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SUMMARY A privacy-preserving support vector machine
(SVM) computing scheme is proposed in this paper. Cloud com-
puting has been spreading in many fields. However, the cloud
computing has some serious issues for end users, such as the
unauthorized use of cloud services, data leaks, and privacy being
compromised. Accordingly, we consider privacy-preserving SVM
computing. We focus on protecting visual information of images
by using a random unitary transformation. Some properties of
the protected images are discussed. The proposed scheme en-
ables us not only to protect images, but also to have the same
performance as that of unprotected images even when using typ-
ical kernel functions such as the linear kernel, radial basis func-
tion(RBF) kernel and polynomial kernel. Moreover, it can be di-
rectly carried out by using well-known SVM algorithms, without
preparing any algorithms specialized for secure SVM computing.
In an experiment, the proposed scheme is applied to a face-based
authentication algorithm with SVM classifiers to confirm the ef-
fectiveness.
key words: Support Vector Machine, Privacy-preserving, ran-
dom unitary transformation

1. Introduction

Cloud computing and edge computing have been
spreading in many fields with the development of cloud
services. However, the computing environment has
some serious issues for end users, such as the unautho-
rized use of cloud services, data leaks, and privacy be-
ing compromised due to unreliabile providers and some
accidents. A lot of studies on secure, efficient, and flex-
ible communications, storage, and computation have
been reported [1–6]. For securing data, full encryption
with provable security (like RSA and AES) is the most
secure option. However, many multimedia applications
have been seeking a trade-off in security to enable other
requirements, e.g., low processing demands, retaining
bitstream compliance, and flexible processing in the
encrypted domain, so a lot of perceptual encryption
schemes have been studied to achieve a trade-off [6–15]
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In recent years, considerable efforts have been
made in the fields of fully homomorphic encryption
and multi-party computation [16–19]. However, these
schemes can not be applied yet to SVM algorithms,
although it is possible to carry out some statistical
analysis of categorical and ordinal data. Moreover, the
schemes have to prepare algorithms specialized for com-
puting encrypted data.

Because of this, we propose a privacy-preserving
SVM computing scheme in this paper . We focus on
images protected by using a random unitary transfor-
mation, which have been studied as one of methods
for cancelable biometrics [20–26], and then consider
some properties of the protected images for secure SVM
computing, where images mean features extracted from
data. As a result, the proposed scheme enables us not
only to protect images, but also to have the same per-
formance as that of unprotected images under some
useful kernel functions as isotropic stationary kernels.
Moreover, it can be directly carried out by using well-
known SVM algorithms, without preparing any algo-
rithms specialized for secure SVM computing. SVM is
a typical machine learning algorithm that allows us to
use kernel tricks. SVM is used as an example of machine
learning algorithms based on the Euclidean distance or
the inner product between vectors. It is shown that
the proposed scheme enables to maintain the Euclidean
distance and the inner product, so the scheme can be
also applied to other machine learning algorithms.In an
experiments, the proposed scheme is applied to a face
recognition algorithm with SVM classifiers to confirm
the effectiveness.

2. Preparation

2.1 Support Vector Machine

support vector machine (SVM) is a supervised machine
learning algorithm that can be used for both classifica-
tion and regression challenges, but it is mostly used in
classification problems. In SVM, we input a feature
vector x to the discriminant function as
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y = sign(ωTx + b)

textwith

sign(u) =

{
1 (u > 1)

−1 (u ≤ 0)
,

(1)

where ω is a weight parameter, and b is a bias.
SVM also has a technique called the ”kernel trick”,
which is a function that takes low dimensional input
space and transform it to a higher dimensional space.
These functions are called kernels. The kernel trick can
be applied to Eq. (1) to map an input vector on a fur-
ther high-dimension feature space and then to linearly
classify it on that space as

y = sign(ωTφ(x) + b). (2)

The function φ(x) : Rd → F maps an input vector x on
high dimensional feature space F , where d is the num-
ber of the dimensions of features. In this case, feature
space F includes parameter ω (ω ∈ F). The kernel
function of two vectors xi, xj is defined as

K(xi,xj) = 〈φ(xi), φ(xj)〉, (3)

where 〈·, ·〉 is an inner product. There are various kernel
functions [27]. For example, the radial basis function
(RBF) kernel is given by

K(xi,xj) = exp(−Υ‖xi − xj‖2) (4)

and the polynomial kernel is provided by

K(xi,xj) = (1 + xT
i xj)

l, (5)

where Υ is a high parameter for deciding the complexity
of boundary determination, l is a parameter for decid-
ing the degree of the polynomial, and T indicates a
transpose.

This paper aims to propose a new framework to
carry out some machine learning algorithms with pro-
tected vectors. SVM is used to demonstrate the ef-
fectiveness of the proposed scheme as one of machine
learning algorithms.

2.2 Scenario

Figure 1 illustrates the scenario used in this paper. In
the enrollment task, client i, i ∈ {1, 2, ..., N}, prepares
training images Ii,j , j ∈ {1, 2, ...,M}. Next the client

creates protected images Îi,j by using a secret key pi
and sends them to a cloud server. The server stores
them and implements learning with the protected im-
ages for a classification problem.

In the authentication task, client i creates a pro-
tected image as a query and sends it to the server. The
server carries out a classification problem with a learn-
ing model prepared in advance, and then returns the
result to client i.

Fig. 1: Scenario

Note that the cloud server has no secret keys and
the classification problem can be directly carried out by
using a well-known SVM algorithm. In the other words,
the server does not have to prepare any algorithms spe-
cialized for the classification in the encrypted domain.

3. Proposed framework

In this section, protected images generated by using a
random unitary matrix are conducted, and a SVM com-
putation scheme with the protected images is proposed
under the use of some kernel functions.

3.1 Protection of visual information

Protection schemes of visual information based on uni-
tary transformations have been studied as one method
for cancelable biometrics [20–25]. This paper has been
inspired by those studies.

Let us transform an image Ii,j with X × Y pixels
into a vector fi,j = {li,j(0), ..., li,j(d − 1)}T ∈ Rd, d =
X × Y , where li,j(k), k = 1, 2, ..., d − 1 is a pixel value
of Ii,j . A vector fi,j ∈ Rd is protected by a unitary
matrix having randomness with a key pi, Qpi ∈ Cd×d

as

f̂ i,j = T (f i,j , pi) = Qpi
f i,j , (6)

where f̂ i,j is a protected vector. Various genera-
tion schemes of Qpi

have been studied to design uni-
tary or orthogonal random matrices such as Gram-
Schmidt-based methods, random permutation matrices
and random phase matrices [24, 25]. For example, the
Gram-Schmidt-based methods are applied to a pseudo-
random matrix to generate Qpi

. Security analysis of
the protection schemes have been also considered in
terms of brute-force attacks, diversity and irreversibil-
ity.
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3.2 SVM with protected images

3.2.1 Properties

Protected images generated according to Eq. (6)
have the following properties under pi = ps [25].

Property 1 : Conservation of Euclidean distances:

‖f i,j − fs,t‖2 = ‖f̂ i,j − f̂s,t‖2. (7)

Property 2 : Conservation of inner products:

〈f i,j , fs,t〉 = 〈f̂ i,j , f̂s,t〉, (8)

Property 3 : Conservation of correlation coefficients:

〈f i,j , fs,t〉√
〈f i,j , fs,t〉

√
〈f i,j , fs,t〉

=
〈f̂ i,j , f̂s,t〉√

〈f̂ i,j , f̂s,t〉
√
〈f̂ i,j , f̂s,t〉

.

(9)

where fs,t is a vector of another client s, s ∈
{1, 2, ..., N}, who has M training samples gs,t, t ∈
{1, 2, ...,M}.
3.2.2 Classes of kernels

We consider applying encrypted images to the ker-
nel trick. In the case of using the RBF kernel, the fol-
lowing relation is satisfied from property 1 and Eq.(4):

K(f̂ i,j , f̂s,t) = exp(−Υ‖f̂ i,j − f̂s,t‖2)

= K(f i,j , fs,t). (10)

Therefore, protected images do not have any influence
when using kernel functions based on Euclidean dis-
tance, such as the RBF kernel.We call the class of these
Euclidean distance based kernel functions class 1 in this
paper.

In addition, from property 2, we can also use a
kernel that depends only on the inner products between
two vectors.The polynomial kernel and linear kernel are
in this class, referred to as class 2. Therefore, following
relations are satisfied, under property 2,

K(f̂ i,j , f̂s,t) = 〈f̂ i,j , f̂s,t〉
= K(f i,j , fs,t) (11)

K(f̂ i,j , f̂s,t) = (1 + 〈f̂ i,j , f̂s,t〉)l

= K(f i,j , fs,t). (12)

3.2.3 Dual problem
Next, we consider binary classification that is the

task of classifying the elements of a given set. A dual

problem for implementing a SVM classifier with pro-
tected images is expressed as

max
α

−1

2

∑
i,s∈N
j,t∈M

αi,jαs,tyi,jys,t〈φ(f̂ i,j , f̂s,t)〉+
∑
i∈N
j∈M

αi,j


s.t.

∑
i∈N
j∈M

αi,jyi,j = 0, 0 ≤ αi,j ≤ C,

(13)

where yi,j and ys,t∈ {+1,−1} are correct labels for
each piece of training data, αi,j and αs,t are dual vari-
ables and C is a regular coefficient. If we use kernel
class 1 or class 2 described above, the inner product
〈φ(f̂ i,j), φ(f̂s,t)〉 is equal to K(f i,j , fs,t). Therefore,even
in the case of using protected images, the dual problem
with protected images is reduced to the same problem
as that of the original images. This conclusion means
that the use of the proposed images gives no effect to
the performance of the SVM classifier under kernel class
1 and class 2.

3.3 Relation among keys

As shown in Fig 1, a protected image Îi,j is generated
from training image Ii,j by using a key pi. Two rela-
tions among keys are summarized here.

3.3.1 Key condition 1: p1 = p2 = ... = pN
The first key choice is to use a common key for

all clients, namely, p1 = p2 = ... = pN . In this case,
all protected images satisfy the properties described in
3.2, so the SVM classifier has the same performance as
that of using the original images.

3.3.2 Key condition 2: p1 6= p2 6= ... 6= pN
The second key choice is to use a different key for

each client, namely p1 6= p2 6= ... 6= pN . In this case,
the three properties are satisfied only among images
with a common key. This key condition allows us to
enhance the robustness of security against various at-
tacks as discussed later.

Under this key condition 2, we can consider two
type spoofing attacks. Fist one is the case that secred
keys p1 6= p2 6= ... 6= pN leak out and an attacker
use them. The attacker can try to authorize the sys-
tem with the leaked key. And another is case that a
original images of some client leak out. In this case,
the attacker can authorize with the original images by
transformed by some key which is created by the at-
tacker as discribed in our experiments.

4. Experimental Results

The propose scheme was applied to facial recognition
experiments that were carried out as a dual problem.
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(a) person1 (b) person2

Fig. 2: Examples of Extended Yale Face Database B

(a) image (b) protected

Fig. 3: An example of protection

4.1 Data Set

We used the Extended Yale Face Database B [26],
which consists of 38 × 64 = 2432 frontal facial images
with 192 × 168-pixels for N = 38 people like Fig. 2.
It is assumed that there were clients (users), a cloud
server, and an attaker (a heinous third party) in this
paper. 36 people were used as clients and 64 images for
each person were divided into half randomly for training
data samples and queries. 1 person was used as an at-
tacker from the database and 32 images of the attacker
were used as queries. We used random permutation
matrices as an example of unitary matrices to produce
protected images, although there are other transforma-
tions such as the Gram-Schmidt-based method. It is
known that random permutation matrices have an ad-
vantage in terms of less computational complexity com-
pared with the Gram-Schmidt-based method [25]. Any
unitary transformations with randomness are applica-
ble to the proposed scheme. Besides, the RBF kernel
and linear kernel were used, where they belong to ker-
nel class 1 and class 2, respectively. The protection was
applied to images with 1216 dimensions generated by
the down-sampling method [23]. The down-sampling
method divides an image into non-overlapped blocks
and then calculates the mean value in each block. Fig-
ure 3 shows the examples of an original image and the
protected one. Here, the protected image was created
by a random permutation matrix which consists of 0
and 1.

4.2 Results and Discussion

In facial recognition with SVM classifiers, one classifier
is created for each enrollee. The classifier outputs a
predicted class label and a classification score for each
query image Îq, where Îq is a protected image generated
from the image of a query Iq. The classification score
is the distance from a query to the boundary range.

The relation between the classification score Sq and a
threshold τ for a positive label of Iq is given as

if Sq ≥ τ then accept; else reject. (14)

In the experiment, the false reject rate(FRR), false ac-
cept rate(FAR), and equal error rate(EER) at which
FAR is equal to FRR, were used to evaluate the per-
formance. As described in 4.1, face images of 37 people
including 1 attacker were prepared and there were 64
images for each person. 36 × 32 = 1152 images of 36
people were used for training, and other 1152 images of
36 people and 32 images of the attacker were used as
query ones for authentication respectively, under vari-
ous key conditions.

4.2.1 p1 = p2 = ... = pN
Figure 4 shows results in the case of using key con-

dition 1. The results demonstrate that SVM classifiers
with protected images (protected in Fig. 4) performed
the same as SVM classifiers with the original images
(not protected in Fig. 4).

In the experiment, when 32 images of person 1
were used as query ones, the FRR value of person 1,
FRR1, under a τ value was calculated as follows. The
number of images r1, which were rejected as another
person from Eq.(14), was calculated, and then the rate
of the rejected images was calculated as FRR1 = r1/32.
Finally, the average of FRRi values over 36 people was
obtained as FRR =

∑36
i=1(FRRi/36).

The FAR value of person 1, FAR1, under a τ value
was calculated as follows. When 35×32 images without
images of person 1 were used as query ones, the num-
ber of images s1, which were accepted as person 1 from
Eq.(14), was calculated, and then the rate of the ac-
cepted images was calculated as FAR1 = s1/(35× 32).
Finally, the average of FARi values over 36 people was
obtained as FAR =

∑36
i=1(FARi/36). From the re-

sults, it is confirmed that the proposed scheme gives no
effect to the performance of SVM classifiers under key
condition 1.

4.2.2 p1 6= p2 6= ... 6= pN
Figure 5 shows results in the case of using key con-

dition 2. In this condition, it is expected that a query
will be authenticated only when it meets two require-
ments, i.e. the same key and the same person, although
only the same person is required under key condition1.
Therefore, the performances in Fig. 5 were slightly dif-
ferent from those in Fig. 4, so the FAR performances
for key condition 2 were better due to the strict require-
ments.

4.2.3 Unauthorized outflow

Next, it is assumed that a key or an image leaks
from a client. An attacker (a heinous third party) may
be able to spoofs user i with a leaked key or leaked im-
ages of person i. If an private image leaks, the visual
information can not be protected, but the third party’s
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spoofing attack may be able to be protected by using
encrypted images. In this experiment, we evaluated
FAR performances when a key or images leaked out
and an attacker spoofed person 1 to 36 with the leaked
key or the leaked images. When a key leaked, the at-
tacker spoofed a user with the leaked key and images
of the attcker. In contrast, when images leaked, the at-
tacker spoofs a user with the leaked images and a key
prepared by the attacker. Protected images to spoof a
user were generated by the leaked images and the key.
When 32 images prepared by the attacker were used as
query ones, the FAR value of user 1 was calculated as
follows. The number of images si, which were accepted
as person 1 from Eq.(14) was calculated, and then the
rate of the false accepted images was calculated as
FAR1 = s1/32. Finally, the average of FARi values

over 36 users was obtained as FAR =
∑36

i=1(FARi/36).

Figure 6 shows the FAR performance in the case
that a key pi leaked out. In this situation, the at-
tacker could use the key pi without any authoriza-
tion as spoofing attacks. ”FAR protected (key leaked,
p1 = p2 = ... = pN )” indicates FAR values when
clients used a same key and the key leaked out. ”FAR
protected (key leaked, p1 6= p2 6= ... 6= pN )” indi-
cates FAR values when each client used a different key
and the key leaked out. ”FAR protected (key leaked,
p1 6= p2 6= ... 6= pN )” was better than ”FAR protected
(key leaked, p1 = p2 = ... = pN )”. Therefore, it is
confirmed that the security against the spoof with the
leaked key is enhanced, if we can use key condition 2.

Figure 7 is the FAR performance in the case that
images of person i leaked out. ”FAR protected (image
leaked, p1 = p2 = ... = pN )” indicates FAR values
when clients used a same key and images of person i
leaked out. ”FAR protected (image leaked, p1 6= p2 6=
... 6= pN )” indicates FAR values when each client used
a different key and the images of person i leaked out.
As well as Fig. 6, FAR values under the use of different
keys were lower than FAR ones under the same key.

From these results, FAR values under the use of
different keys are improved not only when authentica-
tion is carried out by an enrolled user, but also when
an attacker spoofs users using a leaked key or a leaked
image. Therefore, the use of key condition 2 enhances
the robustness of the security against spoofing attacks.

5. conclusion

In this paper, we proposed a privacy-preserving SVM
computing scheme with protected images. It was shown
that images protected by a unitary transform has some
useful properties, and the properties allow us to se-
curely compute SVM algorithms without any degrada-
tion of the performances. Besides, two key conditions
were considered to enhance the robustness of the secu-
rity against various attacks. Some face-based authen-
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Fig. 4: FAR and FRR (p1 = p2 = ... = pN )

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F
A

R
,F

R
R

FAR protected

FRR protected

EER: 0.0063

Fig. 5: FAR and FRR (RBF kernel, p1 6= p2 6= ... 6= pN )

tication experiments using SVM classifiers were also
demonstrated to experimentally confirm the effective-
ness of the proposed scheme.
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