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LETTER
On the Optimality of Gabidulin-Based LRCs as Codes with
Multiple Local Erasure Correction

Geonu KIM†∗a), Nonmember and Jungwoo LEE†b), Member

SUMMARY The Gabidulin-based locally repairable code (LRC) con-
struction by Silberstein et al. is an important example of distance optimal
(r, δ)-LRCs. Its distance optimality has been further shown to cover the
case of multiple (r, δ)-locality, where the (r, δ)-locality constraints are dif-
ferent among different symbols. However, the optimality only holds under
the ordered (r, δ) condition, where the parameters of the multiple (r, δ)-
locality satisfy a specific ordering condition. In this letter, we show that
Gabidulin-based LRCs are still distance optimal even without the ordered
(r, δ) condition.
key words: locally repairable codes, multiple locality, local erasure cor-
rection, Gabidulin code

1. Introduction

Locally repairable codes (LRCs) have been devised to miti-
gate the poor repair efficiency of conventional erasure codes
in distributed storage systems [1]. LRCs have been first
introduced in [2] by constraining the number of symbols
required for the repair of a symbol, i.e., correction of the
symbol erasure, to be at most the locality r . The notion
of (r, δ)-locality [3], [4] further extends the conventional r-
locality by imposing a more general constraint δ ≥ 2 on the
minimum distance of the punctured local codes.

Recently, interests have arisen in having different local-
ity constraints on different symbols [5]–[8]. In particular, the
notion of multiple r-locality has been introduced in [5], and
further extended to multiple (r, δ)-locality [6]. Especially,
the LRC construction based on Gabidulin codes, originally
proposed in [9] and extended in [7], [8], has been shown to
be distance optimal even under a slightly more general prob-
lem setting referred as unequal (r, δ)-locality, given that a
certain order in the parameters of the multiple (r, δ)-locality
is satisfied [8].

1.1 Contribution and Organization

Our contribution is given by the following theorem. The
proof will be discussed in Sect. 3.

Theorem 1: Gabidulin-based (r, δ)-LRCs are distance op-
timal LRCs with multiple (r, δ)-locality.
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The distance optimality ofGabidulin-based (r, δ)-LRCs
for unequal (r, δ)-locality under the ordered (r, δ) condition
[8] is also valid for multiple (r, δ)-locality, since multiple
(r, δ)-locality is a special case of unequal (r, δ)-locality
with an additional disjointness constraint such that both
the symbol to be repaired and the symbols used in the re-
pair are specified with the same (r, δ) parameter∗∗, and the
Gabidulin-based (r, δ)-LRCs satisfy that disjointness con-
straint. Theorem 1 generalizes the distance optimality of
Gabidulin-based (r, δ)-LRCs beyond the case of the ordered
(r, δ) condition∗∗∗. It can be useful for heterogeneous dis-
tributed storage systems, where some storage clusters can
tolerate higher repair bandwidth. Using longer local codes
with larger locality in such clusterswill reduce overall storage
overhead, even if local distance is also increased accordingly
in order to preserve local failure protection capability.

The remainder of this letter is organized as follows. In
Sect. 2, some important preliminaries are provided. Sec-
tion 3 presents the detailed proof of Theorem 1.

2. Background

2.1 Notation

The following notation is used throughout this letter.

• For an integer i, [i] = {1, . . . , i}.
• For the setsX andY,XtY denotes the disjoint union.
In other words, the usage ofAtB impliesA∩B = ∅.

• For a code C of length n, the punctured code with sup-
port T ⊂ [n] and the corresponding generator matrix
are denoted as C |T and G |T , respectively. Further-
more, rankG(T ) = rank(G |T ).

• For a polynomial evaluation code C of length n, where
the evaluation points lie in an extension field, rankE(T )
denotes the rank of the evaluation points indexed by
T ⊂ [n] over the base field.

2.2 LRCs with Multiple Local Erasure Correction

Let us begin with the following definition on LRCs with
multiple (r, δ)-locality. (See also [6].)

Definition 1: Let [n] =
⊔s∗

j=1Nj and |Nj | = n j , j ∈ [s∗].

∗∗The disjointness constraint is denoted by the condition Si ⊂
Nj in Definition 1.
∗∗∗Thework in [6] is also restricted to the ordered (r, δ) condition.
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A linear [n, k] code C is said to have multiple (r, δ)-locality
with parameters {(n j, r j, δ j )}j∈[s∗], if for every symbol with
index i ∈ Nj , j ∈ [s∗], there exists a symbol index set
Si ⊂ Nj such that

• i ∈ Si ,
• |Si | ≤ r j + δ j − 1,
• d(C |Si ) ≥ δ j .

Furthermore, define

• integers pj , qj such that n j = pj (r j + δ j − 1) + qj and
0 ≤ qj ≤ r j + δ j − 2,

• m j ,
n j

r j + δ j − 1
= pj +

qj

r j + δ j − 1
,

• k j ,



bm jcr j if 0 ≤ qj ≤ δ j − 2,
n j − dm je (δ j − 1) if δ j − 1≤ qj ≤ r j+δ j − 2.

We also have the following remark.

Remark 1: In Definition 1, applying the Singleton bound
to C |Si gives rankG(Si) ≤ r j .

2.3 Gabidulin-Based LRC Construction

The LRC construction with multiple (r, δ)-locality based on
Gabidulin codes is given below.

Construction 1 (Const. 1 in [8]): For integers m j ≥ 1,
r j ≥ 1, δ j ≥ 2, j ∈ [s∗], and k ≤

∑s∗

j=1 m jr j ≤ t, let
n j = m j (r j + δ j − 1) and n =

∑s∗

j=1 n j . A Linear [n, k]qt

code is constructed by the following steps.

1. Encode k information symbols by a [
∑s∗

j=1 m jr j, k]qt

Gabidulin code.
2. Partition the Gabidulin codeword symbols into

∑s∗

j=1 m j

local groups, where m j local groups are of size r j ,
j ∈ [s∗].

3. Encode each local group of size r j by multiplying the
generator matrix of an [r j + δ j − 1, r j, δ j]q maximum
distance separable (MDS) code.†

In the proof of Theorem 1, we use some important
properties of Gabidulin-based LRCs collected from previous
work. The following lemma states that we can use rankE(·)
instead of rankG(·) as long as either rank is less than k.

Lemma 1 (Lem. 9 in [8]): Let T ⊂ [n] be an index set of
some code symbols in Construction 1. If either rankG(T ) <
k or rankE(T ) < k, we have

rankG(T ) = rankE(T ).

The remark and lemma below are very useful in han-
dling the computation of rankE(·). In particular, rankE(·)
of certain symbols can be computed by first partitioning the
symbols with mutually exclusive local groups (the union of
the groups covers the entire symbols) of Construction 1,
counting the number of symbols in each group with limits,
†The scalar multiplications are over Fqt .

and then simply adding them up.
Remark 2 (Rem. 5 in [8]): The subspace generated by the
evaluation points of Construction 1 is a direct sum of the
subspaces each generated by the evaluation points of each
local group. Therefore, rankE(T ), T ⊂ [n], is the sum of
each rankE(·) computed separately on each local group.
Lemma 2 (Special case of Lem. 9 in [10]): Let U be the
encoded symbol index set of a local group in Construction
1, encoded by an [r j + δ j − 1, r j, δ j]q MDS code. For an
arbitrary set T ⊂ U , we have

rankE(T ) = min(|T |, r j ).

Within the m j encoded local groups by a certain [r j +
δ j −1, r j, δ j]q MDS code, a greedily selected symbol set is a
worst case set in terms of rankE(·). Such a greedy selection
is formally described by the set T ′ in the following remark,
Remark 3 (Special case of Lem. 8 in [8]): Let Nj , j ∈
[s∗], be the index set of the n j encoded symbols in Construc-
tion 1, that correspond to the m j local groups encoded by the
[r j + δ j − 1, r j, δ j]q MDS code. For an index set T ′ ⊂ Nj

corresponding to the entire symbols of some pj ≤ m j local
groups and some 0 ≤ qj ≤ r j + δ j − 2 symbols from another
local group, we have

rankE(T ) ≥ rankE(T ′),

for any symbol index set T ⊂ Nj such that |T | = |T ′ |.

3. General Optimality of Gabidulin-Based LRCs

In this section we provide the proof of Theorem 1. The
outline is given first, followed by the details of the proof.

3.1 Outline

We require the following two lemmas in order to show the
outline of the proof for Theorem 1. Note that Lemma 4 does
not result from simple substitution.
Lemma 3 (Lem. A.1 in [4]): For a symbol index set T ⊂
[n] of a linear [n, k, d] code such that rankG(T ) ≤ k − 1, we
have

d ≤ n − |T |,

with equality if and only if T is of largest cardinality such
that rankG(T ) = k − 1.
Lemma 4 (Lem. 2 in [8]): For a symbol index set T ⊂ [n]
of a linear [n, k, d] code such that rankG(T ) ≤ k − 1, let
γ be the number of redundant symbols indexed by T , i.e.,
γ = |T | − rankG(T ). We have

d ≤ n − k + 1 − γ.

For a Gabidulin-based LRC C ∗ having multiple (r, δ)-
locality (Construction 1), let T ∗ ⊂ [n] be its distance defin-
ing set by Lemma 3, i.e., a symbol index set of largest car-
dinality such that rankG(T ∗) = k − 1. Accordingly, we



1328
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.9 SEPTEMBER 2019

have

|T ∗ | = n − d∗,

where d∗ denotes the minimum distance of C ∗. The number
of redundant symbols in T ∗ can be written as

γ∗ = |T ∗ | − rankG(T ∗) = n − d∗ − k + 1. (1)

We claim the distance optimality of C ∗ by showing that
the minimum distance d of C is upper bounded by d ≤ d∗,
where C is an arbitrary LRC having multiple (r, δ)-locality
(Definition 1) with length, dimension and (r, δ)-locality pa-
rameters identical to C ∗. The required upper bound can be
derived by constructing an upper bound defining set T for
C , such that

rankG(T ) ≤ k − 1, (2)

and

γ = |T | − rankG(T ) ≥ γ∗. (3)

Given such a set T and applying Lemma 4, we can get

d ≤ n − k + 1 − γ
≤ n − k + 1 − γ∗
(1)
= d∗.

3.2 Analysis of the Distance Defining Set

Before we construct the upper bound defining set T , let
us further characterize the distance defining set T ∗. Let
T ∗j = T

∗ ∩ Nj , j ∈ [s∗], such that T ∗ =
⊔s∗

j=1 T
∗

j , where
Nj denotes the symbol index set corresponding to the m j

local groups encoded by the [r j + δ j − 1, r j, δ]q MDS code
in Construction 1. Also define integers p∗j and q∗j such that

|T ∗j | = p∗j (r j + δ j − 1) + q∗j ,

and 0 ≤ q∗j ≤ r j + δ j − 2.
Consider a set T ′j ⊂ Nj with |T ′j | = |T

∗
j |, that corre-

sponds to the entire symbols from some p∗j local groups and
some q∗j symbols from another local group. By Remark 3,
we clearly have rankE(T ∗j ) ≥ rankE(T ′j ). We further claim
that

rankE(T ∗j ) = rankE(T ′j ), (4)

i.e., T ∗j is a worst case set in terms of evaluation point
rank. Suppose that rankE(T ∗j ) > rankE(T ′j ). Then, we can
construct a set T̂ = (T ∗ \ T ∗j ) t T ′j with |T̂ | = |T ∗ | such
that

rankE(T̂ ) (a)
=
∑

j′∈[s∗]\{ j }
rankE(T ∗j′ ) + rankE(T ′j )

<

s∗∑
j′=1

rankE(T ∗j′ )

(a)
= rankE(T ∗)
(b)
= rankG(T ∗)
= k − 1,

which leads to

rankG(T̂ ) (b)
= rankE(T̂ ) < k − 1,

where (a) and (b) are due to Remark 2 and Lemma 1, respec-
tively. The fact that T̂ can be enlarged while still satisfying
rankG(T̂ ) ≤ k − 1 is contradictory to the precondition on
T ∗ to be of largest cardinality such that rankG(T ∗) = k − 1,
and the claim of (4) is proved.

We also claim that

q∗j < r j . (5)

Suppose otherwise that r j ≤ q∗j ≤ r j + δ j − 2, and con-
sider again the sets T ′j and T̂ above, where it is clear that
rankG(T̂ ) = rankE(T̂ ) = k − 1. Note that, due to Lemma 2,
Remark 2, and Lemma 1, T̂ can be enlarged by adding one
more symbol from the local group corresponding to the q∗j
symbols, while still satisfying rankG(T̂ ) = k − 1, which
again is a contradiction.

Now, we get

rankG(T ∗) (a)
= rankE(T ∗)

(b)
=

s∗∑
j=1

rankE(T ∗j )

(4)
=

s∗∑
j=1

rankE(T ′j )

(c)
=

s∗∑
j=1

(p∗jr j + q∗j ), (6)

where (a) and (b) come from Lemma 1 and Remark 2, re-
spectively, and (c) is due to Remark 2, Lemma 2, and (5).
We also have

γ∗ = |T ∗ | − rankG(T ∗) =
s∗∑
j=1

p∗j (δ j − 1). (7)

3.3 Construction of the Upper Bound Defining Set

Finally, let us construct the upper bound defining set T
by first writing T =

⊔s∗

j=1 Tj , where Tj = T ∩ Nj , j ∈ [s∗],
and using Algorithm 1. It is easy to see that it is always
possible to make the setU in Step 7 of the algorithm, since
|Ql | ≤ l (r j + δ j − 1) and therefore |Nj \ Ql | ≥ δ j − 1.

Two properties of Algorithm 1 are derived, which are
required in showing that the set T results in the required
upper bound. We only discuss the case where the condition
in Step 3 is satisfied, since it is trivial that the properties hold
in the other case. First note that, since Ql = Ql−1 ∪ Si , we
have
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Algorithm 1 Used in the Proof of Theorem 1
1: Let Q0 = ∅, l = 0
2: repeat
3: if ∃i ∈ Nj \ Ql such that rankG (Ql t {i }) > rankG (Ql ) then
4: l = l + 1
5: Ql = Ql−1 ∪ Si
6: else
7: Choose an arbitrary set U ⊂ Nj \ Ql such that |U | = δ j − 1
8: l = l + 1
9: Ql = Ql−1 t U
10: end if
11: until l = p∗j
12: Tj = Ql

Algorithm 2 Used in deriving (9)
1: Let Q̂ = Ql−1, K = ∅, R = ∅
2: while ∃i′ ∈ Ql \ Q̂ such that rankG (Q̂ t {i′ }) > rankG (Q̂) do
3: Q̂ = Q̂ t {i′ }
4: K = K t {i′ }
5: end while
6: R = Ql \ Q̂

rankG(Ql) − rankG(Ql−1) ≤ rankG(Si)
(a)
≤ r j , (8)

l ∈ [p∗j ], where (a) is due to Remark 1. Also, we claim that

|Ql | − |Ql−1 | ≥ rankG(Ql) − rankG(Ql−1) + δ j − 1. (9)

To see why, consider Algorithm 2, where the incremental
symbols in Step 5 of Algorithm 1 are categorized into either
rank-contributing or redundant symbols by the sets K and
R, respectively. It is clear that the erasure of symbols cor-
responding to the set E = R t {i′} ⊂ Si ⊂ Ql with some
i′ ∈ K are not correctable from the remaining symbols of Ql

due to the incremental rank by i′ ∈ E. The same argument
holds for Si as Si ⊂ Ql . Since d(C |Si ) ≥ δ j , it must be true
that |E | = |Ql \ Ql−1 | − |K | + 1 ≥ δ j , resulting in (9).

We now have

rankG(Tj ) =
p∗j∑
l=1

(rankG(Ql) − rankG(Ql−1))

(8)
≤ p∗jr j , (10)

and

γj = |Tj | − rankG(Tj )

=

p∗j∑
l=1

(|Ql | − |Ql−1 |) −
p∗j∑
l=1

(rankG(Ql) − rankG(Ql−1))

(9)
≥ p∗j (δ j − 1). (11)

We complete the proof by noting that (2) and (3) hold as

rankG(T ) ≤
s∗∑
j=1

rankG(Tj )

(10)
≤

s∗∑
j=1

p∗jr j ≤
s∗∑
j=1

(p∗jr j + q∗j )

(6)
= rankG(T ∗)
= k − 1,

and

γ = |T | − rankG(T ) ≥
s∗∑
j=1

( |Tj | − rankG(Tj ))

(11)
≥

s∗∑
j=1

p∗j (δ j − 1)

(7)
= γ∗.

Acknowledgments

This work is in part supported by SNU Eng-Med Col-
laboration Grant, Basic Science Research Program (NRF-
2017R1A2B2007102) through NRF funded by MSIP, Tech-
nology Innovation Program (10051928) funded by MOTIE,
Bio-Mimetic Robot Research Center funded by DAPA
(UD130070ID), INMAC, and BK21-plus.

References

[1] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A.G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel
erasure codes for big data,” Proc. 39th international conference on
Very Large Data Bases, vol.6, no.5, pp.325–336, 2013.

[2] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the local-
ity of codeword symbols,” IEEE Trans. Inf. Theory, vol.58, no.11,
pp.6925–6934, Nov. 2012.

[3] N. Prakash, G.M. Kamath, V. Lalitha, and P.V. Kumar, “Optimal lin-
ear codes with a local-error-correction property,” Information The-
ory Proceedings (ISIT), 2012 IEEE International Symposium on,
pp.2776–2780, July 2012.

[4] G.M. Kamath, N. Prakash, V. Lalitha, and P.V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol.60, no.8, pp.4637–4660, Aug. 2014.

[5] A. Zeh and E. Yaakobi, “Bounds and constructions of codes with
multiple localities,” 2016 IEEE International Symposium on Infor-
mation Theory (ISIT), pp.640–644, July 2016.

[6] B. Chen, S.T. Xia, and J. Hao, “Locally repairable codes with mul-
tiple (ri, δi )-localities,” 2017 IEEE International Symposium on
Information Theory (ISIT), pp.2038–2042, June 2017.

[7] S.Kadhe andA. Sprintson, “Codeswith unequal locality,” 2016 IEEE
International Symposium on Information Theory (ISIT), pp.435–
439, July 2016.

[8] G. Kim and J. Lee, “Locally repairable codes with unequal local
erasure correction,” IEEETrans. Inf. Theory, vol.64, no.11, pp.7137–
7152, Nov. 2018.

[9] N. Silberstein, A.S. Rawat, O.O.Koyluoglu, and S.Vishwanath, “Op-
timal locally repairable codes via rank-metric codes,” Information
Theory Proceedings (ISIT), 2013 IEEE International Symposium
on, pp.1819–1823, July 2013.

[10] A.S. Rawat, O.O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol.60, no.1, pp.212–236, Jan.
2014.

http://dx.doi.org/10.14778/2535573.2488339
http://dx.doi.org/10.14778/2535573.2488339
http://dx.doi.org/10.14778/2535573.2488339
http://dx.doi.org/10.14778/2535573.2488339
http://dx.doi.org/10.1109/tit.2012.2208937
http://dx.doi.org/10.1109/tit.2012.2208937
http://dx.doi.org/10.1109/tit.2012.2208937
http://dx.doi.org/10.1109/isit.2012.6284028
http://dx.doi.org/10.1109/isit.2012.6284028
http://dx.doi.org/10.1109/isit.2012.6284028
http://dx.doi.org/10.1109/isit.2012.6284028
http://dx.doi.org/10.1109/tit.2014.2329872
http://dx.doi.org/10.1109/tit.2014.2329872
http://dx.doi.org/10.1109/tit.2014.2329872
http://dx.doi.org/10.1109/isit.2016.7541377
http://dx.doi.org/10.1109/isit.2016.7541377
http://dx.doi.org/10.1109/isit.2016.7541377
http://dx.doi.org/10.1109/isit.2017.8006887
http://dx.doi.org/10.1109/isit.2017.8006887
http://dx.doi.org/10.1109/isit.2017.8006887
http://dx.doi.org/10.1109/isit.2016.7541336
http://dx.doi.org/10.1109/isit.2016.7541336
http://dx.doi.org/10.1109/isit.2016.7541336
http://dx.doi.org/10.1109/tit.2018.2834942
http://dx.doi.org/10.1109/tit.2018.2834942
http://dx.doi.org/10.1109/tit.2018.2834942
http://dx.doi.org/10.1109/isit.2013.6620541
http://dx.doi.org/10.1109/isit.2013.6620541
http://dx.doi.org/10.1109/isit.2013.6620541
http://dx.doi.org/10.1109/isit.2013.6620541
http://dx.doi.org/10.1109/tit.2013.2288784
http://dx.doi.org/10.1109/tit.2013.2288784
http://dx.doi.org/10.1109/tit.2013.2288784
http://dx.doi.org/10.1109/tit.2013.2288784

