shan, The Stability Theory of Stream
Ciphers, Springer, 1991.

[3] D.K. Dalai, S. Maitra, and S. Sarkar, “Basic theory in construction
of Boolean functions with maximum possible annihilator immunity,”
Des. Codes Cryptogr., vol.40, no.1, pp.41–58, 2006.

[4] N. Li and W.F. Qi, “Construction and analysis of Boolean functions
of 2t +1 variables with maximum algebraic immunity,” Advances in
Cryptology–ASIACRYPT 2006, pp.84–98, Springer, 2006.

[5] S. Sarkar and S. Maitra, “Construction of rotation symmetric
Boolean functions on odd number of variables with maximum alge-
braic immunity,” Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pp.271–280, Springer, 2007.

[6] N. Li, L.Qu,W.F.Qi, G. Feng, C. Li, andD.Xie, “On the construction
of Boolean functions with optimal algebraic immunity,” IEEE Trans.
Inf. Theory, vol.54, no.3, pp.1330–1334, 2008.

[7] C. Carlet and K. Feng, “An infinite class of balanced functions with
optimal algebraic immunity, good immunity to fast algebraic attacks
and good nonlinearity,” Advances in Cryptology-ASIACRYPT 2008,

http://dx.doi.org/10.1017/cbo9780511780448.011
http://dx.doi.org/10.1017/cbo9780511780448.011
http://dx.doi.org/10.1017/cbo9780511780448.011
http://dx.doi.org/10.1007/3-540-54973-0
http://dx.doi.org/10.1007/3-540-54973-0
http://dx.doi.org/10.1007/s10623-005-6300-x
http://dx.doi.org/10.1007/s10623-005-6300-x
http://dx.doi.org/10.1007/s10623-005-6300-x
http://dx.doi.org/10.1007/11935230_6
http://dx.doi.org/10.1007/11935230_6
http://dx.doi.org/10.1007/11935230_6
http://dx.doi.org/10.1007/978-3-540-77224-8_32
http://dx.doi.org/10.1007/978-3-540-77224-8_32
http://dx.doi.org/10.1007/978-3-540-77224-8_32
http://dx.doi.org/10.1007/978-3-540-77224-8_32
http://dx.doi.org/10.1109/tit.2007.915914
http://dx.doi.org/10.1109/tit.2007.915914
http://dx.doi.org/10.1109/tit.2007.915914
http://dx.doi.org/10.1007/978-3-540-89255-7_26
http://dx.doi.org/10.1007/978-3-540-89255-7_26
http://dx.doi.org/10.1007/978-3-540-89255-7_26


LETTER
1325

pp.425–440, Springer, 2008.
[8] C. Carlet, X. Zeng, C. Li, and L. Hu, “Further properties of several

classes of Boolean functions with optimum algebraic immunity,”
Des. Codes Cryptogr., vol.52, no.3, pp.303–338, 2009.

[9] Z. Tu and Y. Deng, “A conjecture about binary strings and its ap-
plications on constructing Boolean functions with optimal algebraic
immunity,” Des. Codes Cryptogr., vol.60, no.1, pp.1–14, 2011.

[10] D. Dong, S. Fu, L. Qu, and C. Li, “A new construction of Boolean
functions with maximum algebraic immunity,” Information Security,
pp.177–185, Springer, 2009.

[11] S. Fu, C. Li, K. Matsuura, and L. Qu, “Construction of rotation
symmetric Boolean functions with maximum algebraic immunity,”
Cryptology and Network Security, pp.402–412, Springer, 2009.

[12] Q. Wang, J. Peng, H. Kan, and X. Xue, “Constructions of crypto-
graphically significant Boolean functions using primitive polynomi-
als,” IEEE Trans. Inf. Theory, vol.56, no.6, pp.3048–3053, 2010.

[13] X. Zeng, C. Carlet, J. Shan, and L. Hu, “More balanced Boolean
functions with optimal algebraic immunity and good nonlinearity
and resistance to fast algebraic attacks,” IEEE Trans. Inf. Theory,
vol.57, no.9, pp.6310–6320, 2011.

[14] S. Fu, L. Qu, C. Li, and B. Sun, “Balanced rotation symmetric
Boolean functions with maximum algebraic immunity,” IET Inf.
Secur., vol.5, no.2, pp.93–99, 2011.

[15] J. Peng, Q. Wu, and H. Kan, “On symmetric Boolean functions with
high algebraic immunity on even number of variables,” IEEE Trans.
Inf. Theory, vol.57, no.10, pp.7205–7220, 2011.

[16] S. Su and X. Tang, “Construction of rotation symmetric Boolean
functions with optimal algebraic immunity and high nonlinearity,”
Des. Codes Cryptogr., vol.71, no.2, pp.183–199, 2014.

[17] H. Wang, J. Peng, Y. Li, and H. Kan, “On 2k-variable symmet-
ric Boolean functions with maximum algebraic immunity k,” IEEE
Trans. Inf. Theory, vol.58, no.8, pp.5612–5624, 2012.

[18] S. Su, X. Tang, and X. Zeng, “A systematic method of constructing
Boolean functions with optimal algebraic immunity based on the
generator matrix of the Reed–Muller code,” Des. Codes Cryptogr.,
vol.72, no.3, pp.653–673, 2014.

[19] D. Tang, C. Carlet, andX. Tang, “Highly nonlinear Boolean functions
with optimal algebraic immunity and good behavior against fast al-
gebraic attacks,” IEEE Trans. Inf. Theory, vol.59, no.1, pp.653–664,
2013.

[20] W. Zhang and E. Pasalic, “Improving the lower bound on the max-
imum nonlinearity of 1-resilient Boolean functions and designing
functions satisfying all cryptographic criteria,” Inform. Sciences,
vol.376, pp.21–30, 2017.

[21] A. Canteaut and M. Videau, “Symmetric Boolean functions,” IEEE
Trans. Inf. Theory, vol.51, no.8, pp.2791–2811, 2005.

[22] N.T. Courtois and W. Meier, “Algebraic attacks on stream ciphers
with linear feedback,” Advances in Cryptology–EUROCRYPT 2003,
pp.345–359, Springer, 2003.

[23] W.Meier, E. Pasalic, and C. Carlet, “Algebraic attacks and decompo-
sition of Boolean functions,” Advances inCryptology-EUROCRYPT
2004, pp.474–491, Springer, 2004.

[24] A. Webster and S.E. Tavares, “On the design of S-boxes,” Advances
in Cryptology–CRYPTO 1985 Proceedings, pp.523–534, Springer,
1986.

[25] A.M. Youssef, T. Cusick, P. Stănică, and S.E. Tavares, “New bounds
on the number of functions satisfying the strict avalanche criterion,”
Third Annual Workshop on Selected Areas in Cryptography, Cite-
seer, 1996.

[26] A. Canteaut, “Open problems related to algebraic attacks on stream
ciphers,” Coding and cryptography, pp.120–134, Springer, 2006.

[27] C. Carlet, D.K. Dalai, K.C. Gupta, and S. Maitra, “Algebraic immu-
nity for cryptographically significant Boolean functions: Analysis
and construction,” IEEE Trans. Inf. Theory, vol.52, no.7, pp.3105–
3121, 2006.

[28] F.J.MacWilliams andN.J.A. Sloane, TheTheory of Error-Correcting
Codes, Elsevier, 1977.

http://dx.doi.org/10.1007/978-3-540-89255-7_26
http://dx.doi.org/10.1007/978-3-540-89255-7_26
http://dx.doi.org/10.1007/s10623-009-9284-0
http://dx.doi.org/10.1007/s10623-009-9284-0
http://dx.doi.org/10.1007/s10623-009-9284-0
http://dx.doi.org/10.1007/s10623-010-9413-9
http://dx.doi.org/10.1007/s10623-010-9413-9
http://dx.doi.org/10.1007/s10623-010-9413-9
http://dx.doi.org/10.1007/978-3-642-04474-8_15
http://dx.doi.org/10.1007/978-3-642-04474-8_15
http://dx.doi.org/10.1007/978-3-642-04474-8_15
http://dx.doi.org/10.1007/978-3-642-10433-6_27
http://dx.doi.org/10.1007/978-3-642-10433-6_27
http://dx.doi.org/10.1007/978-3-642-10433-6_27
http://dx.doi.org/10.1109/tit.2010.2046195
http://dx.doi.org/10.1109/tit.2010.2046195
http://dx.doi.org/10.1109/tit.2010.2046195
http://dx.doi.org/10.1109/tit.2011.2109935
http://dx.doi.org/10.1109/tit.2011.2109935
http://dx.doi.org/10.1109/tit.2011.2109935
http://dx.doi.org/10.1109/tit.2011.2109935
http://dx.doi.org/10.1049/iet-ifs.2010.0048
http://dx.doi.org/10.1049/iet-ifs.2010.0048
http://dx.doi.org/10.1049/iet-ifs.2010.0048
http://dx.doi.org/10.1109/tit.2011.2132113
http://dx.doi.org/10.1109/tit.2011.2132113
http://dx.doi.org/10.1109/tit.2011.2132113
http://dx.doi.org/10.1007/s10623-012-9727-x
http://dx.doi.org/10.1007/s10623-012-9727-x
http://dx.doi.org/10.1007/s10623-012-9727-x
http://dx.doi.org/10.1109/tit.2012.2201350
http://dx.doi.org/10.1109/tit.2012.2201350
http://dx.doi.org/10.1109/tit.2012.2201350
http://dx.doi.org/10.1007/s10623-013-9801-z
http://dx.doi.org/10.1007/s10623-013-9801-z
http://dx.doi.org/10.1007/s10623-013-9801-z
http://dx.doi.org/10.1007/s10623-013-9801-z
http://dx.doi.org/10.1109/tit.2012.2217476
http://dx.doi.org/10.1109/tit.2012.2217476
http://dx.doi.org/10.1109/tit.2012.2217476
http://dx.doi.org/10.1109/tit.2012.2217476
http://dx.doi.org/10.1016/j.ins.2016.10.001
http://dx.doi.org/10.1016/j.ins.2016.10.001
http://dx.doi.org/10.1016/j.ins.2016.10.001
http://dx.doi.org/10.1016/j.ins.2016.10.001
http://dx.doi.org/10.1109/tit.2005.851743
http://dx.doi.org/10.1109/tit.2005.851743
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/978-3-540-24676-3_28
http://dx.doi.org/10.1007/978-3-540-24676-3_28
http://dx.doi.org/10.1007/978-3-540-24676-3_28
http://dx.doi.org/10.1007/3-540-39799-x_41
http://dx.doi.org/10.1007/3-540-39799-x_41
http://dx.doi.org/10.1007/3-540-39799-x_41
http://dx.doi.org/10.1007/11779360_10
http://dx.doi.org/10.1007/11779360_10
http://dx.doi.org/10.1109/tit.2006.876253
http://dx.doi.org/10.1109/tit.2006.876253
http://dx.doi.org/10.1109/tit.2006.876253
http://dx.doi.org/10.1109/tit.2006.876253

