
966
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.8 AUGUST 2019

PAPER
A Heuristic Algorithm for Solving the Aircraft Landing Scheduling
Problem with a Landing Sequence Division

Wen SHI†a), Member, Shan JIANG††, Xuan LIANG†, and Na ZHOU†, Nonmembers

SUMMARY Aircraft landing scheduling (ALS) is one of the most im-
portant challenges in air traffic management. The target of ALS is to decide
a landing scheduling sequence and calculate a landing time for each aircraft
in terminal areas. These landing times are within time windows, and safety
separation distances between aircraft must be kept. ALS is a complex prob-
lem, especially with a large number of aircraft. In this study, we propose a
novel heuristic called CGIC to solve ALS problems. The CGIC consists of
four components: a chunking rule based on costs, a landing subsequence
generation rule, a chunk improvement heuristic, and a connection rule. In
this algorithm, we reduce the complexity of the ALS problem by breaking
it down into two or more subproblems with less aircraft. First, a feasi-
ble landing sequence is generated and divided into several subsequences
as chunks by a chunking rule based on aircraft cost. Second, each chunk
is regenerated by a constructive heuristic, and a perturbative heuristic is
applied to improve the chunks. Finally, all chunks constitute a feasible
landing sequence through a connection rule, and the landing time of each
aircraft is calculated on the basis of this sequence. Simulations demonstrate
that (a) the chunking rule based on cost outperforms other chunking rules
based on time or weight for ALS in static instances, which have a large
number of aircraft; (b) the proposed CGIC can solve the ALS problem
up to 500 aircraft optimally; (c) in dynamic instances, CGIC can obtain
high-quality solutions, and the computation time of CGIC is low enough to
enable real-time execution.
key words: air traffic management, aircraft landing scheduling, heuristic

1. Introduction

Aircraft fly into a terminal area from different routes to land
on the runways of the airport. A scheduled landing time is
allocated to each aircraft by a controller because aircraft may
be unable to land at the planned arrival time. The scheduled
landing time is in the time window, which is between the
earliest and the latest landing time of the aircraft. Scheduled
landing time separations between aircraft must be no less
than safety standards because of wake turbulence and other
factors. Therefore, the scheduled landing time of an aircraft
may not be exactly equal to the target landing time. In air-
craft landing scheduling (ALS) problem, the objective is to
minimize the total deviation of the scheduled landing time
from the target landing time for each aircraft, whereas the
scheduled landing time is in time window, and the separation
constraints are satisfied. Obviously, the more the aircraft in-
terfere with one another, the more complex the ALS problem
will be.

Manuscript received November 20, 2018.
Manuscript revised March 13, 2019.
†The authors are with the Tianjin University of Commerce,

China.
††The author is with the Tianjin Medical University, China.
a) E-mail: shiwen@tjcu.edu.cn
DOI: 10.1587/transfun.E102.A.966

Numerous attempts have been made to solve an ALS
problem. These approaches can be classified into two cat-
egories: exact algorithm and heuristic algorithm. Beasley
et al. [1] presented a mixed-integer zero-one formulation of
ALS problems and performed a linear programming-based
tree search to solve them. Faye et al. [2] proposed a method
based on the approximation of a separation time matrix and
on time discretization to solve ALS problems.

Many heuristics are proposed to solve ALS problems.
Sabar et al. [3] proposed an iterated local search algorithm,
which is a single-solution-based searchmethodology, tomin-
imize the total penalty of landing deviations from the tar-
get landing time. Beasley et al. [4] developed a population
heuristic to schedule aircraft landings at London Heathrow.
In 2006, two heuristic techniques, namely, scatter search and
bionomic algorithm, were presented for ALS problems [5].
The two population heuristic algorithms were applied to test
instances involving up to 500 aircraft.

Some studies have introduced a heuristic by using a
local search to obtain a scheduled landing sequence, and
an exact algorithm to calculate the landing time of each
aircraft based on this landing sequence. Ernst et al. [6] de-
veloped a heuristic approach and a simplex algorithm to
calculate the upper and lower bounds of a branch-and-bound
scheme to evaluate solutions. Hu et al. [7] designed a ge-
netic algorithm based on a binary representation of arriving
sequences. Yu et al. [8] proposed a cellular automata opti-
mization(CAO), which consists of three components: a cel-
lular automata model to generate a landing sequence, a local
search to improve the landing sequence, and a deterministic
operator to calculate the optimal landing times based on the
landing sequence. Salehipour et al. [9] designed a hybrid
meta-heuristic applying a simulated annealing framework.
The framework includes a problem-dependent construction
heuristic and a variable neighborhood descentmeta-heuristic
with three neighborhood structures as an improvement algo-
rithm. In 2014, we proposed a dynamic hyper-heuristic
algorithm for the ALS problem [10]. A scatter search is
adopted as a high level heuristic, which builds a chain of
priority rules as low level heuristics to generate a landing
sequence.

The longer the landing sequence generated by a heuris-
tic algorithm is, the larger the computation time of the exact
algorithm for calculating the landing time of each aircraft
will be. Therefore, the set of aircraft can be divided into
several subsets, called chunks. The landing time of each
aircraft in every chunk is calculated, and the computation

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

SHI et al.: A HEURISTIC ALGORITHM FOR SOLVING THE AIRCRAFT LANDING SCHEDULING PROBLEMWITH A LANDING SEQUENCE DIVISION
967

time is short enough even in dynamic ALS instances. Furini
et al. [11], [12] proposed three chunking rules to generate
chunks with a length constraint and found that different rules
iteratively applied to various sequences can obtain better re-
sults than those determined without chunking or those with
a single chunking rule.

In this study, we proposed a novel algorithm CGIC to
solve ALS problems. Our approach consists of four compo-
nents: a chunking rule based on costs (CRcost), a landing
subsequence generation rule (GR), a chunk improvement
heuristic (IH), and a connection rule(CN R). First, a land-
ing sequence generated by a non-optimization method First-
Come-First-Served (FCFS) is divided into several chunks
through the chunking rule. Chunking rules proposed in [12]
are based on time or weight and with constraints of length
of chunks. CRcost is based on cost of each aircraft and
without any constraints of length. Therefore, CRcost aims
to place most aircraft that interfere with one another in the
same chunk. Second, all aircraft in one chunk are resched-
uled by GR. GR is based on cost priority. The aircraft with a
larger cost is inserted into a new landing subsequence in the
chunk with a higher priority. Third, the generated landing
subsequence is improved using IH . In IH , the aircraft with
the highest cost in the subsequence is selected, and several
aircraft that land continuously before or after this aircraft
with the highest cost are resequenced randomly to decrease
the total cost of the subsequence. Finally, all of the subse-
quences in every chunk are combined into a complete final
landing sequence throughCN R and the landing time of each
aircraft is calculated by using an exact algorithm based on
the final landing sequence.

The remaining parts of this paper are organized as fol-
lows: Section 2 describes the problem statement. Section 3
provides the details of the proposed algorithm CGIC. Sec-
tion 4 reports the simulation results to evaluate the efficacy
of the CGIC. Section 5 concludes this paper and presents
recommendations for some future work.

2. Aircraft Scheduling Landing: Problem Definition

The ALS problem is divided into two types: static and dy-
namic. We formulate the static and dynamic ASL problems
as mixed integer linear problems. Thus, parameters and
variables are defined as follows:

Parameters:

• Fall : the set of all aircraft.
• Ff : the set of aircraft that are scheduled to land and
could not be rescheduled.

• Fs : the set of aircraft that are scheduled to land and
could be rescheduled during an update.

• Fa : the set of aircraft scheduled to land and Fa =

Ff ∪ Fs .
• T t

i : the target landing time of aircraft i.
• Ta

i : the appearance time of aircraft i.
• Te

i : the earliest landing time of aircraft i.
• T l

i : the latest landing time of aircraft i.

• Si j : the separation time between aircraft i and j when
aircraft i lands before j.

• c−i : penalty cost per unit of time for landing before
target time of aircraft i.

• c+i : penalty cost per unit of time for landing after target
time of aircraft i.

• Tf : the freeze time in which a scheduled landing time
allocated for any aircraft within Tf of the current time
could not be rescheduled.

Variables:

• xi : the scheduled landing time of aircraft i.
• δi j : a Boolean variable; if aircraft i lands before j, it
takes 1.

• tcur : the current time.

2.1 Static Model

In a static model, all aircraft appear and can be scheduled.
Therefore, Fs = Fa = Fall . No aircraft is frozen to allocate
a scheduled landing time, that is, Ff = ∅. For each aircraft
in Fs , the scheduled landing time xi must be within the time
window:

Te
i ≤ xi ≤ T l

i (i ∈ Fs). (1)

The landing time of any two aircraft in Fs must meet the
safety standards:

(x j − xi) ≥ Si j − M ∗ δ ji (i ∈ Fs, j ∈ Fs, i , j). (2)

where M is a sufficiently large number used to ensure that
Eq. (2) is redundant in the case when aircraft j lands before
i (δ ji = 1). The objective function minimizes the total cost
of landing deviation from the target landing time of each
aircraft in Fs .

Min z =
∑
i∈Fs

zi zi =
{

c−i (T t
i − xi) if xi ≤ T t

i
c+i (xi − T t

i) if xi > T t
i .

(3)

2.2 Dynamic Model

In a dynamic ALS problem, all aircraft Fall consists of air-
craft in Fa and aircraft that have no appearance. Aircraft that
have no appearance do not affect scheduling aircraft in Fa.
Fa can be divided into two parts: Ff and Fs . In Ff , aircraft
are too close to land at the current time and landing time
cannot be further changed. Thus, the dynamic ALS model
contains not only inequality (1)(2) but also other constraints,
such as

Ff = {i |xi − tcur < Tf }. (4)

In every iteration, the landing time of aircraft in Fs is calcu-
lated. When an aircraft is frozen, it no longer appears in Fs .
Thus,

968
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.8 AUGUST 2019

Fs = Fa − Ff . (5)

All aircraft in Fs must land after the aircraft in Ff . The
scheduled landing time xi of aircraft i in Fs is larger than
any landing time x j of aircraft j, which is in Ff . Therefore,
the lower bound of the time window is as follows:

xi ≥ Max(Te
i , x j) (i ∈ Fs, j ∈ Ff). (6)

The separation time between an aircraft in Fs and an aircraft
in Ff must be satisfied:

(xi − xk) ≥ Ski (i ∈ Fs, k ∈ Ff). (7)

The objective function in the dynamic model is the same as
in the static model.

3. CGIC Algorithm

The CGIC algorithm proposed in this study contains four
main components: CRcost ,GR, IH , andCN R. First, FCFS
generates an initial landing sequence from Fs . Second,
the initial landing sequence is divided into several chunks
by CRcost . Third, aircraft are rescheduled in each chunk
through GR. Furthermore, the rescheduled chunks are im-
proved using the perturbative heuristic IH . Subsequently,
CN R connects all chunks and constructs the final landing
sequence. Finally, an exact method calculates the landing
time of all aircraft based on the final landing sequence. The
flowchart of the CGIC algorithm is shown in Fig. 1. Some
variables and parameters in the algorithm are defined as fol-
lows:

• seqini : the initial landing sequence.
• seqf in : the final landing sequence.
• seqt : the landing subsequence of chunk t.
• seq(p) : the pth aircraft in seq.
• xseq(p): the landing time of the pth aircraft in seq.
• cost(seq(p)): the cost of the pth aircraft in seq.
• cost(seq): the sum of the cost of each aircraft in seq.
• |seq |: the length of the landing sequence seq.
• F (p) : the pth aircraft in F.
• |F |: the number of aircraft in aircraft set F.
• Cini: the initial chunk set.
• Cimp: the improved chunk set.
• |C |: the number of chunks in chunk set C.

3.1 The Chunking Rule

The proposed CRcost procedure aims to collect some ad-
jacent aircraft in seqini into a chunk and does not affect
the landing time of the aircraft in other chunks as much
as possible. For example, some adjacent aircraft are se-
lected. The costs of the first and last aircraft are 0 and
the total cost of these aircraft without constraints from the
other aircraft in seqini is equal to the sum of the costs of
the same aircraft in the initial landing sequence. Then these
aircraft have less impact on the other aircraft because the

Fig. 1 Flow ofCGIC algorithm.

total cost is unchanged after these aircraft are selected out of
seqini . Therefore, in contrast to other chunking rules, such
as CRf ixed , CRtime, and CRweight proposed in [11], [12],
CRcost generates chunks based on the cost of aircraft with-
out any length constraints. CRcost measures the cost of each
aircraft in seqini and selects a subsequence seqpq . In this
subsequence, the costs of the first aircraft seq(p) and the
last aircraft seq(q) are 0. If cost(seqpq) is equal to the
sum of the costs of the same aircraft in seqini , the aircraft in
this sequence have less impact to the other aircraft in seqini .
Furthermore, the subsequence is taken as a new chunk into
the Cini . If the total cost of the subsequence is not equal
to the sum of the original cost of the same aircraft, more
aircraft are added to this subsequence until two conditions
are satisfied: the costs of the first and the last aircraft in the
subsequence are 0, and the total cost of this subsequence is
equal to the sum of the costs of the same aircraft in seqini .
Two adjacent chunks share the same aircraft. This aircraft

SHI et al.: A HEURISTIC ALGORITHM FOR SOLVING THE AIRCRAFT LANDING SCHEDULING PROBLEMWITH A LANDING SEQUENCE DIVISION
969

Algorithm 1: The Pseudo Code of CRcost

1 Set p = 0; q = p + 1; p, q are the index of aircraft in seqini ;
2 while p < q ≤ |Fs | do
3 if (cost (seqini (p)) = 0 | |p = 0)&cost (seqini (q)) = 0

then
4 Generate a subsequence seqpq , which contains

aircraft from the pth to the qth in seqini ;
5 Calculate a landing time of each aircraft in seqpq

without constraints from the other aircraft in seqini ;
6 if cost (seqpq) =

∑q
k=p

cost (seqini (k)) then
7 Construct the subsequence seqpq as a new chunk

and place it inCini ;
8 p = q ;
9 q = q + 1 ;

10 Continue ;
11 end
12 else
13 if ∃r, p ≤ r ≤ q & xseqpq (r) < xseqini (r)

then
14 Get the subsequence seqsp which is before

seqpq ;
15 Connect the two subsequences as a new

subsequence and set p = s ;
16 Continue ;
17 end
18 end
19 end
20 q = q + 1 ;
21 end

can be seen as a key node aircraft, and its cost is 0.

3.2 The Generation Rule

After all chunks are constructed from seqini , each chunk
in Cini is regenerated, that is to say, aircraft in one chunk
are rescheduled by GR. In GR, the aircraft with the largest
cost in the chunk is selected and tried to be inserted into a
new sequence. If this aircraft conflicts with other aircraft
in the new sequence based on its target landing time, the
aircraft with the largest cost tries to replace these conflicted
aircraft in the new sequence. If the cost of the new sequence
decreases after the replacement is completed, the conflicted
aircraft is removed from the new sequence and placed in
the unscheduled aircraft set. When all of the conflicted
aircraft are replaced, the aircraft with the largest cost can
be inserted into the new sequence with its target landing
time. Otherwise, the aircraft with the largest cost is inserted
into the new sequence at a scheduled landing time, and the
landing time of the other aircraft is unchanged.

3.3 The Improvement Heuristic

In IH , every chunk is improved to decrease its cost by dis-
ordering a subsequence before or after the aircraft with the
largest cost. If the aircraft lands after its target landing time,
the subsequence to be disordered contains some aircraft land-
ing before this aircraft and the aircraft with the largest cost.
Conversely, the subsequence contains the aircraft with the

Algorithm 2: The Pseudo Code of GR
1 for t=0 to |Cini | do
2 for p=0 to ��seqt

�� do
3 Calculate xseq t (p) and cost (seqt (p)) ;
4 end
5 Place all of the aircraft in seqt in a unscheduled set Fun ;
6 Construct an empty landing sequence seqnew as a new

chunk;
7 while Fun , ∅ do
8 Get aircraft j in Fun while the cost of j is maximum in

seqt ;
9 Find all of the aircraft in seqnew which have conflict

with j and place them in a set Fc ;
10 for q=0 to |Fc | do
11 Copy the seqnew as a new sequence seq′ ;
12 Replace the aircraft Fc (q) with aircraft j in seq′ ;
13 if cost (seq′) ≤ cost (seqnew) then
14 Put Fc (q) into Fun ;
15 Remove Fc (q) from Fc and seqnew ;
16 end
17 end
18 if Fc = ∅ then
19 Insert aircraft j into seqnew with the landing

time T t
j ;

20 end
21 else
22 Calculate a landing time with minimum cost for

aircraft j based on the landing time of the other
aircraft in seqnew ;

23 Insert aircraft j into seqnew with the calculated
landing time;

24 end
25 end
26 if cost (seqnew) ≤ cost (seqt) then
27 seqt = seqnew ;
28 end
29 end

largest cost and those landing after it when the aircraft with
the largest cost lands earlier than its target time. The length
of the subsequence is limited. After the subsequence is con-
structed, three aircraft are selected and swapped randomly.
If the cost of the disordered chunk is not smaller than the
original one, a new subsequence with a shorter length is
constructed until the length of the subsequence is 3.

3.4 The Connection Rule

CN R constructs seq f in by connecting all of the chunks. In
two adjacent chunks, if the last aircraft in the front chunk
and the first aircraft in the later chunk are the same key node
aircraft, one of the key node aircraft is removed, and the two
chunks are connected to a new chunk. If the two aircraft
are not the same, CN R connects two chunks and tries to
generate two temporary sequences. One is constructed by
removing the key node aircraft in the front chunk, and the
other is constructed by removing the key node aircraft in the
back chunk. The temporary sequence with an enhanced cost
is chosen as a new sequence.

970
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.8 AUGUST 2019

Algorithm 3: The Pseudo Code of IH
1 for t=0 to |Cini | do
2 Set a Boolean variable sequenceImproved = true, Ne is

the maximum length of the subsequence to be disordered ;
3 while sequenceImproved do
4 Get the aircraft seqt (p) which is with the largest cost ;
5 for n = Ne to 3 do
6 if xseq t (p) > T t

seq t (p) then
7 Get a subsequence seq(p−n+1)p which is

from the (p − n + 1)th to the pth aircraft in
seqt ;

8 end
9 else

10 Get a subsequence seqp (p+n−1) which is
from the pth to the (p + n − 1)th aircraft in
seqt ;

11 end
12 Choose three aircraft from the subsequence

randomly ;
13 Swap positions of the three aircraft randomly and

get a new sequence seq′t ;
14 if cost (seq′t) < cost (seqt) then
15 sequenceImproved = true ;
16 seqt = seq′t ;
17 break ;
18 end
19 else
20 sequenceImproved = false ;
21 n = n − 1 ;
22 end
23 end
24 end
25 end

4. Computational Experiments

4.1 Simulation Environment

Our computational tests use two types of instances. The
first includes static instances. In these instances, all aircraft
information is known whether or not it enters the termi-
nal area. Therefore, all aircraft are scheduled only once,
and the result is not changeable by time. The second com-
prises dynamic instances. The aircraft that appear in the
terminal area and not frozen are scheduled. The algorithm
updates the landing sequence and the landing time for each
aircraft in every time unit. All of the data of 13 instances
with different numbers of aircraft of OR-Library [13] can be
obtained at http://people.brunel.ac.uk/~mastjjb/
jeb/info.html. The ILOG’s CPLEX is used as the exact
method to calculate the landing time for each aircraft based
on the landing sequence. The computer runs on Intel Core
i7-6500U 2.50 GHz, 2.50 GHz, 8 GB RAM, and Microsoft
Windows 7.

4.2 Static Instances

First, we evaluate the performance of our proposed algo-
rithm CGIC. The best results over the 30 replications of

Algorithm 4: The Pseudo Code of CN R
1 Construct an empty landing sequence seq f in ;
2 Add seq0 into seq f in ;
3 for t = 1 to ���Cimp

��� do
4 if seqt−1 (��seqt−1�� − 1) = seqt (0) then
5 Remove seqt (0) from seqt ;
6 Add seqt to the end of seq f in ;
7 end
8 else
9 Construct a new sequence seq f ront = seq f in ;
10 Remove the key node aircraft from the seq f ront ;
11 Add seqt to the end of seq f ront ;
12 Construct a new sequence seqbehind = seq f in ;
13 Remove the key node from the seqt ;
14 Add seqt to the end of seqbehind ;
15 if cost (seq f ront) ≤ cost (seqbehind) then
16 seq f in = seq f ront ;
17 end
18 else
19 seq f in = seqbehind ;
20 end
21 end
22 end

Table 1 Best results of different approaches in static instances 1-9.
N FCFS CAO HHSS ILS CGIC

1 10 700 0.00 0.00 0.00 0.00
2 15 1500 1.33 1.33 1.33 1.33
3 20 1730 52.60 52.60 52.60 52.60
4 20 2520 0.00 0.00 0.00 0.00
5 20 5420 42.80 42.80 42.80 42.80
6 30 24442 0.00 0.00 0.00 0.00
7 44 1550 0.00 0.00 0.00 0.00
8 50 2480 21.17 21.37 21.37 21.37
9 100 7310 23.24 23.24 23.24 23.24

CGIC are compared with several previous approaches, in-
cluding FCFS, C AO [8], HHSS [10], and ILS [3], in static
instances. N is the number of aircraft in different instances.
The results of C AO, HHSS, ILS, and CGIC, in terms of
the percentage gap from the best results of FCFS are calcu-
lated as follows: (BRFCFS − BR)/BRFCFS ∗ 100%, where
BRFCFS is the best result of FCFS, and BR is the best result
of the other algorithms.

In Table 1, CGIC can obtain the same optimal results
as other algorithms in instances 1-9. In Fig. 2, the results of
CGIC are not the best in all of the algorithms in instances
10 and 11. However, CGIC obviously outperforms the other
algorithms in instances 12 and 13, which have a large number
of aircraft.

Figure 3 shows the average computation time over 30
replications ofCGIC with other algorithms. When the num-
ber of aircraft is small, the computation time of CGIC is
about 1 second except in instance 7. In instances 9-13, the
computation time increases as N enlarges. When the num-
ber of aircraft is 500 in instance 13, the average computation
time of CGIC is shorter than that of other algorithms.

Figure 4 shows the average computation time of the four

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

SHI et al.: A HEURISTIC ALGORITHM FOR SOLVING THE AIRCRAFT LANDING SCHEDULING PROBLEMWITH A LANDING SEQUENCE DIVISION
971

Fig. 2 Best results of different approaches in static instances 10-13.

components (CRcost , GR, IH , andCN R) ofCGIC. CRcost

andCN R are fast algorithms because their computation time
is short, especially in instances with a large number of air-
craft. As a perturbation heuristic, the computation time of
IH occupies most of the total time in most instances except
instance 7.

Figure 5 shows the comparison of three different chunk-
ing rules, namely,CRtime,CRweight , andCRcost . First, each
chunking rule generates an initial chunk set. Second, seqf in

is constructed by CN R. The landing time is calculated by
CPLEX based on seqf in. Finally, the percentage gaps from
the best results of FCFS are shown in instances 9-13, which
have a large number of aircraft. In most instances, CRcost

outperforms the two other chunking rules. In instance 11,
the result of CRcost is equal to that of CRtime.

Ne is the maximum length of the subsequence to be
disordered randomly, and it is considered an important pa-
rameter in IH . Figure 6 shows the average results generated
by CGIC with different Ne. These results are calculated in
terms of the percentage gap from the best results of FCFS:
(BRFCFS − AR)/BRFCFS ∗100%, where AR is the average
result generated by CGIC with different Ne. The experi-
mental results in Fig. 6 demonstrate that better results can
be generated when Ne is 6. If Ne is too small, IH , as a
perturbative heuristic, cannot easily escape local optima. A
large Ne indicates a long subsequence, which contains more
aircraft. Disordering only three aircraft has less impact on
the cost of the subsequence.

4.3 Dynamic Instances

We compare CGIC with different ∆t in 13 dynamic in-
stances. ∆t is the unit of time. The freeze time Tf is set
at 300 second. Table 2 shows the average results in instances
1-7 over the 30 replications of CGIC. The results show the
percentage gap from best results of FCFS. Different ∆t,
including 360, 480, and 600 seconds, are chosen. Table 2
shows that the results with different ∆t of instances 1-7 and
the results in static instances 1-7 are the same because the

Fig. 3 Computation time of different approaches (second).

number of aircraft in instances 1-7 is small, and CGIC with
different∆t can calculate the results as in the static instances.
Fig. 7 shows that the result with ∆t 600 seconds is the same
as that of static instance 8, and the results with ∆t 360 and
480 seconds are worse. The number of aircraft in instance 8
is 50, and the total time from the appearance time of the first
aircraft to the latest landing time of the last aircraft is 828
seconds, which is close to the ∆t with 600 seconds. There-
fore, CGIC with a large ∆t can generate much better results
in instance 8. However, the number of aircraft is larger with
longer total time from instances 9 to 13. For example, the
total time in instance 9 is 14,122 seconds. ∆t with 360, 480,
and 600 seconds are much shorter than the total time. In
instances 9 to 12, the results of ∆t with 480 are optimal. The
results of ∆t with 360 seconds are not the best, indicating

972
IEICE TRANS. FUNDAMENTALS, VOL.E102–A, NO.8 AUGUST 2019

Fig. 4 Computation time of CRcost , GR, IH , and CNR in the total
computation time ofCGIC (second).

Fig. 5 Best results of different chunking rules.

that the number of aircraft to be scheduled in Fs is small
if ∆t is small. Moreover, the landing time is calculated on
the basis of less constraints from the other aircraft in Fa in
early ∆t. In later ∆t, aircraft have larger deviations from
their target landing time. In instance 13, the result of ∆t with
600 is optimal when the number of aircraft is 500, and the
total time from the appearance time of the first aircraft to the
latest landing time of the last aircraft is 56,382 seconds.

Figure 8 shows the average computation time over the
30 replications of CGIC with different ∆t. In dynamic in-
stances, with a small number of aircraft, the average cal-
culating time is close to static instances except instance 7.
However, the results in dynamic and static instance 7 are
the same. When the number of aircraft is large, the average

Fig. 6 Effects of Ne .

Table 2 Average results in dynamic instances 1-7 with different ∆t.
N 360 480 600

1 10 0.00 0.00 0.00
2 15 1.33 1.33 1.33
3 20 52.60 52.60 52.60
4 20 0.00 0.00 0.00
5 20 42.80 42.80 42.80
6 30 0.00 0.00 0.00
7 44 0.00 0.00 0.00

Fig. 7 Average results in dynamic instances 8-13 with different ∆t.

computation time with a large ∆t is smaller because CGIC
needs more iterations when ∆t is small.

5. Conclusion

In this study, a novel heuristic CGIC is proposed for the
ALS problem. The algorithm contains four parts: CRcost as
a chunking rule to generate several chunks from the landing
sequence based on the cost of aircraft without length con-
straints, GR as a chunk generation rule to regenerate chunks
with the largest cost first, IH as an improvement heuristic
to decrease the cost of chunks by disordering a subsequence
around the aircraft with the largest cost, and CN R as a con-
nection rule to construct the final landing sequence with

SHI et al.: A HEURISTIC ALGORITHM FOR SOLVING THE AIRCRAFT LANDING SCHEDULING PROBLEMWITH A LANDING SEQUENCE DIVISION
973

Fig. 8 Average computation time in dynamic instances with different ∆t
(second).

chunks. The proposed algorithm outperforms other heuris-
tics in most static instances. The computation time is short
enough to solve the dynamic ALS problem. Further devel-
opments may focus on the automatic generation of chunking
rules for the multiple runways ALS problem.

Acknowledgments

This study is supported by the National Natural Science
Foundation for Young Scientists of China (No.61802282),
Natural Science Foundation for Young Scientists of Tian-
jin (No.18JCQNJC70000) and National Student Training
Program for Innovation and Entrepreneurship of China
(No.201710069050).

References

[1] J.E. Beasley, M. Krishnamoorthy, Y.M. Sharaiha, and D. Abramson,
“Scheduling aircraft landings the static case,” Transport. Sci., vol.34,
no.2, pp.180–197, May 2000.

[2] A. Faye, “Solving the aircraft landing problem with time discretiza-
tion approach,” Eur. J. Oper. Res., vol.242, no.3, pp.1028–1038, May
2015.

[3] N.R. Sabar and G. Kendall, “An iterated local search with multiple
perturbation operators and time varying perturbation strength for the
aircraft landing problem,” Omega, vol.56, pp.88–98, Oct. 2015.

[4] J.E. Beasley, J. Sonander, and P. Havelock, “Scheduling aircraft
landings at London Heathrow using a population heuristic,” J. Oper.
Res. Soc., vol.52, no.5, pp.483–493, May 2001.

[5] H. Pinol and J.E. Beasley, “Scatter search and bionomic algorithms
for the aircraft landing problem,” Eur. J. Oper. Res., vol.171, no.2,
pp.439–462, June 2006.

[6] A.T. Ernst, M. Krishnamoorthy, and R.H. Storer, “Heuristic and
exact algorithms for scheduling aircraft landings,” Networks: An
International Journal, vol.34, no.3, pp.229–241, Oct. 1999.

[7] X.B. Hu and E. Di Paolo, “Binary-representation-based genetic al-
gorithm for aircraft arrival sequencing and scheduling,” IEEE Trans.

Intell. Transp. Syst., vol.9, no.2, pp.301–310, June 2008.
[8] S.-P. Yu, X.-B. Cao, and J. Zhang, “A real-time schedule method for

aircraft landing scheduling problem based on cellular automation,”
Appl. Soft Comput., vol.11, no.4, pp.3485–3493, June 2011.

[9] A. Salehipour, M. Modarres, and L.M. Naeni, “An efficient hybrid
meta-heuristic for aircraft landing problem,” Comput. Oper. Res.,
vol.40, no.2, pp.207–213, Jan. 2013.

[10] W. Shi, X.-Y. Song, and J.-Z. Sun, “A dynamic hyper-heuristic based
on scatter search for the aircraft landing scheduling problem,” IEICE
Trans. Fundamentals, vol.E97-A, no.10, pp.2090–2094, Oct. 2014.

[11] F. Furini, C.A. Persiani, and P. Toth, “Aircraft sequencing problems
via a rolling horizon algorithm,” Int. Symp. on Comb. Opt., pp.273–
284, Springer, Berlin, Heidelberg, April 2012.

[12] F. Furini, M.P. Kidd, C.A. Persiani, and P. Toth, “Improved rolling
horizon approaches to the aircraft sequencing problem,” J. Sched.,
vol.18, no.5, pp.435–447, Oct. 2015.

[13] J.E. Beasley, “OR-library: Distributing test problems by electronic
mail,” J. Oper. Res. Soc., vol.41, no.11, pp.1069–1072, Nov. 1990.

WenShi received the B.S. and Ph.D. degrees
in Computer Science and Technology fromTian-
jin University in 2006 and 2015, respectively.
He received the M.S. degree in Traffic Informa-
tion Engineering and Control from Civil Avia-
tion University of China. He is a lecturer with
the School of Information Engineering, Tianjin
University of Commerce, China. His current
research interests include heuristics, machine
learning and data mining.

Shan Jiang received the B.S. degree in Tian-
jin University of Technology and Education. He
is an engineer with Tianjin Medical University.

Xuan Liang received the B.S. degree in
Tianjin University of Commerce.

Na Zhou is a student in Tianjin University
of Commerce.

http://dx.doi.org/10.1287/trsc.34.2.180.12302
http://dx.doi.org/10.1287/trsc.34.2.180.12302
http://dx.doi.org/10.1287/trsc.34.2.180.12302
http://dx.doi.org/10.1016/j.ejor.2014.10.064
http://dx.doi.org/10.1016/j.ejor.2014.10.064
http://dx.doi.org/10.1016/j.ejor.2014.10.064
http://dx.doi.org/10.1016/j.omega.2015.03.007
http://dx.doi.org/10.1016/j.omega.2015.03.007
http://dx.doi.org/10.1016/j.omega.2015.03.007
https://doi.org/10.1057/palgrave.jors.2601129
https://doi.org/10.1057/palgrave.jors.2601129
https://doi.org/10.1057/palgrave.jors.2601129
http://dx.doi.org/10.1016/j.ejor.2004.09.040
http://dx.doi.org/10.1016/j.ejor.2004.09.040
http://dx.doi.org/10.1016/j.ejor.2004.09.040
https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C229::AID-NET8%3E3.0.CO;2-W
https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C229::AID-NET8%3E3.0.CO;2-W
https://doi.org/10.1002/(SICI)1097-0037(199910)34:3%3C229::AID-NET8%3E3.0.CO;2-W
http://dx.doi.org/10.1109/tits.2008.922884
http://dx.doi.org/10.1109/tits.2008.922884
http://dx.doi.org/10.1109/tits.2008.922884
http://dx.doi.org/10.1016/j.asoc.2011.01.022
http://dx.doi.org/10.1016/j.asoc.2011.01.022
http://dx.doi.org/10.1016/j.asoc.2011.01.022
http://dx.doi.org/10.1016/j.cor.2012.06.004
http://dx.doi.org/10.1016/j.cor.2012.06.004
http://dx.doi.org/10.1016/j.cor.2012.06.004
http://dx.doi.org/10.1587/transfun.e97.a.2090
http://dx.doi.org/10.1587/transfun.e97.a.2090
http://dx.doi.org/10.1587/transfun.e97.a.2090
http://dx.doi.org/10.1007/978-3-642-32147-4_25
http://dx.doi.org/10.1007/978-3-642-32147-4_25
http://dx.doi.org/10.1007/978-3-642-32147-4_25
http://dx.doi.org/10.1007/s10951-014-0415-8
http://dx.doi.org/10.1007/s10951-014-0415-8
http://dx.doi.org/10.1007/s10951-014-0415-8
http://dx.doi.org/10.1038/sj/jors/0411109
http://dx.doi.org/10.1038/sj/jors/0411109

