<RNE,

? Kobe University Repository : Kernel

R
S
4oge

PDF issue: 2024-04-30

A Probabilistic Algorithm for Computing the
Weight Distribution of LDPC Codes

Hirotomo, Masanori
Mohri, Masami
Morii, Masakatu

(Citation)
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E92-A(7):1677-1689

(Issue Date)
2009

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
Copyright (c) 2009 IEICE

(URL)
https://hdl. handle. net/20.500. 14094/90001304

KOBE
\f].\]'l'l'.lii\l Y
J

%)

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

1677

'PAPER

A Probabilistic Algorithm for Computing the Weight Distribution

of LDPC Codes

Masanori HIROTOMO?, Masami MOHRI'', and Masakatu MORII', Members

SUMMARY Low-density parity-check (LDPC) codes are linear block
codes defined by sparse parity-check matrices. The codes exhibit excellent
performance under iterative decoding, and the weight distribution is used
to analyze lower error probability of their decoding performance. In this
paper, we propose a probabilistic method for computing the weight distri-
bution of LDPC codes. The proposed method efficiently finds low-weight
codewords in a given LDPC code by using Stern’s algorithm, and stochas-
tically computes the low part of the weight distribution from the frequency
of the found codewords. It is based on a relation between the number of
codewords with a given weight and the rate of generating the codewords in
Stern’s algorithm. In the numerical results for LDPC codes of length 504,
1008 and 4896, we could compute the weight distribution by the proposed
method with greater accuracy than by conventional methods.

key words: LDPC codes, weight distribution, probabilistic method, mini-
mum distance

1. Introduction

Low-density parity-check (LDPC) codes are linear block
codes defined by sparse parity-check matrices [1]. Interest
in them has been revived since the codes exhibit excellent
performance under iterative decoding [2]. The performance
with low error probability in high signal noise ratio (SNR)
region is theoretically analyzed by upper and lower bounds
such as asymptote of union bound [3], [4]. In the analysis,
the average weight distribution in the ensemble of LDPC
codes is used instead of the exact weight distribution, and
formulas of the average weight distribution have been de-
rived for some LDPC code ensembles [5]—[7]. But the for-
mulas cannot be applied to computing the weight distribu-
tion of an LDPC code.

The minimum distance of linear codes determines the
number of errors correctable by the code, and the weight
distribution is required to analyze the maximum-likelihood
(ML) decoding performance. Unfortunately, it is difficult to
compute the minimum distance and the weight distribution,
since the complexity grows exponentially as the code length
and the dimension are larger. It has been well known that no
algorithm computes exactly the minimum distance and the
weight distribution of long linear codes in polynomial time.
Generally, the problem for any linear code is NP-hard [8],
[9].

Manuscript received October 21, 2008.
Manuscript revised February 16, 2009.
"The authors are with the Graduate School of Engineering,
Kobe University, Kobe-shi, 657-8501 Japan.
""The author is with the Information and Multimedia Center,
Gifu University, Gifu-shi, 501-1193 Japan.
a) E-mail: hirotomo @eedept.kobe-u.ac.jp
DOI: 10.1587/transfun.E92.A.1677

To estimate the minimum distance of LDPC codes,
R.M. Tanner presented a lower bound on the minimum dis-
tance of regular LDPC codes by analyzing the connectivity
of the bipartite graph representing an LDPC code [10]. The
minimum distance of LDPC codes with algebraic structures
is actively investigated, for example, quasi-cyclic LDPC
codes [11],[12], array LDPC codes [13]-[16]. In particu-
lar, the minimum distance of finite geometry LDPC codes is
determined by parameters used to construct the codes [17].
These methods can apply to LDPC codes with restricted
structures, but cannot evaluate the weight distribution.

X.-Y. Hu et al. proposed an algorithm, called nearest
nonzero codeword search (NNCS) approach, to approximate
the minimum distance of LDPC codes [18],[19]. In this
method, the error impulse (EI) method [20] and the itera-
tive reliability-based (IRB) decoding [21] are used to find
minimum-weight codewords in an LDPC code. In the fun-
damental principle, the method perturbs the transmitted vec-
tor corresponding to the all-zero codeword with error im-
pulse, and uses the IRB decoding to obtain nonzero code-
words which are nearest to the all-zero codeword. The nu-
merical results of applying the NNCS approach to evaluat-
ing the low part of the weight distribution for several LDPC
codes have been reported in [22]. Furthermore, in [23], a
modified algorithm based on the EI method has been pre-
sented. The algorithm uses error patterns constituted by two
error impulses located in two different bit positions at two
level search. However, these methods cannot necessarily
find all of codewords included in the low-part weight distri-
bution, because the accuracy of the found minimum distance
and the computed weight distribution is dependent on the ca-
pability of the decoding algorithms in these methods. Thus,
computing the exact weight distribution of an LDPC code
constructed by an arbitrary structure has been hard problem
yet.

As for the evaluation of the minimum distance of long
binary linear codes, probabilistic algorithms for finding the
minimum-weight codeword have been proposed in [25],
[26] and [27]. These algorithms efficiently find low-weight
codewords in a binary linear code of long length and high
dimension. However it is unable to determine the number of
codewords with a given weight only using these algorithms,
so the weight distribution cannot be evaluated.

In this paper, we propose a probabilistic method for
computing the weight distribution of LDPC codes. In the
proposed method, we apply Stern’s probabilistic algorithm
[26] to finding low-weight codewords in a given LDPC

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

1678

code, and the low part of the weight distribution is stochasti-
cally computed from the frequency of the found low-weight
codewords. It is based on a relation between the number
of codewords with a given weight and the rate of gener-
ating the codewords in Stern’s algorithm. Using the pro-
posed method, we can compute the low-part weight distri-
bution with high accuracy. Additionally, as numerical ex-
periments, we computed the weight distribution of several
LDPC codes. In these results, we found a minimum-weight
codeword of the LDPC codes which has not been reported
in [18], [22] and [23], and newly found a lot of low-weight
codewords included in the weight distribution. It implies
that the weight distribution of these codes computed by our
method is greater reliability than by the conventional meth-
ods.

This paper is organized as follows. In Sect.2, we de-
scribe the definition of LDPC codes and weight distribution.
In Sect. 3, we explain the concept of probabilistic methods
and review Stern’s algorithm. In Sect. 4, we propose a prob-
abilistic method for computing the weight distribution of
LDPC codes. In Sect. 5, we show numerical results obtained
by applying the proposed method to several LDPC codes. In
Sect. 6, we conclude this paper.

2. LDPC Codes and Weight Distribution

LDPC codes in their broader definition are linear block
codes whose parity-check matrices have fewer nonzeros
than zeros. Let C be a binary linear code of length n and
dimension k. The parity-check matrix is denoted by

H = hil iz, M

where m > n—k. Any codeword ¢ = (cy, ¢a, . . ., c,) satisfies

Hc! =0, 2

and the binary (n, k) linear code C is a set of 2% codewords
of length n where k = n — rank(H). The weight (Hamming
weight) of ¢ is denoted by wy(c), and the number of code-
words of weight w in C is denoted by A,,. Then, the weight
distribution {Ag, Ay, ..., A} of C is defined as

Ay = #Huwpe)=w:ceC}
= #{wp(c) = w : HeT = 0). 3)

The minimum weight (minimum distance) of C is the small-
est positive integer d such that A; # 0.

3. Probabilistic Method

The minimum distance of linear codes determines the num-
ber of errors correctable by the code, and the weight distri-
bution is required for analyzing the decoding performance.
Unfortunately, for a general code of length n and dimension
k, it is necessary to examine the weight of 2% codewords
in order to compute the weight distribution. Even if we per-
form the procedure of verifying whether all vectors of length

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

nand weight w = 1,2, ...,d is satisfied with Eq. (2) in order
to determine the minimum weight, we require the complex-
ity Z‘,f)z ! (Z) Thus it is difficult to compute the minimum
weight and the weight distribution of long practical LDPC
codes. For the problem of computing the minimum weight
of long linear codes, probabilistic algorithms are proposed
in [25], [26] and [27]. The general probabilistic method is
performed as follows:

1. Given g, small positive real number.

2. Repeat the random choice of codewords from C and
the examination of its weight. Then, suppose d to be
lowest weight in the examinations.

3. It can be concluded that, if C were to contain code-
words of nonzero weight less than d, at least one such
codeword would have been found with probability at
least 1 —¢.

When the above process is concluded, the probability of fail-
ing to determine the minimum weight of C is not more than
&. So, we shall say that the minimum weight of C is d with
probability 1 — . € denotes a failure probability of the min-
imum weight of C.

In [26], J. Stern has presented a probabilistic algorithm
to find low-weight codewords of binary linear codes with
high probability. Stern’s algorithm performs as follows. The
columns of H are randomly permuted, and the Gaussian
elimination is applied to the column-permuted matrix in or-
der to obtain a matrix [E,_;P] where E,,_ is an (n—k)x(n—k)
identity matrix. Then, the columns of P is randomly split
into two submatrices of same size denoted by X and Y, so
that H = [E,_4XY]. The random column permutation im-
plies that each permutation is occurred with same probabil-
ity, and the random index selection implies that each index
is aimlessly selected with same probability. Sets of indices
whose columns of H are permutated into certain parts of H’
is denoted as follows:

o [denotes the set of column indices of H permutated
into P, and is called an information set.

e [y and Iy denotes sets of column indices of H permu-
tated into X and Y respectively.

e [} denotes a subset of Iy with p elements, and 7}, de-
notes a subsets of Iy with p elements.

e R denotes the set of column indices of H permutated
into E,_4, and is called a redundancy set.

e [denotes a set containing / indices which are selected
from the redundancy set R randomly.

In Stern’s algorithm, vectors ¢’ = (¢}, ¢, ..., c,) satisfying
H'¢’T = 0 are generated under the following conditions and
the weight of ¢’ is examined:

wi(e),) = wi(€),) = p,)
wi(e),) =0, ®)
where cl’ ; is a vector consisting of elements of ¢’ whose in-

dices are contained in /. Since H' is in the systematic form,
(n — k)-tuple of bits of ¢’ corresponding to the redundancy

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES

set R is obtained by adding up the columns of H’ whose in-
dices are contained in the information set /. The (n—k)-tuple
of bits of ¢’ is denoted by v = (¢}, ¢}, ..., c;l_k). The vector
¢’ satisfying Eq. (4) is obtained by the linear combination
of 2p columns whose indices are chosen from Ix and Iy.
These indices are represented by elements of /5, and I},. For
example, when I}, = {i, {2} and I}, = {i3,i4}, the part of ¢’
corresponding to R are calculated by v = h; +h{ +h +h}
where h; is a column of H’. Furthermore, when ¢’ satisfies
Eq. (5), v holds the condition of vz = 0. Then we obtain
hi, +h = h;ﬂL + h;4\L' The vector ¢’ satisfying Eqgs. (4)
and (5) can efficiently be found by the following algorithm:

Stern’s Algorithm [26]

Input: Parity-check matrix H, parameters p and /

Output: Weight w of codewords in C

Stepl: Permute columns of H randomly, and apply the
Gaussian elimination to the column-permuted matrix
so that [E,_;P]. Then, if no pivot is found in the se-
lected column, swap the column for one of unselected
columns. Let I be an information set containing indices
whose columns were permutated into P, and let R be a
redundancy set containing indices whose columns were
permutated into E,,_;. Then, split / to two subset Ix and
Iy of size k/2 in order to obtain the following matrix:

H = [E,_XY],
X = [Xiliery»
Y = [yiliety-

Step2: Select / indices from the redundancy set R randomly.
The set is denoted by L = {ji, ja, ..., ji}, and the in-
dices point to the rows of H'.

Step3: Let I3 and I}, be subsets containing p column indices
of Ix and Iy respectively. Choose every subset I} of Ix
with p elements, and compute the /-bit linear combina-
tion

AL = Z XilL,
iely
and add I} into the entry with key Ay, ., in the hash table

of 2! entries. Then, choose every subset I, of Iy with p
elements, and compute the /-bit linear combination

AL = § YL
iel},

and search for I}, with key Apy|L in the hash table.
Step4: Using the hash table, consider all pairs (I}, ;) such

that A,)/(\L = AI»y|L and compute v = (vy, 0, ..., U,—k) as
follows:

V= A];(+A1;, = in+ Zy[.

iely i€l

If wp(v) = w - 2p, a vector ¢’ = (c},c5,...,c,) such
that

o = 1, ifieljL Ul ory =1

i 0, otherwise

1679

is exactly of weight w and satisfies H'¢’” = 0. Then, re-
turn the weight w of the vectors ¢’ for the pairs (I}, I})
above. |

The vectors ¢’ is a codeword whose elements are per-
muted since ¢’ is satisfied with H’¢’7 = 0 for the column-
permuted parity-check matrix H’. Therefore, if w,(¢cj) =
w — 2p, C contains a codeword of weight w.

The capability that Stern’s probabilistic algorithm find
the minimum weight codeword is analyzed in [26] and [28].
In the literature, in order to evaluate the minimum weight
of C, the algorithm investigates whether C contains at least
one codeword of weight w. If C contains a codeword ¢ of
weight w, the probability to find the codeword in a process
from Step1 to Step4 of Stern’s algorithm is given by

L BECC) ()
A AT G

The codeword c is found as the vector ¢’ in Step4 of Stern’s
algorithm. The first part of right hand of Eq. (6) is a prob-
ability that p ones and k/2 — p zeros of ¢ are permutated
into the bit positions corresponding to Ix and Iy respectively.
The numerator of the first part implies the number of such
permutations, and the denominator implies the number of
all permutations to choose k/2 column indices into both Ix
and Iy among n column indices. The second part is a prob-
ability that / zeros among the remaining n — k — w + 2p ze-
ros are permutated into the bit positions corresponding to
L. The numerator of the second part implies the number of
such permutations, and the denominator implies the number
of all permutations to choose / indices into L among n — k
indices of R. Strictly speaking, we cannot obtain the permu-
tations that R contains indices of linear dependent columns
when the Gaussian elmination is applied to H. However, the
number of the permutations is much smaller than the num-
ber of all permutations, so the probability to find a codeword
of weight w is estimated by Eq. (6).

To find a codeword of minimum weight efficiently, we
can use Stern’s algorithm instead of the random codewords
choice, and repeat the algorithm until the failure proba-
bility is smaller than . The events that the vector ¢’ is
found are independent for each iteration of Stern’s algo-
rithm. Thus, the probability of failing to find the vector
¢’ of weight w after r iterations is (1 — m,,;)". Given a
small positive real number &, the number of iterations re-
quired to find ¢’ with failure probability & or less is given
by r, = [log(e)/log(1 — m,,p;)]. When we find a vector ¢’
of weight d and find no vector of weight less than d after
rq4 iterations of Stern’s algorithm, the failure probability of
minimum weight is & at most. Because r,, < r; for w < d,
and no vector of weight less than d is found after r, itera-
tions. Hence, when we find a codeword of weight d and find
no codeword of weight less than d after r iteration of Stern’s
algorithm, we shall say that the minimum weight is d with
probability 1 — & such that

E= (1 - ﬂ.d,p!l)r. (7)

(6)

1680

Next, we consider the time complexity of Stern’s algo-
rithm for (n, k) linear codes. The complexity is dominated
by Stepl, Step3 and Step4, and the complexity of each step
is analyzed in [26] and [27] as follows:

o The Gaussian elimination performed in Step1 requires

a number of bit operations of order 3(n—k)> +k(n—k).

e In Step3, there are (k/ 2) linear combinations of p

columns of X and Y respectively. Computing each
of them on a /-bit selection and putting it in the hash
table require pl binary additions. Additionally, we
need K (21 + p(k[/, 2)) more operations to perform the
dynamic memory allocation where K is the size of a
computer word (K = 32 or 64).
e The average number of collisions, i.e., the average
number of pairs (I}, I},) such that A13(|L = A11y|L is equal
K2\
to (g,) . For each collision, we perform 2p — 1 addi-
tions of (n — k)-bit columns for computing Ay, + Ay,
and a weight checking.

Hence the average number of elementary operations per-
formed at each iteration of Stern’s algorithm is

Q= %(n — k) +k(n—k)?*+ 2pl(k/2)
P

()

+K(2l+p(k/2))+2p(n—k)—l. (8)
p 2

We call Q,,; a running cost.

For the hard problem of computing the minimum
weight d of linear codes with large parameters n and k, we
can stochastically evaluate the minimum weight with small
failing probability & by using Stern’s algorithm. However,
even if we evaluate the minimum weight d, we cannot know
the number of codewords of minimum weight d since the
algorithm has no scheme to compute the number of code-
words of a given weight. It is unable to compute the weight
distribution only using the probabilistic algorithm.

4. Probabilistic Method for Computing the Weight Dis-
tribution of LDPC Codes

In this section, we propose a probabilistic method for com-
puting the weight distribution for low-weight codewords of
LDPC codes. It is based on Stern’s algorithm. In this
method, first, we find low-weight codewords in C by us-
ing Stern’s algorithm, then stochastically compute the low
part of the weight distribution from the frequency of found
codewords. The method focuses on a relation between the
number of codewords of weight w in C and the rate of gen-
erating the codewords in the iterations of Stern’s algorithm.
The minimum weight and the weight distribution have been
evaluated for several codes defined by sparse parity-check
matrices with random constructions in the literature, for ex-
ample, [1],[5]-[7],[18],[22],[23]. It have been reported
that the minimum weight is larger as the length is longer.
On the other hand, the codes have small minimum weight

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

and few minimum-weight codewords. Since the complexity
of our method for computing the low-part weight distribu-
tion depends on the minimum weight of a given code, our
method can efficiently compute the low-part weight distribu-
tion of these LDPC codes. In the remainder of this paper, A,
denotes the exact weight distribution of C, and A, denotes
the weight distribution computed by the proposed method.
B, also denotes the frequency of found codewords of weight
w in the iterations of Stern’s algorithm.

4.1 Relation Between the Number of Codewords with a
Given Weight and the Rate of Generating the Code-
words in Stern’s Algorithm

The probability to find a codeword of weight w by Stern’s al-
gorithm is given by &, ,; in Eq. (6). It is used to estimate the
failure probability of the minimum weight of C. In the esti-
mation, we determine whether C contains at least one code-
words of each weight. In [26], the probability ,,,; is given
under the condition that C contains only one codewords of
weight w, i.e., the probability is not considered under the
condition that C contain A, codewords of weight w. On the
other hand, in the case that C contains several codewords
of weight w, the rate of generating the codewords becomes
larger than Eq. (6). We focus on this property and develop a
probabilistic method for computing the weight distribution.

Theorem 1: If C contains A, codewords of weight w, the
average rate of generating the codewords at each iteration of
Stern’s algorithm is given by

Ew,A“,,p,l = Awﬂ-w,p,l s
where 7, ,; is given as Eq. (6).

Proof: In the case of A, = 1, the probability to find a code-
word of weight w is given by Eq. (6). Then, the average rate
of generating the codeword is equal to Eq. (6), i.e.,

()) () (i) ()
(i) ("52") (")
On the other hand, if A,, > 2, Ey, 4, p, is not equal to Eq. (6).

That is, if C contains several codewords of weight w, it ef-
fects the following part of Eq. (9):

w n—w w-p\ [n—w—k/2+p
() () () ()
n n—k/2 :
(k/Z)(k/2)

Let ¢ be the codeword of weight w in C, i.e., Hce” = 0.
In Step4 of Stern’s algorithm, the vector ¢’ is generated by
H’ which is obtained by the column permutation of H, and
¢’ has p ones and k/2 — p zeros in the bit positions cor-
responding to Ix and Iy respectively. Thus, when p ones
and k/2 — p zeros of ¢ are permuted into the bit positions
corresponding to Ix and [y by the column permutation of

H in Stepl, the codeword ¢ is generated as the permuted

codeword ¢’ by H’, so that H'¢T = 0. (kr/lz)(nzcz/z) in

.9

Eupipi=

(10)

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES

Eq. (10) is the number of all permutations to choose k/2
column indices into both Iy and Iy among n column in-
dices. (;’) (k'/‘;’p) (W;P) ("_']i’/_zkflz,+p) in Eq. (10) is the num-
ber of permutations to choose p ones and k/2 — p zeros into
both Iy and Iy among w ones and n—w zeros of ¢. Therefore,
we obtain Eq. (10), and the average rate of finding ¢ is given
by Eq. (9).

Next, we consider the case that C contains two code-
words of weight w. Let ¢; and ¢, be the two codewords
respectively. When we choose p ones and k/2 — p zeros into
both Ix and Iy among w ones and n — w zeros of ¢, there are

(;’) (k;’;f’p) (w;p) ("_']‘:/_Zkf [2,“’) permutations. Similarly, there

are (;’) (k’/’gf’P) (w;p) ("_’,‘(’/_zk_/?p) permutations for ¢,. Some

of these permutations to choose from ¢, are the same as the
permutations to choose from ¢;. This implies that both ¢;
and ¢, can be generated by all of H” with these permutations.
Therefore, we only have to add the number of permutations
to choose for each codeword. Consequently, in the case of
A, = 2, the vector ¢’ of weight w is generated

2(w)(n—w)(w—p)(n—w—k/2+p). (11
p)\k[2=p)\ p k/2—p
times from H’ obtained by all column permutation.

In the case that C contains A, codewords of weight w,

the frequency of generating the vector ¢’ of weight w from
H’ with all permutations is

Aw(w)(n—w)(w—p)(n—w—k/2+p). (12)
pJ\k[2=pJ\ p k/2—-p
Consequently, the average rate of generating the codewords
of weight w is given by

Au () (%) ()25
(i) (502°)

(n—k-w+2p)
!

(")

Ew,Aw,p,l =

13)

]

Example 1: Consider a (7,4) code C defined by the fol-
lowing parity-check matrix:

1 001 001
H=|0 1 0 0 1 1 Of.
001 01 11

The code contains two codewords of weight 2, ie., ¢; =
(1,0,0,1,0,0,0), ¢, =(0,0,0,0,1,1,0). The number of all
permutations to choose two column indices of H into both
Iy and Iy is

(k’;z)(n ;/2/2)) (;)(Z) -2

When p = 1, the number of permutations to choose an one
and a zero into both Ix and Iy among 2 ones and 4 zeros of

T e e
i

The permutations are as follows:

(Ix, Iy) =({1,2}, {3,4}), ({1,2}, {4.5}), ({1,2}, {4.6}),
({1,2},14,7), (1,3}, {2.4})), (11,3}, {4.5}),
(1,3}, {4.6D), (1,3}, {4,7)), ({1,5}, {2,4}),
(1.5}, {3.4)), ({1.5}, {4.6]), ({1,5}, {4.7}),
({1,6},{2,4)), (1,6}, {3.4]), ({1,6}, {4.5)),
(1.6}, {4,7), (11,7}, {2,4)), ({1,7}, {3.4)),
(L7}, 14,5), (11,7}, {4.6}), (2,4}, {1.3}),
(2.4}, {1,5D), (12,4}, {1.6}), (2,4}, {1,7}),
({3.4),{1,2), (3,4}, {1.5}), (13,4}, {1,6}),
(3.4}, {1,7), (14,5}, {1.2}), (14,5}, {1.3}),
(4.5}, {1,6]), (4.5}, {1.7}), (4,6}, {1.2}),
({4.6},{1,3)), (4.6}, {1.5}), (14,6}, {1,7}),
(4.7}, {1,2), (14,7}, {1,3}), (14,7}, {1.5}),
({4.7},{1.6}).

It implies that ¢; can be generated by all matrices H ob-
tained by these column permutations. Similarly, for ¢, there
are 40 permutations to choose 1 one and 1 zero into both Ix
and Iy. Among the number, both ¢; and ¢, can be generated
in case of the following permutations:

(x, Iy) = ({1,5},{4,6}), ({1, 6}, {4, 5}),
({4,5},{1,6)), ({4, 6}, {1, 5}).

Let us consider the case of (Ix,Iy) = ({1,5},{4,6}). Then
¢ = (c], ¢, ¢}, ¢, €5, cg, ¢5) is satisfied with the condition
of ¢, = c1, ¢5 = ¢s5, cg = cq and ¢ = cq. €] is generated
by H’" when ¢’ becomes ¢ = 1, cf =0, c’6 =landc, =0,
and c; is generated by H' when ¢’ becomes ¢j; = 0, ¢ = 1,
cg = 0and ¢/, = 1. Thus both ¢; and ¢, are generated under
the condition of the permutation of (Ix, Iy) = ({1, 5}, {4, 6}).
Similarly, both ¢; and ¢, can be generated in the above four
cases. Consequently the number of finding ¢; and ¢, for all
permutations is

4 (w)(n—uw)(w—p)(n—w—k/2+p)
“\p/\kj2-pJ\ p k/2-p

ShGR

and the average rate of generating the codewords of weight
2 at each iteration is equal to

A () (W2 () (TiR) 80 — 0.381.
() ("%

T 210

1682

4.2 Probabilistic Method for Computing the Weight Dis-
tribution

In the case that C contains A, codewords of weight w, the
average rate of generating the codewords at each iteration of
Stern’s algorithm is given by A,m,, ;. We count up the fre-
quency B, of generating the vectors ¢’ of weight w through r
iterations of Stern’s algorithm. Since the average frequency
at each iteration is more close to E, 4, ,; as the number of
iterations r is larger, we obtain the following relation:

Euppt ™ 22 (14)
From Theorem 1, the weight distribution can be computed
as follows:

- B,
A, = . (15)
iy, p.l
Proposed Method

Input: Parity-check matrix H, parameters used in Stern’s al-
gorithm p, /, and number of iterations r
Output: Weight distribution Ay, Ay, ..., A,
Initialization: B=B;=---=B, =0
1. Perform Stern’s algorithm r times, and count up B, for
all vectors ¢’ found in Step4 of Stern’s algorithm.

By) = Buyey + 1

2. Calculate the weight distribution by the following
equation:
B,

Ay = w=1,2,...,n. [|
I'Tty,p,1

4.3 Running Cost of Stern’s Algorithm for LDPC Codes

We estimate the running cost of Stern’s algorithm for LDPC
codes. The running cost for any linear code is given by
Eq.(8). But, in the case that Stern’s algorithm is applied
to LDPC codes, it effects the first and the second parts of
Eq. (8). Because the number of elementary row operations
in Stepl of the algorithm is reduced when the Gaussian
elimination is applied to sparse matrices. Note, however,
that the number of ones in each row of the matrix becomes
close to “5* + 1 through the process of the Gaussian elimi-
nation. Hence, the probability to occur the event of adding
the pivoted row to eliminate the ones in the matrix through
the process of the Gaussian elimination.

Assuming that the Gaussian elimination is applied to
the parity-check matrix H whose ones are assigned to each
row randomly, we consider the expected weight of the rows
of H at each step of the Gaussian elimination. Let w(it) be a
weight of the j-th row of H when the pivot in the forward
elimination belongs to (¢, #)-th component. wg,l) denotes the

weight of the j-th row of the given matrix H. When the

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

(j, H)-th component is eliminated from j-th row by adding
the #-th row, the weight of the j-th row can be estimated as
follows:

I S SO TP O (o)
w; i (w2 s d (16)
otherwise
w(jt)

fort=1,2,...,m—1. — in Eq. (16) is a probability that
there exists one in the (j, #)-th component. Since the j-th row
is added to the #-th row with the probability, w;’) is added to

(wi.')—l)(u)ﬁ”—l

w” — 2 with the probability. — " in Eq. (16) is the
number of collisions of ones by the linear combination of the

Jj-th and the #-th rows. Thus twice the number is subtracted
(0]

from w'” with probability nl_ljﬁ In the forward elimination,
the #-th row is swapped with other rows if the pivot is not in
the (¢,)-th component. But, we can ignore the swap opera-
tions under the estimation of the weight of rows of H, since
the expected weight of the (¢ + 1)-th to m-th rows is equal to
the weight of #-th row.

Let w;.(t) be a weight of the j-th row of H when the pivot
in the back substitution belongs to the (7, f)-th component.
w;(m) denotes the weight of the j-th row after the forward
elimination, i.e., w;.(m) = w;m). When the (1,)-th componet
is sustituted for the (j, 7)-th component by adding the #-th
row, the weight of the j-th row can be estimated as follows:

w/'(tfl)

B 2w -2)(w,”-1)

J n—-m+t—j\ 't n-m

)

otherwise

w®—
fort =mm-1,...,2. n—lInthij in Eq. (17) is a probability
that H has one in the (j, £)-th component. When the j-th row
is added to the #-th row with the probability, w;') is added to

(w;.(’)—Z)(w;m—l)

wﬁ') —2. Furthermore, since — ones in the #-th row
collide with ones in the j-th, twice the number is subtracted
from wg.’).

In the forward elimination of the Gaussian elimination,
when the (j, #)-th component is eliminated from the j-th row
by adding the 7-th row, we perform the addition of (n—¢+1)-

()
bit rows with probability ni’ — . Therefore, the number of
bit operations for the forward elimination is approximately

;’:11 ’]’.’zt " w(;). In the back substitution, when the (¢, £)-
th component is substituted for the (j, r)-th component by
adding the #-th row, we perform the addition of (n —m + 1)-

/(1)

bit rows with probability nﬁ)in—ﬂﬁ Therefore, the number
of bit operations for the back substitution is approximately

_1 @"=D(r=m+1) .
il t,=11 % Consequently, the running cost of

Stern’s algorithm for LDPC codes is given by

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES

m=1 m m =1 /(0 _ _
~ ® (wj Dn-m+1)
Qp![= wj + -
=1 j=t+1 =2 j=1 n—m+i=]

l2)feon(2)
()

+2p(n—k) o

. (18)

4.4 Complexity of the Proposed Method

We evaluate the complexity for finding a codeword of
minimum weight of several LDPC codes by the proposed
method, and show the optimal parameters p and [/ used in
the proposed method. Using the proposed method with
the optimal parameters, we can efficiently generate low-
weight codewords many times, and can accurately evaluate
the weight distribution for the low-weight codewords.

The probability to find a codeword of weight wis 7, 7,
so the number of iterations for finding the codeword is ap-
proximately #pl Therefore, the complexity for finding

each codeword of weight w is given by

Qp,l

Ww,p,l = (19)

ﬂw,p,l

We call W, ,; a work factor of the proposed method. Since
Qp; and 7, ,; can be explicitly calculated by Egs. (6) and
(18), we can determine the parameters p and / which mini-
mize the work factor when the size of code and the targeted
weight w are given. Thus, we can efficiently find codewords
of weight w using the proposed method with the optimal pa-
rameters.

Now we evaluate the work factors W, ,; to find a
minimum-weight codeword of the following widely-known
LDPC codes:

e (: MacKay’s high-rate regular (495, 433) code [29]

e (,: MacKay’s (3, 6)-regular (504, 252) code [29]

e C;3: MacKay’s (3, 6)-regular (1008, 504) code [29]

e C,: Ramanujan-Margulis (17, 5) code with length 4896
and dimension 2474 [30]

where C;, C,, C3 and C,4 are labeled as 495.62.3.2915,
252.252.3.252, 504.504.3.504 and ram17.5 in [29] respec-
tively. The numerical results of evaluating the minimum
weight of these codes have shown in [18]. The results have
reported that the minimum weight of C;, C,, C3 and Cy is
4, 20, 32 and 24 respectively. We show the work factor for
finding these minimum-weight codewords by the proposed
method in Table 1.

As you can see Table 1, the probability m,, ,; becomes
larger as the parameter p is larger, although the running cost
Q,,; becomes larger. Furthermore, the probability r,, ,; be-
comes larger as the parameter / is larger, but a certain pa-
rameter / minimizes the running cost ,;. Thus we mini-
mize the work factor W,, ,; by optimizing the parameters p
and /.

1683

Table 1 Work factor for finding a minimum-weight codeword in
MacKay’s (495,433) code Cj, (504,252) code C,, (1008,504) code C3
and (4896, 2474) Ramanujan-Margulis code Cj.

code |weight| parameters | probability | running | work

cost | factor

n,m, k w p,l Tw,p,l Qpi | Wup

C 4 |p=1,0=5 [3.110x1072| 21958 | 2438
n =495 p=11=6 |3.003x1072| 21940 | 72446
m= 62 p=1,1=7 |2897x10°2| 21931 | 32442
k =433 p=1,1=8 [2794x1072| 21928 | 22444

p=1,1=9 [2.692x1072| 21929 | 2431
p=21=13]2184x10"" | 22438 | 22638
p=2,0=14]2184x10"" | 22376 | 22595
p=2.1=15]2184x10"" | 22342 | 2561
p=2,01=16]2.184x107" | 22343 | 22563
p=21=17]2.184x10"1 | 22380 [22599

G2 20 |p=1,1=2 |6.145x1073 | 22281 | 23680
n=>504 p=1,0=3 |5702x1075 | 22260 | 23670
m =252 p=11=4 |5290x1075 | 22249 | 23669
k=252 p=1,0=5 |4906x1075 | 22242 | 93674

p=11=6 |4549x1075 | 22239 | 23682
p=2,1=13]6408x 1074 | 22383 | 23444
p=2,1=14]5979x107%| 22348 | 3418
p=21=15 55771074 | 22337 | 93418
p=2,1=16[5200x10"%| 23332 | 23443
p=21=17 4.848% 1074 22391 | 3492

(& 32 | p=1,1=2 [3481x1078| 2281 | 23059
n = 1008 p=1.1=3 [3273x1078 | 22560 | 75046
m =504 p=11=4 [3077x1078 | 22548 | 23043
k = 504 p=1,01=5 [2.802x1078 | 22542 | 5046

p=1,1=6 [2.719x1078 | 22538 | 75052
p=21=15/9995x1077 | 22674 | 24668
p=21=16|9423x1077 | 22632 | p46.34
p=2,0=17|8882x1077 | 22612 | 4622
p=2,1=18|8372x1077 | 22613 | 23632
p=2,1=19|7.880x1077 | 22637 | 3664

C4 24 |p=1,1=5|6.102x1076 | 23214 | 24946

n = 4896 p=1,1=6 [6046x1076| 23210 | 23934
m = 2448 p=1,1=7 [5991x1076| 23208 | 24943
k =2474 p=11=8 [5937x1076| 23207 | 3944

p=11=9 |5883x10°6 | 23207 | 73944
p=2,1=21|1641x10"%| 23280 | 45.38
p=2,1=22]1627x107%| 23255 | 4513
p=2,1=23]1613x107| 23245 | 4505
p=2,1=24]1.600x107%| 23250 | 4511
p=2.1=25|1.587x10"%| 23270 | 24532

In Table 1, the parameters p = 1 and / = 7 minimize
the work factor Wy j,; for (495, 433) code C, where K = 64.
Thus we understand that the proposed method can gener-
ate a codeword of weight 4 in C; with complexity 22442,
Furthermore, the work factor Wy, ,; is 2**!® when we find
a codeword of weight 20 in (504,252) code C, using the

1684
290
280
270
zbﬂ
; 250
§ n
o o
f 2% -
S
H o
230
~20
- work factor for (3,6)-regular (n,n/2) codes of minii weight d=0.0227n
work factor for (3,9)-regular (n,2n/3) codes of minimum weight d=0.00542n -------
510 work factor for (3,12)-regular (n,3n/4) codes of minimum weight =0.00206n --------
- F work factor for C;, p=2,1=15 B
work factor for C3, p=2,1=17 =
0 work.factor for CI4, P=2, 7:2? [}
2

0 1000 2000 3000 4000 5000 6000 7000 8000
length n

Fig.1 Work factor for finding a minimum-weight codeword of (n,n/2),

(n, %n) and (n, %n) codes by the proposed method with optimized parame-

ters.

proposed method with p = 2 and [= 15, the work factor
Wi, is 2%622 when we find a codeword of weight 32 in
(1008, 504) code C3 using the proposed method with p = 2
and / = 17, and the work factor Wy p,; is 24505 when we
find a codeword of weight 24 in (4896, 2474) code C4 using
the proposed method with p = 2 and / = 23. These work
factors are as small as we can compute in actual time. In
fact, we can compute the problem with complexity 2°° in
300 hours using current computers. Thus we can find the
low-weight codewords by using the proposed method with
the optimal parameters, and can compute the low part of the
weight distribution of these codes.

Next, we show the relation between the work factor
Wa,p, and the length n for some codes of minimum weight
d. We assume that these codes are (3, 6), (3,9) and (3, 12)-
regular Gallager’s LDPC codes with typical minimum dis-
tance 0.0227n, 0.00542n and 0.00206n respectively. Fig-
ure 1 shows the work factor W, ,; of finding a codeword
of minimum weight d by the proposed method with opti-
mized parameters p and /. In Fig. 1, the work factor Wy,
is larger as the length n is longer. However, we confirm
that the proposed method can find a codeword of minimum
weight d = 0.0227n of (n,n/2) codes within work factor
2%0 if n < 1500. Furthermore, within work factor 2°°, the
proposed method can find a codeword of minimum weight
d = 0.00542n of (n, %n) codes if n < 3900, and can find
a codeword of minimum weight d = 0.00206n of (n, %n)
codes if n < 7700. The work factors W, ,,; for C; and C3 are
larger than that of (n2,n/2) codes in Fig. 1 since the minimum
distance of C, and Cj; is larger than the typical minimum
distance of (n,n/2) codes.

5. Numerical Experiments

We computed the weight distribution for low-weight code-
words of MacKay’s (495, 433) code C}, (504,252) code C,
(1008, 504) code C3, and (4896, 2474) Ramanujan-Margulis
code C4 using the proposed method. Table 2 shows results

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

of the weight distribution obtained by applying our method
to Cy, Cy, C3 and Cy.

The parameters p and [were used as the optimal pa-
rameters shown in Sect. 4.3 and the number of iterations r is
set as follows:

e C:p=11=7,r=10x10

. szp=2,l=15,r=1.0><107
e C3:p=2,1=17,r=50x 10’
e Ci:p=2,1=23,r=10x10°

We used the computers of CPU Core 2 Duo E6700 2.66 GHz
and RAM 2 GB, and it took 2.4 hours, 15 hours, 543 hours
and 1024 hours to obtain results of C;, C,, C3 and Cy re-
spectively. In these numerical experiments, we recorded all
the distinct low-weight codewords found by the proposed
method. In Table 2, B;, denotes the number of distinct code-
words of weight w among B,, codewords. Since Cy, C;, Cs
and C4 contain at least B, codewords of weight w, we un-
derstand that the exact weight distribution A,, is not less than
B;,. On the other hand, in [18] and [22], the minimum dis-
tance and the weight distribution of the same codes are eval-
uated by the NNCS approach. These are shown as ANNCS in
Table 2.

As you can see Table 2, for C3, we found a codeword
of weight 30 which have not been found by the NNCS ap-
proach. Although the minimum distance of C; has been
reported to be 32 in [22], it was newly confirmed that it
was not 32 but 30 in the result of reestimate by our method.
For C;, C; and C4, the minimum distance computed by our
method is equal to that estimated in [18] and [22]. But, since
we evaluated the weight distribution by our method which
based on Stern’s algorithm, we can determine that the exact
minimum distance is equal to the lowest weight shown in
Table 2 with the failure probability given by Eq. (7). Thus
we shall say that the minimum weight of C;, C,, C3 and
Cj4 is the lowest weight shown in Table 2 with the following
failure probabilities:

Cri 6= (1 = 1141.7)10000000 _ 3937 5 112447
Cre=(—ﬂ20’2’15)10000000 = 1.701 x 102483
C3: & = (1 = m3,17)°°0%%%% = 1.893 % 107
Cye=(1- 7T24,2,23)1000000 =4.945 x 107"

We discuss the accuracy of the computed weight dis-
tribution A,. In Table 2, A, is almost equal to B;, for low
weight w. When we obtain B], < B, after many iterations
of Stern’s algorithm, we expect that almost all codewords of
weight w were found and that By, is almost equal to the exact
weight distribution A,,. Thus, we confirm that A,, is approx-
imately equal to A, for low weight in Table 2. On the other
hand, there is some difference between A, and B;, except
for low weight w. But it is smaller than difference between
ANNCS and B/, We expect that B, is almost equal to A,
when B!, < B, and that A, is closer to A,, than ANNS. We
have given the evaluation of the reliability of our computed
weight distribution in [31]. In addition, we discuss the ac-
curacy of the computed weight distribution of the following
irregular LDPC codes:

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES

Table 2
method and the conventional methods.

1685

Weight distribution for low-weight codewords of LDPC codes computed by the proposed

MacKay'’s (495, 433) code C

Proposed method NNCS approach
[18] with 2-bit noise pattern [22]
w w17 By, (B}) A, || ANNCS ANNCS
4 2914 x 1072 16634711 (60) 59 60 60
6 8.666 x 1074 32446849 (4439) 3992 320 4439
8 1.798 x 1073 T7477469 (597947) 475969 1157 92286
10 2.991 x 1077 173568445 (79584904) | 66490530 4074 472606

MacKay’s (504, 252) code Ca

Proposed method NNCS approach

[18] with 2-bit noise pattern [22]

w Twals B, (B.) A, | ANNCS ANNCS
20 || 5.715%x 107 9992 (2) 2 2 2
22 || 1.802x 107 32549 (22) 18 — 18
24 || 5.413x107° 48589 (117) 90 66
26 || 1.559 %1073 54387 (481) 349 — 190
28 || 4.327x10°6 77096 (2587) 1782 526

MacKay’s (1008, 504) code C3

Proposed method

NNCS approach
[18] with 2-bit noise pattern [22]

w w217 B, (f)';.) A’w AEN(‘.S AD.]NCS
30 || 3.119% 1070 116 (1) 1 0
32 || 9.101 x 1077 30 (1) 1 2
34 || 2.598x 1077 86 (11) 7 1 2
36 || 7.272%x 1078 99 (39) 27 — 11
38 || 1.998 x 1078 84 (64) 84 - 16

(4896, 2474) Ramanujan-Margulis code Cy
Proposed method NNCS approach Modified ET
[18] algorithm [23]
w Tw223 ‘ By, (B}) Ay ANNCS AMEL
|24 || 1619x10* | 25443 (204) 157 | 204 || 198

e (Cs: Irregular (504, 252) PEG code [32]
o (Cg: Irregular (1008, 504) PEG code [32]

where Cs and Cg are labeled as PEGirReg252x504 and PE-
GirReg504x1008 in [29] respectively. Table 3 shows the
weight distribution of these codes computed by the proposed
method. In the numerical experiments for Cs and Cg, we
used the same parameters p and [as the optimal parame-
ters for C» and Cs3, and set r = 1.0 x 107. In Table 3, A,
is almost equal to B;, for low weight w. We expect that B,
is almost equal to the exact weight distribution A, because
of B, < B,. Therefore, we obtained the computed weight
distribution A,, which is approximately equal to the exact
weight distribution A, for low-weight codewords of Cs and
Ce. On the other hand, in Tables 2 and 3, since the number
of codewords of weight w is larger as weight w is larger, it
is infeasible to find all codewords of the weight. Then we
cannot evaluate the weight distribution from B/,. However,
we can approximately evaluate the weight distribution by A,

computed by Eq. (15).
6. Conclusion

In this paper, we proposed a probabilistic method for com-
puting the weight distribution of LDPC codes. The proposed
method efficiently finds low-weight codewords in a given
LDPC code by using Stern’s algorithm, and stochastically
computes the low-part weight distribution from the relation
between the number of codewords with a given weight and
the rate of generating the codewords in Stern’s algorithm.
Our method enables to compute the low-part weight distri-
bution of LDPC codes with the widely-used random con-
structions, since such codes contain few low-weight code-
words and our method can find the codewords for many it-
erations. Even if the code contains many codewords of the
given weight, our method can approximately evaluate the
weight distribution.

1686

Table 3 The weight distribution for low-weight codewords of irregular
LDPC codes computed by the proposed method.

Irregular (504, 252) PEG code Cs

‘ w H w215 By (B,) ‘ Ay
13 || 1.877 x 1072 | 184820 (1) 1
14 || 1.223 %1072 | 119853 (1) 1
15 || 7.742 % 1073 | 377117 (5) 5

16 || 4.780 % 1073
17 || 2.888 x 1073
18 || 1.712x 1073
19 || 9.968 x 107*
20 || 5.715% 107

510167 (11) 11
445115 (16) 1
460350 (28) 27
569941 (60) 57
654276 (121) | 114

wh

Irregular (1008, 504) PEG code C¢

‘ w H Rw2l? By (B)) | Aw
13 || 2.404 % 1072 | 236934 (1) I
16 || 6.784 x 1073 | 197852 (3) 3
17 || 4252% 1073 | 123029 (3) 3
18 || 2.618x 1073 | 100835 (4) 4
19 || 1.586 % 1073 | 45508 (3) 3
20 || 9.469 x 107 80826 (9) 9
21 || 5.582x107* | 58089 (11) 10
22 || 3.252x 107* | 112956 (37) 35

We computed the weight distribution of MacKay’s
(495,433), (504,252), (1008,504) codes, irregular (504,
252), (1008, 504) PEG codes, and (4896, 2474) Ramanujan-
Margulis code by using the proposed method. In these re-
sults, for MacKay’s (1008, 504) code, we found a minimum-
weight codeword which has not been reported in [18], [22]
and [23]. Additionally, for other codes, we found a lot of
low-weight codewords which have not been found by the
NNCS approach and the modified EI algorithm.

Our method can give good approximate weight distri-
bution for low-weight codewords of LDPC codes. It can be
used for the evaluation of the ML decoding performance of
LDPC codes, and is effective in the performance evaluation
of LDPC codes.

References

[1] R.G. Gallager, Low Density Parity Check Codes, MIT Press, Cam-
bridge, 1963.

[2] D.J.C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol.45, no.2, pp.399-431, March
1999.

[3] G. Miller and D. Burshtein, “Bounds on the maximum-likelihood
decoding error probability of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol.47, no.7, pp.2696-2710, Nov. 2001.

[4] R. Ikegaya, K. Kasai, T. Shibuya, and K. Sakaniwa, ‘“Performance
of standard irregular LDPC codes under maximum likelihood decod-
ing,” IEICE Trans. Fundamentals, vol.E90-A, no.7, pp.1432-1443,
July 2007.

[5] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-
check codes: Asymptotic distance distributions,” IEEE Trans. Inf.
Theory, vol.48, no.4, pp.887-908, April 2002.

[6] S. Litsyn and V. Shevelev, “Distance distributions in ensembles of
irregular low-density parity-check codes,” IEEE Trans. Inf. Theory,

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

vol.49, no.12, pp.3140-3159, Dec. 2003.

C. Di, T.J. Richardson, and R.L. Urbanke, “Weight distribution of
low-density parity-check codes,” IEEE Trans. Inf. Theory, vol.52,
no.11, pp.4839-4855, Nov. 2006.

E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Trans. Inf. Theory,
vol.24, no.3, pp.384-386, May 1978.

A. Vardy, “The intractability of computing the minimum distance of
a code,” IEEE Trans. Inf. Theory, vol.43, no.6, pp.1757-1766, Nov.
1997.

R.M. Tanner, “Minimum-distance bounds by graph analysis,” IEEE
Trans. Inf. Theory, vol.47, no.2, pp.808-821, Feb. 2001.

D.J.C. MacKay and M. Daver, “Evaluation of Gallager codes for
short block length and high rate applications,” Codes, Systems, and
Graphical Models, ed. B. Marcus and J. Rosenthal, The IMA vol-
umes in Mathematics and its Applications, vol.123, pp.113-130,
Springer-Verlag, New York, 2001.

M.P.C. Fossorier, “Quasi-cyclic low density parity check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol.50,
no.8, pp.1788-1793, Aug. 2004.

T. Mittelholzer, “Efficient encoding and minimum distance bounds
of Reed-Solomon-type array codes,” Proc. 2002 IEEE Int. Sympo-
sium on Information Theory, p.282, 2002.

K. Yang and T. Helleseth, “On the minimum distance of array codes
as LDPC codes,” IEEE Trans. Inf. Theory, vol.49, no.12, pp.3268—
3271, Dec. 2003.

K. Sugiyama and Y. Kaji, “On the minimum weight of simple full-
length array LDPC codes,” IEICE Trans. Fundamentals, vol.E91-A,
n0.6, pp.1502—1508, June 2008.

Y. Kaji, “On the number of minimum weight codewords of SFA-
LDPC codes with column weight three and five,” Proc. 31th Sym-
posium on Information Theory and Its Applications, pp.1-6, Oct.
2008.

Y. Kou, S. Lin, and M.P.C. Fossorier, “Low-density parity-check
codes based on finite geometries: A rediscovery and new results,”
IEEE Trans. Inf. Theory, vol.47, no.7, pp.2711-2736, Nov. 2001.
X.-Y. Hu, M.P.C. Fossorier, and E. Eleftheriou, “On the computation
of the minimum distance of low-density parity-check codes,” Proc.
2004 IEEE Int. Conference on Communications, pp.767-771, June
2004.

X.-Y. Hu, M.P.C. Fossorier, and E. Eleftheriou, “Approximate algo-
rithms for computing the minimum distance of low-density parity-
check codes,” Proc. 2004 IEEE Int. Symposium on Information The-
ory, p.475, Chicago, USA, June/July 2004.

C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard, “Computing
the minimum distance of linear codes by the error impulse method,”
Proc. IEEE Global Telecommunications Conference 2002, pp.1017-
1020, Taiwan, R.O.C., Nov. 2002.

M.P.C. Fossorier, “Iterative reliability-based decoding of low-
density parity-check codes,” IEEE J. Sel. Areas Commun., vol.19,
no.5, pp.908-917, May 2001.

C. Tissieres, Exploring algorithms for finding low-weight code-
words, Diploma Thesis, Univ. of Hawaii and EPFL Lausanne, Sept.
2004.

F. Daneshgaran, M. Laddomada, and M. Mondin, “An algorithm for
the computation of the minimum distance of LDPC codes,” Euro-
pean Trans. Telecommunications, vol.17, no.1, pp.57-62, Jan. 2006.
M. Hirotomo, M. Mobhri, and M. Morii, “A probabilistic computa-
tion method for the weight distribution of low-density parity-check
codes,” Proc. 2005 IEEE Int. Symposium on Information Theory,
pp-2166-2170, Adelaide, Australia, Sept. 2005.

J.S. Leon, “A probabilistic algorithm for computing minimum
weights of large error-correcting codes,” IEEE Trans. Inf. Theory,
vol.34, no.5, pp.1354-1359, Sept. 1988.

J. Stern, “A method for finding codewords of small weight,” Coding
Theory and Applications, ed. G. Cohen and J. Wolfmann, LNCS
388, pp.106-113, Springer-Verlag, New York, 1989.

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES

[27] A. Canteaut and F. Chabaud, “A new algorithm for finding
minimum-weight words in a linear code: Application to McEliece’s
cryptosystem and to narrow-sense BCH codes of length 511,” IEEE
Trans. Inf. Theory, vol.44, no.1, pp.367-378, Jan. 1998.

[28] F. Chabaud, “On the security of some cryptosystems based on error-
correcting codes,” Advances in Cryptology —EUROCRYPT 94,
ed. A. De Santis, LNCS 950, pp.131-139, Springer-Verlag, New
York, 1994.

[29] D.J.C. MacKay, Encyclopedia of sparse graph codes, http://www.
inference.phy.cam.ac.uk/mackay/codes/data.html

[30] J. Rosenthal and P.O. Vontobel, “Construction of LDPC codes based
on Ramanujan graphs and ideas from Margulis,” Proc. 38th An-
nual Allerton Conf. on Communication, Control, and Computing,
pp-248-257, Monticello, IL, Oct. 2000.

[31] M. Hirotomo, M. Mohri, and M. Morii, “On the capability of the
probabilistic method for computing the weight distribution of LDPC
codes,” Proc. 30th Symposium on Information Theory and its Appli-
cations, pp.556-561, Nov. 2007.

[32] X.-Y. Hu, E. Eleftheriou, and D.M. Arnold, “Regular and irregular
progressive edge-growth Tanner graphs,” IEEE Trans. Inf. Theory,
vol.51, no.1, pp.386-398, Jan. 2005.

[33] T. Richardson, “Error floors of LDPC codes,” Proc. 41th An-
nual Allerton Conf. on Communication, Control, and Computing,
pp.1426-1435, Monticello, IL, Oct. 2003.

[34] C.A. Cole, S.G. Wilson, E.K. Hall, and T.R. Giallorenzi, “A gen-
eral method for finding low error rates of LDPC codes,” Available:
http://arxiv.org/abs/cs.IT/0605051

Block Error Probability of Cq, C, C3, Cy4,
C5 and C6

Appendix:

We evaluate decoding error probabilities of MacKay’s
(495,433) code C;, (504,252) code C,, (1008,504) code
C3, (4896,2474) Ramanujan-Margulis code Cy4, irregular
(504, 252) PEG code Cs and irregular (1008, 504) PEG code
Cs using the union bound computed from the weight distri-
bution shown in Table 2. The purpose is to compare the de-
coding error probability estimated by the weight distribution
obtained by our method with by the conventional methods.
The union bound is well known that the block error proba-
bility of a linear block code of rate R = % with maximum-
likelihood decoding in AWGN channel, and it can be upper-
bounded by the following expression:

1+ 2wRE,
P, <= > A, —,
s 2oV

where Q(-) is the Gaussian integral function defined as

(A-1)

0(x) = ‘/% [¢~7dz. The union bound may not be the
only way to estimate the performance under iterative decod-
ing at low error rate, because the performance is discussed
by pseudo-codewords and trapping sets [33]. But it still is a
useful tool as it may suggest error floors.

Figures A- 1, A-2, A-3, A-4, A-5 and A- 6 show union
bounds on block error probabilities of C;, Ca, C3, C4, Cs
and C¢ respectively. These are computed from the weight
distribution A,,, ANNCS and AME! shown in Tables 2 and 3.
In addition, the block error probabilities of Cy, Cs, C3, Cy,
Cs and C¢ simulated by the sum-product decoder are shown
in Figs. A-1-A-6. In Figs.A-1, A-2 and A-4, the union

1687
10°
*...

107!

107 *

107
=
3 ~ 3
g w0 iy
g .
a0
g
i
5 10 %
°
o

107

107

10 | — Union bound of C; computed by A, in Table 2

7777777 Union bound of C; computed by ANY® in Table 2
+--- Simulation of C;
lO—lU 1 1 1 1
3 4 5 6 7 8
SNR Ey/N, [dB]
Fig.A-1 The union bound computed from the weight distribution shown

in Table 2 and the block error probability of simulated performance of
MacKay’s (495, 433) code Cj.

10
+.
102 -
10 :
.

107
z
g 10
Qo
o
T oo
s
u 2
g 10"
2
@

107

I(-rlﬁ

107" | — Union bound of C; computed by A, in Table 2

7777777 Union bound of C, computed by ANNCS in Table 2
5 <+ Simulation of C,
lO—AD 1 1 1 1
0 1 2 3 4 5 6
SNR E,/No [dB]
Fig.A-2 The union bound computed from the weight distribution shown

in Table 2 and the block error probability of simulated performance of
MacKay’s (504, 252) code C».

10"

e,
o
107
iy
~10 S

z 10 !
=
©
Qo
[
a 15
§ 10
i
x
S
S
o 10-20

107

——— Union bound of C3 computed by A, in Table 2
7777777 Union bound of C; computed by ANNCS in Table 2
<+ Simulation of C3
lO—KO 1 1 1 1
1 2 3 4 5 6
SNR Ey/No [dB]
Fig.A-3 The union bound computed from the weight distribution shown

in Table 2 and the block error probability of simulated performance of
MacKay’s (1008, 504) code C3.

1688
10° -
-
*,
iy
107 3
\\ g

2 o
o
[
o
8
o :
g 10"
L
[

107

—— Union bound of C; computed by A, in Table 2
--- Union bound of C, computed by AYN® in Table 2
"""" Union bound of C; computed by AM! in Table 2
4+ Simulation of Cy
lOfZﬁ 1 1 1 1
1 2 3 4 5 6
SNR Ey/No [dB]
Fig.A-4 The union bound computed from the weight distribution shown

in Table 2 and the block error probability of simulated performance of
(4896, 2474) Ramanujan-Margulis code Cj.

10" e —
.,
107
\ .
10
z
2 g
=6 3
g w
[N
s
TS
<
]
S
m
1071
107"
Union bound of Cs computed by A, in Table 3
-+ Simulation of Cs
10—|4 1 1 1
1 2 3 4 5 6
SNR E,/N [dB]
Fig.A-5 The union bound computed from the weight distribution shown

in Table 3 and the block error probability of simulated performance of ir-
regular (504, 252) PEG code Cs.

bound computed from A, is almost equal to that computed
by ANNCS and AME! since the weight distribution computed
by the proposed method A, is almost equal to that com-
puted by the NNCS approach ANNCS and the modified EI
algorithm AME! for low weight w. On the other hand, in
Fig. A- 3, there is some difference between the error proba-
bility computed by A, and that computed by ANNCS | since
though our method could find a codeword of weight 30, the
NNCS approach could not find the codeword. Additionally,
the simulated error probabilities converge the union bound
at high SNR region in Figs. A-1, A-2, A-5 and A-6. But,
in Figs. A-2 and A. 3, there is difference between the simu-
lated error probabilities and the union bound, since the per-
formance of LDPC codes decoded by iterative algorithms
may have influence on pseudo-codeword and trapping sets
of C, and C5 [34].

IEICE TRANS. FUNDAMENTALS, VOL.E92-A, NO.7 JULY 2009

10° o
Py *,

107 ‘

107
£

"

g w0
% +
g
TN
x
[53
S
[

lO—Iﬂ

107"

Union bound of Cs computed by A, in Table 3
4+ Simulation of Cs
lOfM 1 1 1
1 2 3 4 5 6
SNR E,/No [dB]
Fig.A-6 The union bound computed from the weight distribution shown

in Table 3 and the block error probability of simulated performance of ir-
regular (1008, 504) PEG code Cs.

Masanori Hirotomo received the B.E.,
M.E. and D.E. degrees in information engineer-
ing from the University of Tokushima, Japan, in
2000, 2002, and 2006 respectively. From 2005
to 2006 he was a Research Associate at the De-
partment of Intelligent Systems and Information
Science, Faculty of Engineering, the University
of Tokushima, Japan. From 2006 to 2008 he was
a Researcher at the Hyogo Institute of Informa-
tion Education Foundation, Japan. Since 2008,
he has been an Assistant Professor at the Grad-
uate School of Engineering, Kobe University, Japan. His research interests
are in coding theory and information security. He is a member of the IEEE
and the Society of Information Theory and Its Applications.

Masami Mohri received the B.E. degree
in Information Science and the M.E. degree
in Information Science from Ehime University,
Ehime, Japan, in 1993 and 1995 respectively.
And she received the Ph.D. degree in Informa-
tion Science and Intelligent Systems from the
University of Tokushima, Tokushima, Japan, in
2002. From 1995 to 1998 she was an assis-
tant professor at the Department of Management
and Information Science, Kagawa junior col-
lege, Japan. From 1998 to 2002 she was a re-
search associator of the Department of Intelligent Systems and Information
Science, Faculty of Engineering at the University of Tokushima, Japan.
From 2003 to 2008 she was a lecturer of the Department of Intelligent
Systems and Information Science, at the University of Tokushima, Japan.
Since 2008, she has been an associate professor at the Information and Mul-
timedia Center, Gifu University, Japan. Her research interests are in coding
theory and network security. She is a member of the IEEE and the Society
of Information Theory and Its Applications.

HIROTOMO et al.: A PROBABILISTIC ALGORITHM FOR COMPUTING THE WEIGHT DISTRIBUTION OF LDPC CODES
1689

Masakatu Morii received the B.E. de-
gree in electrical engineering and the M.E. de-
gree in electronics engineering from Saga Uni-
versity, Saga, Japan, and the D.E. degree in com-
munication engineering from Osaka University,
Osaka, Japan, in 1983, 1985, and 1989, respec-
tively. From 1989 to 1990 he was an Instruc-
tor in the Department of Electronics and Infor-
mation Science, Kyoto Institute of Technology,
Japan. From 1990 to 1995 he was an Associate
Professor at the Department of Computer Sci-
ence, Faculty of Engineering at Ehime University, Japan. From 1995 to
2005 he was a Professor at the Department of Intelligent Systems and In-
formation Science, Faculty of Engineering at the University of Tokushima,
Japan. Since 2005, he has been a Professor at the Department of Electrical
and Electronics Engineering, Faculty of Engineering at the Kobe Univer-
sity, Japan. His research interests are in error correcting codes, cryptogra-
phy, discrete mathematics and computer networks and information security.
Dr. Morii is a member of the IEEE, the Information Processing Society of
Japan and the Society of Information Theory and Its Applications.

