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SUMMARY This paper proposes a novel multi-exposure image fusion
(MEF) scheme for single-shot high dynamic range imaging with spatially
varying exposures (SVE). Single-shot imaging with SVE enables us not
only to produce images without color saturation regions from a single-shot
image, but also to avoid ghost artifacts in the producing ones. However, the
number of exposures is generally limited to two, and moreover it is difficult
to decide the optimum exposure values before the photographing. In the
proposed scheme, a scene segmentation method is applied to input multi-
exposure images, and then the luminance of the input images is adjusted
according to both of the number of scenes and the relationship between ex-
posure values and pixel values. The proposed method with the luminance
adjustment allows us to improve the above two issues. In this paper, we
focus on dual-ISO imaging as one of single-shot imaging. In an experi-
ment, the proposed scheme is demonstrated to be effective for single-shot
high dynamic range imaging with SVE, compared with conventional MEF
schemes with exposure compensation.
key words: high dynamic range imaging, multi-exposure image fusion,
exposure compensation, spatially varying exposures

1. Introduction

The low dynamic range (LDR) imaging sensors used inmod-
ern digital cameras cannot capture thewide dynamic range of
a real scene. The limitation causes blocked up shadows and
blown out highlights in images taken by digital cameras. In
addition, those images often have low contrast. For this rea-
son, a lot of high dynamic range (HDR) imaging techniques
have so far been reported.

The most common approach for HDR imaging is multi-
exposure image fusion (MEF). By using the approach, im-
ages covering the HDR of real scenes are generated by fusing
a set of differently exposed images called as multi-exposure
images. To produce high-quality fused images, three ormore
multi-exposure images are generally utilized as inputs for
multi-exposure fusion. However, MEF often causes ghost
like artifacts in fused images. This is because the move-
ment of cameras and subjects makes it difficult to capture
suitable multi-exposure images. While there are various ro-
bust fusion methods against ghost like artifacts [1]–[4], the
performance is still limited.

For capturing images covering the HDR without the
issue of ghost like artifacts, camera devices having a wide
dynamic image sensor [5] or spatially varying exposures
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(SVE) have been studied. Although the former devices are
very expensive and are not widespread yet, the latter ones can
be applied to commonly used digital cameras. In the SVE-
based imaging, an image is captured with a single shutter by
varying exposures for each pixel on an imaging sensor, and
multiple sub-images are obtained by separating the image
for each exposure. Varying exposures is done by spatially
changing shutter speeds or ISO speeds. The dual-ISO imag-
ing is one of the SVE-based imaging methods, in which
varying the ISO speeds alternates every two lines in a single
raw Bayer image [6]–[8]. In [9]–[11], the exposure time
alternates row-wise varying exposures in a single raw Bayer
image with two exposure times. In Quad Bayer pixel struc-
ture, integration can be divided into long-time integration
and short-time integration for every two pixels in the Quad
array [12]. However, in these methods, there is a trade-off
between the number of exposures and the resolution of cap-
tured sub-images. Hence, the number of sub-images, which
is generally two, is less than that of images used for conven-
tional MEF methods. For this reason, the scene information
cannot be sufficiently expressed in resulting images.

Because of such a situation, we propose a new image
fusion method for single-shot imaging with SVE. The pro-
posed method generates more multi-exposure images from
two images captured by SVE, and fuse them into a single
high-quality image. To generate those images, a new scene
segmentation method is applied to input multi-exposure im-
ages. After that, the exposure compensation for input images
is automatically performed so that generated multi-exposure
images clearly show all regions in a scene [13]–[16]. Gen-
erated multi-exposure images can be applied to any MEF
methods.

We evaluate the effectiveness of the proposed method
in terms of the quality of generated images by two simula-
tions. In the simulations, the proposed method is compared
with conventional MEF methods in terms of objective qual-
ity metrics: the tone mapped image quality index (TMQI)
[17], MEF structural similarity (MEF-SSIM) [18], statistical
naturalness, and discrete entropy. Experimental results show
that the proposed method can produce high-quality images
compared with conventional fusion methods for single-shot
high dynamic range imaging with SVE.

2. Preparation

Here we summarize dual-ISO imaging and a conventional
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Fig. 1: Raw Bayer image sensed with dual-ISO sensor

fusion scheme for the imaging.

2.1 Dual-ISO imaging

Sony Corp. provides an imaging sensor product which can
take SVE images with the Quad Bayer array [12]. Canon
Inc. also provides some cameras which can capture SVE
images by changing the ISO speed of the image sensor line
by line by using firmware, called Magic Lantern [6]. SVE
images are generally expressed as a row image format. Here,
we focus on dual-ISO imaging as Canon’s one.

A raw Bayer image sensed with a dual-ISO sensor is
illustrated in Fig.1, where the ISO speed alternates every two
lines in the Bayer image [6]. By using the dual-ISO sensor,
raw images with two exposures are produced. The Bayer
image captured with two ISO speeds are fused as shown in
Fig.2. Each fusion step in Fig.2 is briefly explained as below.

A Separation and interpolation

A raw image X with a size of M × N is first divided into
two raw images with the size of M/2 × N , according to the
difference of ISO speed (See Fig.3).

Next, interpolation processing is applied to each raw
image for producing two raw images with the size of M × N
: Xlow and Xhigh .

B Demosaicing

To obtain two RGB images Ylow , Yhigh , an image demo-
saicing algorithm is applied to two raw images Xlow,Xhigh .

C Image fusion

A fused image Yout is produced as

Yout = F (Ylow,Yhigh), (1)

where F (·) indicates a fusion to fuse two images into a single
image.

In conventional single-shot imaging, the number of ex-
posures is generally limited to two, and moreover it is diffi-
cult to decide the optimum exposure values before the pho-
tographing as described above. We aim to improve the above
two issues.

3. Proposed method

In order to improve the two issues that the conventional
single-shot imaging has, we propose a novel image fusion
method for the single-shot imaging. The outline of the pro-
posedmethod is shown in Fig.4, where themain contribution
of this work is in scene-segmentation based exposure com-
petition. The exposure competition consists of the following
five steps (See Fig.5).

A Local contrast enhancement

Since the number of exposures is generally limited to two, X
cannot always represent a scene clearly, unlike general multi-
exposure images. A local contrast enhancement algorithm is
used to enhance detailed information in X. In this paper, the
local contrast enhancement using the dodging and burning
algorithm [19] is performed as

L ′k(i, j) =
L2
k
(i, j)

Lak(i, j), k ∈ {low, high}, (2)

where Lk(i, j) is the luminance value ofXk, k ∈ {low, high},
at the place (i, j), and Lak(i, j) is the local average of lumi-
nance Lk(i, j) around pixel (i, j). Here, a bilateral filter is
performed to obtain Lak(i, j) as in [19]. In Fig.6(a), im-
ages with the local enhancement are compared with images
without any local enhancement. In contrast, Fig.6(b) shows
images with the local enhancement.

The luminance Lk = {Lk(i, j)} at all pixels is re-
quired to calculate eq.(2), but a pixel value of a raw image
Xk, Xk(i, j), has only a red, green or blue value. In this paper,
in order to obtain luminance Lk from Xk , Lk(i, j) is calcu-
lated by using Xk(i, j) and its eight surrounding pixels as
shown in Fig.7. When Xk(i, j) is a red value as in Fig.7(a),
the luminance Lk(i, j) is calculated, as

Lk(i, j) = 0.27XR,k(i, j) + 0.67XG,k(i, j) + 0.06XB,k(i, j), (3)

where

XR,k(i, j) = Xk(i, j)

XG,k(i, j) = 1
4

∑
x=±1
(Xk(i + x, j) + Xk(i, j + x))

XB,k(i, j) = 1
4

∑
x=±1, y=±1

Xk(i + x, j + y).

(4)

When Xk(i, j) is a blue value as in Fig.7(d), the luminance
Lk(i, j) is calculated, as

XR,k(i, j) = 1
4

∑
x=±1, y=±1

Xk(i + x, j + y)

XG,k(i, j) = 1
4

∑
x=±1
(Xk(i + x, j) + Xk(i, j + x))

XB,k(i, j) = Xk(i, j).

(5)
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Fig. 2: Conventional method for dual-ISO imaging
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Fig. 3: Separating and Interpolation

Similarly, when Xk(i, j) is a green value as in Fig.7(b) or 7(c),
the luminance Lk(i, j) is calculated the same way, respective.
Eqs. (4) and (5) are a simple demosaicing algorithm. Other
demosaicing ones can be applied to Xlow and Xhigh .

B Scene segmentation

The goal of the proposed segmentation is to separate images
into S areas R1, . . . ,RS ⊂ R, where each of them has a
specific brightness range of the image and satisfies R1 ∪
R2 ∪ · · · ∪ RS = R. These results are used for exposure
compensation.

The proposed segmentationmethod differs from typical
segmentation ones in two ways.

• Drawing no attention to the structure of images, e.g.,
edges.

• Allowing Rs to include spatially non-contiguous re-
gions.

For the segmentation, a Gaussian mixture distribution is
utilized to model the luminance distribution of the input
images in this paper. After that, pixels are classified by
using a clustering algorithm based on a Gaussian mixture
model (GMM).

To obtain a model considering the luminance values
L′
high

and L′
low

, we regard luminance values at a pixel (i, j)
as a 2-dimensional vector l(i, j) = {L ′

low
(i, j), L ′

high
(i, j)}T,

whereT denotes the transpose of a vector. By using a GMM,
the distribution of l(i, j) is given as

p (l(i, j)) =
D∑
d=1

πdG
(
l(i, j)|µd,Σd

)
, (6)

where D indicates the number of mixture components, πd

is the dth mixing coefficient, and G
(
l(i, j)|µd,Σd

)
is a 2-

dimensional Gaussian distribution with mean µd and vari-
ance covariance matrix Σd .

To fit the GMM into given l(i, j), the variational
Bayesian algorithm [20] is utilized. Compared with the
traditional maximum likelihood approach, one of the ad-
vantages is that the variational Bayesian approach can avoid
overfitting even when we choose a large D. For this reason,
unnecessary mixture components are automatically removed
by using the approach together with a large D. D = 10 is
used in this paper, as the maximum of the partition number
S.

Here, let z be a D-dimensional binary random variable
having a 1-of-D representation in which a particular element
zd is equal to 1 and all other elements are equal to 0. The
marginal distribution over z is specified in terms of a mixing
coefficient πd , such that

p(zd = 1) = πd . (7)

For p(zd = 1) to be a valid probability, {πd} must satisfy

0 ≤ πd ≤ 1 (8)

together with
D∑
d=1

πd = 1. (9)

A cluster for an observation l(i, j) is determined by the
responsibility γ (zd |l(i, j)) which is given as a conditional
probability:

γ (zd |l(i, j)) = p(zd = 1|l(i, j))

=
πdG(l(i, j)|µd, Σd)∑D
j=1 πjG(l(i, j)|µ j, Σj)

.
(10)

When a pixel (i, j) ∈ R is given and s satisfies

s = argmax
d

γ(zd |l(i, j)), (11)

the pixel (i, j) is assigned to a subset Rs of R. Figure 6
shows an example of scene segmentation. In this example,
the image was segmented into S = 5 parts.

C Exposure compensation

2S multi-exposure images are created from two images,
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Fig. 4: Outline of proposed method
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Fig. 5: Details of scene segmentation-based exposure compensation

(a) Images without local contrast enhancement
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Fig. 6: Example of scene segmentation

L′
low

,L′
high

, by using the result of scene segmentation, .
The scaled luminance L̂s,k which clearly represents an area
Rs is obtained by

L̂s,k(i, j) = αs,kL ′k(i, j), (12)

where the scale factor αs,k > 0 indicates the degree of ad-
justment for the sth scaled luminance L̂s,k . In the following,
how to determine parameter αs,k is discussed.
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Fig. 7: Block for luminance calculation

GivenRs as a subset of R, the approximate brightness of
an area Rs is calculated as the geometric mean of luminance
values on Rs . We thus estimate an adjusted multi-exposure
image L̂s,k(i, j), so that the geometric mean of its luminance
equals to middle-gray of the displayed image, or 0.18 on a
scale from zero to one as in [21].

The geometric mean g(L ′
k
|Rs) of luminance L ′

k
on pixel

set Rs is calculated using

g(L ′k |Rs) = exp ©­« 1
|Rs |

∑
(i, j)∈Rs

ln(max(L ′k(i, j), ε))ª®¬ ,
(13)

where ε is set to a small value to avoid singularities at
L ′
k
(i, j) = 0. From eq.(13), parameter αs,k is calculated

as

αs,k =
0.18

g(L ′
k
|Rs)

. (14)

By using the exposure compensation, exposure values are
automatically adjusted, even when the values have no ap-
proximate brightness.
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D Combining adjusted luminance and input images

A set {L̂s,k} of luminance adjusted by the scene
segmentation-based exposure compensation is combined
with an input image {Xk} to obtain adjusted images {X̂s,k}.

Therefore, the adjusted pixel value X̂s,k(i, j) is com-
puted by

X̂s,k(i, j) = L̂s,k(i, j)
Lk(i, j) Xk(i, j),

(s = 1, 2, . . . , S, k ∈ {low, high}).
(15)

As a result, 2S raw images {X̂s,k} are prepared, according
to eq.(15).

E Demosaicing

Since {X̂s,k} are Raw images, a demosaicing algorithm is
carried out to obtain 2S RGB images {Ys,k}. In this paper,
we apply an image demosaicing algorithm [22] to {X̂s,k}. In
the proposedmethod, other demosaicing ones can be applied
to not only Xlow and Xhigh but also {X̂s,k}. Demosaicing
algorithms give some influence to the quality of generated
images such as the presence of artifacts.

F Image fusion

A final image Yout is produced by using 2S RGB images, as

Yout = F (Y1,low, . . . ,YS,low,Y1,high, . . . ,YS,high),
(16)

where F (·) indicates a function to fuse multi-exposure im-
ages into a single image. Any existing MEF methods are
applicable for the proposed scheme. The fusion method
proposed by Mertens et al. [23] is used in this paper as F (·).

4. Simulation

In experiments, the proposed scheme is demonstrated to be
effective for single-shot HDR imaging with SVE. The per-
formance of the proposed scheme was compared with con-
ventional MEF methods [6], [24].

4.1 Simulation with HDR images

A Dataset

In this experiment, input SVE images X were generated by
using HDR images YHDR, according to [21]. The procedure
for generating X consists of three steps. First, an LDR image
Y0EV with 0 EV was generated from an HDR image, so that
the geometric mean of its luminance equals 0.18, as in [21].
Next, according to the following equation, exposure values
of every two lines in Y0EV were changed into k EV and −k
EV, respectively

Y (i, j) =
{

2kY0EV(i, j) i = 4m − 3, 4m − 2
2−kY0EV(i, j) otherwise

,

m = 1, 2, . . . , M/4, j = 1, 2, . . . , N .

(17)

Finally, raw Bayer image X was obtained by removing two of
RGB components at each pixel in Y (i, j). To generate X, we
used 28 HDR images which were selected from a database
[25].

From each HDR image, four SVE image sets with ±1
EV, ±2 EV, ±3 EV, or ±4 EV were generated. In MEF, it is
not known yet how the optimal EV is decided. Therefore, in
MEF, this issue is overcome by capturing many EV images.
However, for SVE images, many EV images can not be
captured. The proposed method aims to improve this issue
under the limited number of exposure values.

B Objective metrics

The quality of images produced by each method was eval-
uated in two objective metrics; TMQI [17] and MEF-SSIM
[18]. TMQI measures the quality of a tone mapped im-
age from an HDR image and it consists of structural fidelity
and statistical naturalness. To calculate structural fidelity, an
HDR image is used as a reference. In contrast, statistical nat-
uralness does not need any references. MEF-SSIM is based
on a multi-scale SSIM framework and a patch consistency
measure. It keeps a good balance between local structure
preservation and global luminance consistency. For each
score, a larger value means higher quality.

C Result

Tables 1 and 2 denote the average scores of 28 images. From
Table 1, it is confirmed that the proposed method had higher
TMQI scores than conventional methods. From Table.2,
in the case of ±3 EV and ±4 EV, the proposed method
had higher scores than the conventional methods, although
Yang et al. had higher MEF-SSIM scores than the proposed
method in the case of ±1 EV and ±2 EV. In addition, the
difference between with the local enhancement and without
any local enhancement is demonstrated in the tables. In par-
ticular, the image quality was improved by performing the
local contrast enhancement in terms of MEF-SSIM. In addi-
tion, we confirmed the influence of demosaicing algorithms.
For "proposed (with Eqs. (4) and (5))" in the tables, Eqs.
(4) and (5) were applied to not only Xlow and Xhigh but also
{X̂s,k}. The results were lower than other proposed ones
with the demosaicing algorithm [22], although the results
were higher than those of conventional MEF methods.

Figure 8 shows examples of output images Yout pro-
duced by each method. The proposed method could express
both bright and dark areas for all exposure values. In con-
trast, Yang et al. could not preserve the relative luminance,
especially when the ratio of the exposure value is high like
for ±3 EV or ±4 EV. The proposed method could preserve
the relative luminance even in such conditions.
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Table 1: Average scores of TMQI
±1EV ±2EV ±3EV ±4EV

No correction 0.2061 0.2047 0.2012 0.1981
Alex [6] 0.2051 0.2048 0.2033 0.2005
Yang et al. [24] 0.2069 0.2034 0.1960 0.1882
Proposed
(without local enhancement) 0.2072 0.2065 0.2054 0.2044
Proposed
(with local enhancement) 0.2073 0.2066 0.2055 0.2045
Proposed
(with Eqs. (4) and (5)) 0.2073 0.2065 0.2054 0.2043

Table 2: Average scores of MEF-SSIM
±1EV ±2EV ±3EV ±4EV

No correction 0.6346 0.6134 0.5698 0.5099
Alex [6] 0.3251 0.3250 0.3250 0.3248
Yang et al. [24] 0.6805 0.6772 0.6321 0.5848
Proposed
(without local enhancement) 0.6602 0.6293 0.6041 0.5924
Proposed
(with local enhancement) 0.6666 0.6633 0.6564 0.6658
Proposed
(with Eqs. (4) and (5)) 0.6652 0.6542 0.6477 0.6552

Figures 9 and 10 show the box-plot of TMQI andMEF-
SSIM scores for 28×4 = 112 fused images. From the results,
the proposed method is demonstrated not only to have high
scores but also to have narrow range. The results mean the
proposed method almost always provided good results under
various conditions.

4.2 Simulation with photographing

A Dataset

Photographs taken by Canon EOS 5D Mark II camera were
directly used as input imagesX. We also usedMagic Lantern
[26], which is a firmware to perform dual-ISO sensing. The
shutter speed and the aperture were set by auto exposure of
the camera at ISO 800. This condition means that the expo-
sure value is 0 EV at ISO 800. For the dual-ISO imaging,
ISO 200 and ISO 3200 correspond to -2 EV and +2 EV
respectively. We used nine dual-ISO sensing images.

B Objective metrics

In this experiment, there are no ideal images to be refer-
ence images. Thus, we used discrete entropy and statistical
naturalness as objective quality metrics, which do not re-
quire any reference images. Discrete entropy represents the
amount of information in an image. For each score, a larger
value means higher quality.

C Result

Tables 3 and 4 denote the average scores of nine images.
From Table 3, the proposed method had a high score for all
exposure values. From Table 4, in the case of ±1 EV and

Table 3: Average scores of statistical naturalness
±1EV ±2EV ±3EV

No correction 0.0229 0.0303 0.0385
Alex [6] 0.0082 0.0078 0.0075
Yang et al. [24] 0.0794 0.1336 0.1466
Proposed
(without local enhancement) 0.1722 0.1469 0.1458
Proposed
(with local enhancement) 0.1885 0.1579 0.1585

Table 4: Average scores of discrete entropy
±1EV ±2EV ±3EV

No correction 5.0301 5.2525 5.5203
Alex [6] 4.1619 4.1092 4.1349
Yang et al. [24] 5.5740 6.1244 6.5076
Proposed
(without local enhancement) 6.3579 6.1785 6.0886
Proposed
(with local enhancement) 6.3610 6.1886 6.0997

±2 EV, the proposed method had higher scores than con-
ventional methods, although Yang et al. had higher discrete
entropy scores than the proposed method in the case of ±3
EV. Figure 11 shows examples of output images Yout pro-
duced by each method. Compared with the conventional
methods, the proposed imaging successfully represent infor-
mation of dark area for all exposure values. In contrasts,
Yang’s method does not represent information of dark area.

Figures 12 and 13 show the box-plot of statistical nat-
uralness and discrete entropy for 9 × 3 = 27 fused images.
The performance of the proposed method is demonstrated to
offer high quality images under various conditions as well as
in Figs.9 and 10.

5. Conclusion

In this paper, we proposed a new image fusion method for
single-shot imaging with SVE. In the single-shot imaging
with SVE, the number of exposures is generally limited to
two. To improve the limitation, the exposure compensation
for input images is automatically performed so that generated
multi-exposure images clearly show all regions in a scene. In
the proposed method, generated multi-exposure images can
be applied to any MEF methods. We evaluated the effec-
tiveness of the proposed method in terms of four objective
quality metrics: TMQI, MEF-SSIM, statistical naturalness,
and discrete entropy. Experimental results showed that the
proposedmethod can produce high-quality images compared
with conventional fusion methods.
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Fig. 8: Examples of fused images Yout (S = 6)
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