
1406
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.10 OCTOBER 2019

LETTER
A Fast Iterative Check Polytope Projection Algorithm for ADMM
Decoding of LDPC Codes by Bisection Method

Yan LIN†, Member, Qiaoqiao XIA†a), Wenwu HE††, and Qinglin ZHANG†, Nonmembers

SUMMARY Using linear programming (LP) decoding based on al-
ternating direction method of multipliers (ADMM) for low-density parity-
check (LDPC) codes shows lower complexity than the original LP decoding.
However, the development of the ADMM-LP decoding algorithm could still
be limited by the computational complexity of Euclidean projections onto
parity check polytope. In this paper, we proposed a bisection method iter-
ative algorithm (BMIA) for projection onto parity check polytope avoiding
sorting operation and the complexity is linear. In addition, the convergence
of the proposed algorithm is more than three times as fast as the existing
algorithm, which can even be 10 times in the case of high input dimension.
key words: alternating direction method of multipliers, low-density parity-
check codes, check polytope projection, bisection method iterative algorithm

1. Introduction

In recent years, Barman proposed the linear programming
(LP) decoding algorithm based on alternating direction
method of multipliers (ADMM) in [1], combining the dual
decomposition theory in optimization algorithm and the aug-
mented Lagrange method with constraint optimization as
well as LP model to solve LP problem. Although the com-
plexity of the ADMM decoding algorithm is lower than the
original LP decoding algorithm, its complexity can be fur-
ther reduced.

In fact, the projection on parity check polytope is the
most computationally intensive part of the whole decoding
process. To deal with the problem of high computational
complexity of projection, Wei et al. proposed the reduction
of useless projection in [2]. Besides, Jiao et al. suggested
increasing the projection efficiency using the look-up table
to reduce the projection operation [3]. Except to reducing
the complexity by decreasing the number of projection, the
computational complexity of projection can also be reduced
by simplifying the projection algorithm. X. Zhang et al.
put forward a novel and efficient projection algorithm based
on Cut Search Algorithm (CSA) [4]. Afterwards, G. Zhang
proposed a projection method that transformed the projec-
tion onto the check polytope to a projection onto probability
simplex [5].

However, these algorithms inevitably involve sorting
operations, which consume a large amount of computing re-
sources and memory resources. In addition, iterative check
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polytope projection algorithm proposed by Wei et al. in [6],
removed sorting operations to simplify the projection. Nev-
ertheless, the iterative check polytope projection algorithm
required a large number of iterations to obtain a valid esti-
mated projection when the dimension of input vector is high.
Therefore the current work proposes the bisection method it-
erative algorithm (BMIA). Compared with algorithm of [6],
the BMIA can speed up the projection onto the parity check
polytope without increasing computational complexity. Ac-
cording to simulation results, only 1/10 number of iterations
for iterative algorithm is required for the proposed algorithm
when the dimension of input vector is high.

2. Preliminaries

Consider an LDPC code C of length n and let m × n parity-
checkmatrixH correspond to C. Each row ofH corresponds
to one check node and each column of H corresponds to
one variable node. Define I = {1, 2, 3, ..., n} and J =
{1, 2, 3, ...,m} as the index set of all variable nodes and check
nodes, respectively. Let Nv (i) denote the set of check nodes
adjacent to variable node vni , i ∈ I. di is defined as the
degree of variable node vni . Similarly, Nc ( j) denotes the set
of variable nodes adjacent to check node cn j , j ∈ J and d j

is defined as the degree of check node cn j , i.e., di = |Nv (i) |
and d j = |Nc ( j) |.

Let x be the transmitted codeword of length n, and y is
the received vector resulted by x transmitted across a mem-
oryless binary input output-symmetric channel. In [1], the
ADMM-LP model was proposed as following formulations
to handle the LP decoding problem:

min γTx
s.t . Tjx = zj zj ∈ Pd j ,∀ j ∈ J , x ∈ [0, 1]n

(1)

where γ ∈ Rn is the vector of log-likelihood rations
(LLRs), and the i-th entry of γ can be defined as: γi =

log
( Pr (yi/xi=0)
Pr (yi/xi=1)

)
. Tj is the d j × n transfer matrix which

selects the d j components of x involved in the j-th check
node. zj is the auxiliary variables of check node cn j . Pd j

is the parity check polytope, implying the convex hull of all
permutations of a length-d j binary vector with even number
of ones.

The augmented Lagrangian function corresponding to
formula (1) is presented as follows:

Lµ(x,z,λ)=γTx+
∑
j∈J

λ j
T
(
Tjx−zj

)
+
µ

2

∑
j∈J

‖Tjx−zj ‖22 (2)
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where λ j ∈ R
d j ( j ∈ J ) is the scaled dual variable, and

µ > 0 is penalty parameter which is a constant value.
The ADMM is consistent with the updating rules as

follows to handle the optimization problem of (2).

xk+1
i =

∏
[0,1]

(
1
di

( ∑
j∈Nv (i)

(
zkj −

1
µλ

k
j

)
− γi/µ

))
(3)

zj k+1 =
∏
Pdj

(
Tjxk+1 + λk

j /µ
)

(4)

λ j
k+1 = λk

j + µ(Tjxk+1 − zk+1
j ) (5)

where (k + 1) denotes the (k + 1)-th iterations of ADMM
decoding, and

∏
Pdj

is the Euclidean projection of vector
onto Pd j .

In [7], Debbabi indicated that the projection onto parity
check polytope is the most time-consuming part based on the
process of ADMM decoding. As a result, how to simplify
the projection operation has become the focus of researches.

2.1 Parity Check Polytope Projection

On the basis of [4], the parity check polytope Pd j must
satisfy following constraints:

0 ≤ ui ≤ 1 i ∈
[
d j

]
(6)∑

i∈V

ui −
∑
i∈Vc

ui ≤ |V| − 1,∀V ⊆ [d j], |V | is odd (7)

where
[
d j

]
denotes the set of

{
1, 2, ..., d j

}
. Vc =

[
d j

]
\V

is the complement ofV .
Regarding the given set V , define its indicator vector

θV as follows:

θV,i =



1, if i ∈ V
−1, if i ∈ Vc

(8)

According to (6), the parity check polytope Pd j lies
inside the [0, 1]d j unit hypercube. Consequently, for a vector
v ∈ Rd j , let u =

∏
[0,1]dj v, where

∏
[0,1]dj (·) denotes the

projection onto unit hypercube ( i.e., if vi > 1, then ui = 1, if
vi < 0, then ui = 0, else ui = vi). If u satisfies the inequality
θT
V

u ≤ |V| −1, it can be determined that u lies inside parity
check polytope, and u is the projection of v onto Pd j .

Considering this case, u does not lie inside parity check
polytope Pd j . Based on CSA [4], it indicates that there
exists the unique inequality θT

V
u > |V | − 1, we call this

inequality, the cut at u. The method to find V is described
as follows: firstly, initial V . For ∀ui > 0.5, then i ∈ V ,
and for ∀ui ≤ 0.5, then i ∈ Vc . Subsequently, we calculate
the number of elements in set V , which is denoted as |V |.
If |V | is odd, we flip the index i of ui which is closest
to 0.5, i.e., if i ∈ V , change i to i ∈ Vc , if i ∈ Vc ,
change i to i ∈ V , then update |V |. Furthermore, in case of
u < Pd j , the CSA suggests that the projection of v onto Pd j

must be on the facet θT
V

w = |V | − 1. In other words, the
projection z =

∏
Pdj

v satisfies θT
V

z = |V |−1. According to
[4], the point z =

∏
Pdj

v equal to z =
∏

[0,1]d (v − s∗θV ),

where s∗ ≥ 0 is a scalar, called the difference coefficient.
Intuitively, if the difference coefficient s∗ is determined, the
projection of v onto Pd j can also be found.

3. Bisection Method Iterative Parity Check Polytope
Projection

There exists some algorithms to get the difference coefficient
s∗ through sorting operation or iterating operation. For the
algorithms involving sorting operation, the complexity is
high. For the iterative algorithm, the complexity is O(d j ),
but the number of iterations is huge when the dimension of
input vector is high. Therefore, we proposed the bisection
method iterative parity check polytope projection algorithm.

Due to the point z =
∏

[0,1]dj (v − s∗θV ) satisfies
θT
V

z = |V | − 1, the following can be concluded:

θT
V

∏
[0,1]dj (v − s∗θV ) = |V | − 1

Define the function f (β) as follows:

f (β) = θT
V

∏
[0,1]dj (v − βθV ) (9)

where v ∈ Rd j is the input vector, β is a scalar and when β =
s∗, it satisfies f (s∗) = θT

V

∏
[0,1]dj (v − s∗θV ) = |V | − 1.

Proposition 1: Given vector v ∈ Rd j , θV is the in-
dicator vector of cutting set V . For β, f (β) =
θT
V

∏
[0,1]dj (v − βθV ) is a decreasing function.

proof: Define vβ =
∏

[0,1]dj (v − βθV ), f (β) is expressed
as formula (9). Taking the directional derivative with respect
to β increasing, it’s shown as follows:

∂ f (β)
∂ β

= θT
V

∂vβ
∂ β
= −

∑
0<vβ, i<1,1≤i≤d j

θ2
V,i < 0 (10)

Therefore f (β) is a decreasing function corresponding to
β.
Proposition 2: Given a vector v ∈ Rd j , let u =∏

[0,1]dj v < Pd j , there exists cut θT
V

u > |V | − 1,
then the different coefficient s∗, corresponding the equal-
ity θT

V

∏
[0,1]dj (v − s∗θV ) = |V | − 1, must satisfy s∗ ∈

[0, 1
2 (min

i∈V
vi − max

j∈Vc
vj )].

Proof: Define vector z =
∏
Pdj

v, u′ =
∏

[0,1]dj (v − s∗θV ).
We have z = u′. Assuming that s∗ < 0, the projection
of v onto unit hypercube satisfies

∏
[0,1]dj v < Pd j and

θT
V

∏
[0,1]dj v > |V | − 1.
Due to condition s∗ < 0, we have, for ∀i ∈ V ,

u′i =
∏

[0,1] (vi + |s∗ |) ≥
∏

[0,1] vi and for ∀ j ∈ Vc ,
u′j =

∏
[0,1] (vj − |s∗ |) ≤

∏
[0,1] vj .

Therefore, we can get inequality as follows:

θT
V

u′ =
∑
i∈V

∏
[0,1]

(vi + |s∗ |) −
∑
j∈Vc

∏
[0,1]

(vj − |s∗ |)

≥ θT
V

∏
[0,1]dj

v

> |V | − 1
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Obviously, it breaks condition that f (s∗) =

θT
V

∏
[0,1]dj (v − s∗θV ) = |V | − 1. Hence, s∗ should sat-

isfy that s∗ ≥ 0.
Previously, we have described that the projection z =∏

Pdj
v equal to z =

∏
[0,1]dj (v − s∗θV ). From the CSA

referred in [4], it can be extended in the conclusion: for
all i ∈ V , j ∈ Vc , we have zi ≥ z j , in other words,
min
i∈V

zi ≥ max
j∈Vc

z j .

Focusing on [8], Proposition 3, since the component-
wise ordering of

∏
Pdj

(v − s∗θV ) is same as that of (v −
s∗θV ), andwe have z =

∏
[0,1]dj (v − s∗θV ) ∈ Pd j , that is to

say, z =
∏
Pdj

(v − s∗θV ). Therefore the component-wise
ordering of z is the same as that of (v − s∗θV ).

According to [9], Proposition 6.4, we have that, for
∀i ∈ V , zi ≤ vi − s∗θV,i , and for ∀ j ∈ Vc , z j ≥ vj − s∗θV, j .
Based on the combination of min

i∈V
zi ≥ max

j∈Vc
z j for i ∈ V, j ∈

Vc , we have min
i∈V

vi − s∗ ≥ max
j∈Vc

vj + s∗ (because, for i ∈ V ,

θV,i = 1, for j ∈ Vc , θV, j = −1). Therefore, it can be
concluded as s∗ ≤ 1

2 (min
i∈V

vi − max
j∈Vc

vj ). The conclusion in

Proposition 2 is proved.
Based on the above analysis, it is proper to briefly sum-

marize the BMIA to perform the projection z =
∏
Pdj

v.
There are mainly two steps of the projection.

Firstly, we check the projection of v onto unit hyper-
cube, i.e., u =

∏
[0,1]dj v, whether or not it is in parity

check polytope Pd j by CSA. If the projection u satisfies
θT
V

u ≤ |V| − 1 and then we have u is the projection of v
onto parity check polytope. If not, we can determine that the
projection z =

∏
PPdj

v lies on the facet θT
V

w = |V | − 1 by
CSA.

For the case that θT
V

u > |V | −1, we perform the BMIA
described in Algorithm 1 to find the projection z. Based on
the condition that we have determined the indicator vector
θV corresponding to facet θT

V
w = |V | − 1, we focus on

the equality f (β) = θT
V

∏
[0,1]dj (v − βθV ). The BMIA

aims to find a estimated value β of s∗ by iterative operation.
Proposition 1 and Proposition 2 provide guarantee for β to
converge to s∗ using bisection method.

As described inAlgorithm 1, threshold ε (or Imax) is the
iterative stop condition. Algorithm 1 shows that the ε is the
length of the current interval and the Imax is the maximum
number of iterations. Then we need to calculate the upper
limit βmax of the interval in which the estimated value β
located. The next work mainly includes two steps at each
iteration, calculating estimated value β and updating the
interval. In terms of β, it is the midpoint of the interval. For
updating the interval, we perform the method as Algorithm
1, line 7, 8, 9 and 10 to select the subinterval.

4. Simulation Result

Consider sending codeword through additive white Gaus-
sian noise (AWGN) channel with binary phase shift key-

Algorithm 1 Bisection Method Iterative Check Polytope
Projection Algorithm
Input: Vector v ∈ Rd j , indicator vector θV corresponding to the facet

θT
V

x = |V | − 1, threshold ε (or the max iterations Imax)
Output: Projection z =

∏
[0,1]dj (v − βθV )

1: βmax ←
1
2 ( min
θV, i =1

vi − max
θV, j =−1

vj ) p ← |
{
i |θV, i = 1

}
| − 1

2: initial βlow ← 0 , βup ← βmax , iter ← 0
3: repeat
4: β ← 1

2
(
βup + βlow

)
5: z←

∏
[0,1]dj

(
v − βθV

)
6: iter ← iter + 1
7: if θT

V
z < p then

8: βup ← β
9: else
10: βlow ← β
11: end if
12: until |βup − βlow | < ε (or iter > Imax)
13: return z

ing (BPSK) modulation. In the simulation experiment, the
ADMM-LP decoder with penalty function l2 [10] is em-
ployed. Based on [10], we can obtain a set of parameters
(include the penalty parameter µ and the parameter α) for a
particular code that achieves the lowest FER by exhaustive
search over all possible parameters. In this paper, we mainly
consider the influence of different check polytope projec-
tion algorithms on the performance of ADMM-LP decoder.
Therefore, we select a same set parameters that achieves low
FER for simulation codes. The penalty parameter µ is set to
2.2 and the parameter α is set to 3.0. Besides, the maximum
number of iterations in ADMM decoding algorithm is set to
300.

To illustrate the performance of BMIA in ADMM-LP
decoder, we use the irregular (576, 288) rate 1/2 code C1 and
(576, 192) rate 2/3 code C2 as well as regular (576, 96) rate
5/6 C3 from IEEE 802.16e. The check degree of C1, C2 and
C3 are {6, 7}, {10, 11} and 20, respectively. In simulation,
the frame error rate (FER) curve of the decoder with CSA
is used as reference curve to determine whether the FER
performance of decoder with BMIA (or Iterative check poly-
tope projection algorithm) is optimal. If the decoder with
BMIA (or Iterative check polytope projection algorithm) has
a performance practically identical to that of CSA, the FER
performance of decoder with BMIA (or Iterative check poly-
tope projection algorithm) is optimal.

Figure 1 shows the effects of Imax and ε on the FER
curves of the BMIA, demonstrating that both the Imax and
ε will affect the performance of the FER curve. We note
that the FER curve tends to that of CSA gradually with the
increasing of Imax (ε = 0) (or with the decreasing of ε
(Imax = ∞)), especially when the ε is 0.01, the FER perfor-
mance is optimal. Afterwards, we focus on comparing the
performance of BMIA with the existing iterative projection
algorithm (mainly the algorithm referred in [6]).

Table 1 shows the comparison of the average projection
time of 30 iterations between BMIA and Iterative projection
algorithm at signal-to-noise rate (SNR)=2.6, 3.2, 4.2 dB for
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Fig. 1 FER performance of C1 for ADMM decoder with BMIA projec-
tion algorithm for different ε and Imax .

Table 1 Avg. projection time.

Codeword Parity Check Polytope Projection Algorithm
Iterative BMIA

C1 8.8207 × 10−7 8.6076 × 10−7

C2 1.1951 × 10−6 1.0907 × 10−6

C3 2.07 × 10−6 2.0489 × 10−6

1 The simulation used over one million frames at SNR=2.6,
3.2 and 4.2 dB, respectively for C1, C2 and C3 (The FER
performance is 10−3 for each decoder).

Fig. 2 Relative projection error of C1, C2 and C3 for ADMM decoder
with BMIA and Iterative projection algorithm for different iterations.

C1, C2 and C3, respectively. As shown in table, there is al-
most no difference in the projection time between BMIA and
Iterative algorithm under the same conditions (Imax = 100,
ε = 0, SNR= 2.6, 3.2, 4.2 dB for C1, C2 and C3, respec-
tively). The result demonstrates that, for each iteration, the
computational complexities of BMIA and Iterative algorithm
are almost equal.

Figure 2 describes the relationship between the number
of iterations and the average relative projection error. The
relative error is calculated as | |z−ztrue | |2

| |ztrue | |2
(ztrue denotes the

accurate projection) at each projection. For each simulation
point, 35000 frames are obtained. As shown in Fig. 2, for

Fig. 3 FER performance of C1, C2 and C3 for ADMM decoder with
BMIA and Iterative projection algorithm for different Imax .

BMIA and Iterative projection algorithm, the average rela-
tive projection errors between the output projection and the
accurate projection are decreasing as the number of iteration
increase. It is intuitive that the speed of BMIA relative error
decreasing is much faster than that of Iterative algorithm.
Especially after the iteration number reaches 10 iterations,
the average relative error of BMIA is closer to zero.

Figure 3 shows the relationship between the FERperfor-
mance of the decoders with BMIA and Iterative projection
algorithm for different codewords. According to the FER
curves of C1, C2 and C3, it’s obvious that with the increase
of Imax , the FER curves of BMIA and Iterative algorithm
approach to the CSA FER curve gradually. However, the
approaching rate of BMIA and Iterative algorithm are not
the same. Especially when the dimension is 20, the FER
performance of BMIA has a practically identical to that of
CSA after 8 iterations, but FER curve of Iterative algorithm
takes 100 iterations to approach the performance of CSA.

Finally, it is worth noting that when the average relative
projection errors for BMIA is a little more than that of Iter-
ative projection algorithm, the FER performance for BMIA
is intuitively better than that of Iterative algorithm. For ex-
ample, when the iteration of BMIA is 4 and the iteration of
Iterative projection algorithm is 20, the average relative pro-
jection errors of BMIA is more than that of Iterative projec-
tion algorithm, while the FER performance of C1 for BMIA
is better than that for Iteartive projection algorithm. The
projection of v onto Pd j are given by

∏
[0,1]dj (v − s∗θV ),∏

[0,1]dj (v − βBMIAθV ),
∏

[0,1]dj (v − βIterθV ) for cor-
rect projection, BMIA and Iterative projection algorithm,
respectively. Based on the algorithm of BMIA and Iterative
projection algorithm respectively, the value of βBMIA could
be greater than, less than or equal to s∗, while the value of
βIter is always less than s∗ [6]. Therefore, when the average
relative projection errors for BMIA and Iterative projection
algorithm are identical, the estimate projection calculated
by BMIA might lie inside the check polytope, while that of
Iterative projection algorithm must be outside of check poly-
tope. To further verification, under the same average relative
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Fig. 4 FER performance of C1 for ADMM decoder with different β at
3.4 dB

projection errors, the simulation explores the FER perfor-
mances of code C1 at 3.4 dB for the case of β = s∗ ± δ and
β = s∗ − δ (δ > 0), respectively. As shown in Fig. 4, under
the same average relative projection errors, the FER perfor-
mance of decoder satisfying the projection possibly within
the check polytope is better than that of decoder satisfying
projection being outside of the check polytope.

5. Conclusion

To conclude, we propose a bisection method iterative algo-
rithm in this paper. Compared with the existing projection
algorithms, it does not require any sort operation, and the
complexity of the algorithm is linear. Additionally, in com-
parison with the existing iterative projection algorithm, the
proposed projection algorithm reduces the number of itera-
tions without affecting the decoding performance. When the
dimension of input vector is high, the number of iterations for
the performance of the decoder with BMIA reaching optimal

is only 1/10 of the iterative projection algorithm.
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