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Abstract: When a store sells items to customers, the store wishes to decide the prices of items to maximize
its profit. Intuitively, if the store sells the items with low (resp. high) prices, the customers buy more (resp.
less) items, which provides less profit to the store. So it would be hard for the store to decide the prices of
items. Assume that the store has a set V of n items and there is a set E ofm customers who wish to buy the
items, and also assume that each item i ∈ V has the production cost di and each customer ej ∈ E has the
valuation vj on the bundle ej ⊆ V of items. When the store sells an item i ∈ V at the price ri, the profit for
the item i is pi = ri−di. The goal of the store is to decide the price of each item to maximize its total profit.
We refer to this maximization problem as the item pricing problem. In most of the previous works, the item
pricing problem was considered under the assumption that pi ≥ 0 for each i ∈ V , however, Balcan, et al. [In
Proc. of WINE, LNCS 4858, 2007] introduced the notion of “loss-leader,” and showed that the seller can
get more total profit in the case that pi < 0 is allowed than in the case that pi < 0 is not allowed. In this pa-
per, we consider the line highway problem (in which each customer is interested in an interval on the line of
the items) and the cycle highway problem (in which each customer is interested in an interval on the cycle of
the items), and show approximation algorithms for the line highway problem and the cycle highway prob-
lem in which the smallest valuation is s and the largest valuation is ℓ (this is called an [s, ℓ]-valuation set-
ting) or all valuations are identical (this is called a single valuation setting).

Keywords: Line Highway Problem, Cycle Highway Problem, Multi-Valuations, Single-Valuation.

1 Introduction

1.1 Background

When a store sells items to customers, the store wishes to decide the prices of items to maximize its profit.
Intuitively, if the store sells the items with low (resp. high) prices, then the customers buy more (resp. less)
items, which provides less profit to the store. So it would be hard for the store to decide the prices of items.
Assume that the store has a set I = {1, 2, . . . , n} of n items and there is a set C = {c1, c2, . . . , cm} of m cus-
tomers who wish to buy the items. The goal of the store is to decide the price of each item to maximize its
profit. We refer to this problem as the item pricing problem. We classify the item pricing problem accord-
ing to how many items the store can sell and how the customers valuate items. If the store can sell each item
i with unlimited (resp. limited) amount, we refer to this as the unlimited (resp. limited) supply model. The
item pricing problem is said to be single-minded [10] if each customer cj ∈ C is interested in only a sin-
gle bundle ej = {j1, j2, . . . , } ⊆ I of items with valuation vj ≥ 0 and has valuation “0” on all other bundles
of items. We say that the item pricing problem is unit-demand [10] if each customer cj ∈ C assigns valua-
tion vij ≥ 0 to each item i ∈ I and buys one of the most beneficial items for cj ∈ C.

By regarding the set I of n items as the set V of n vertices and the set C of m customers as the set
E of m hyperedges, each of which has weight vj ≥ 0, this can be formulated by a weighted hypergraph
G̃ = (V,E, {vj}). Note that the hypergraph G̃ might have selfloops (corresponding to customers that are
interested in a single item) and multiedges (corresponding to customers that want to get the same bundle of
items). For a weighted hypergraph G̃ = (V,E, {vj}), assume that each item i ∈ V has the production cost
di and each customer ej ∈ E has the valuation vj . For G̃, we define a reduced instance G = (V,E, {wj}) to
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be wj = vj−
∑

i∈ej
di for each ej ∈ E. If an item i ∈ V is assigned a price pi in the reduced instance G, then

its selling price is given by ri = pi+di. In this paper, we focus on the single-minded and unlimited supply
model and consider reduced instances G’s of weighted hypergraphs. We say that G = (V,E, {wj}) is an in-
stance of the k-hypergraph vertex pricing problem if |ej | ≤ k for each ej ∈ E, an instance of the graph vertex

pricing problem if |ej | ≤ 2 for each ej ∈ E, and an instance of the bipartite graph vertex pricing problem if
G is a bipartite graph. As a special case of the hypergraph vertex pricing problem, we also say that G =
(V,E, {wj}) is an instance of the highway problem if each ej ∈ E is an interval on V (the definition will be
given in Definition 2.5 for the line highway problem and in Definition 2.6 for the cycle highway problem).

In most of the previous works [1, 4, 5, 10], the item pricing problem is considered under the model that
pi ≥ 0 for each item i ∈ V (this is called the positive price model). By introducing the notion of loss-leader
[6], however, Balcan, et al. [3] consider several price models in which pi < 0 for some item i ∈ V (these are
referred to as the discount model, the B-bounded discount model, the coupon model, etc., and are formally
defined in Subsection 2.1), and showed that the seller could get more profit in the case that pi < 0 is allowed
than in the case that pi < 0 is not allowed.

1.2 Related Works

1.2.1 Positive Price Models

For the hypergraph vertex pricing problem, Guruswami, et al. [10, Theorem 5.2] show an O(logm+log n)-
approximation algorithm. On the other hand, Demaine, et al. [7, Theorem 3.2] present that it is hard to ap-
proximate the hypergraph vertex pricing problem within a factor of logδ n for some δ > 0 under the as-
sumption that NP 6⊆ BPTIME(2n

ǫ

) for some ǫ > 0. For the k-hypergraph vertex pricing problem, Briest
and Krysta [4, Theorem 5.1] show an O(k2)-approximation algorithm, which is improved to an O(k)-ap-
proximation algorithm [1, Theorem 2]. For the graph vertex pricing problem, Balcan and Blum derive a
1/4-approximation algorithm [1, Theorem 1], while by the reduction from the vertex cover, Guruswami, et
al. [10, Theorem 3.1] show that the graph vertex pricing problem is APX-hard even when all valuations are
identical (if selfloops are allowed) or all valuations are either 1 or 2 (if selfloops are not allowed). For the
highway problem, Balcan and Blum [1, Theorem 3] show an O(log n)-approximation algorithm and for the
highway problem that forms a hierarchy, Balcan and Blum [1, Theorem 4] show a fully polynomial time ap-
proximation scheme. For the nonapproximability for the highway problem, see [4, 9].

1.2.2 Other Models Based on Loss-Leader

For the highway problem, we know the Ω(log n) gap between the positive price model and the (B-bounded)
discount model [2, Theorem 1], and the Ω(log n) gap between the coupon model and the (B-bounded) dis-
count model [2, Theorem 2]. For the graph vertex pricing problem, the Ω(log n) gap between the positive
price model and theB-bounded discount model [2, Theorem 3] is known. For the highway problem, Balcan,
et al. [3, Theorem 3] show a 2.33-approximation algorithm under the coupon model if all valuations are i-
dentical and for the highway problem on tree, Balcan, et al. [2, Theorem 15] show a 4-approximation algo-
rithm under the coupon model if all valuations are identical.

1.3 Main Results

In this paper, we consider the highway problem with [s, ℓ]-valuation, which is the highway problem with the
smallest valuation s and the largest valuation ℓ. We also classify the highway problem into the line highway
problem and the cycle highway problem in which each interval is defined on the line of items and the cycle
of items, respectively. Then we consider the line highway problem with [s, ℓ]-valuation and the cycle high-
way problem with [s, ℓ]-valuation and a single valuation.
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Theorem 3.3: On an instanceG = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation, the algo-
rithm Line[s,ℓ] outputs a price vector p that satisfies

Optcoup(G)

E[Profitcoup(p)]
≤







4(1− ln r) 0 ≤ r ≤ α, 1/
√
e ≤ r ≤ 1;

3/r α < r ≤ 1/2;
6 1/2 < r < 1/

√
e,

where r = s/ℓ is the ratio between the smallest and the largest valuations and α ≈ 0.3824, i.e., α is the so-

lution of the equality 3/x = 4(1 − lnx).

Theorem 4.1: On an instance G = (V,E, {wj}) of the cycle highway problem with [s, ℓ]-valuation, the al-
gorithm Cycle[s,ℓ] outputs a price vector p that satisfies

Optcoup(G) ≤ 4(1 − ln r) ·E[Profitcoup(p)],

where r = s/ℓ is the ratio between the smallest and the largest valuations and α ≈ 0.3824, i.e., α is the so-

lution of the equality 3/x = 4(1 − lnx).

Theorem 4.2: On an instance G = (V,E) of the cycle highway problem with a single valuation, the algo-

rithm Cyc Single Val outputs a price vector p that satisfies

Optcoup(G) ≤ 2.747 · Profitcoup(p).

For the line highway problem, Theorem 3.3 is an extension of the 2.33-approximation algorithm with a sin-
gle valuation due to Balcan, et al. [3, Theorem 3]. The cycle highway problem is introduced in this paper as
a generalization of the line highway problem, and Theorem 4.2 can be regarded as an extension of the 2.33-
approximation algorithm for the line highway problem with a single valuation [3, Theorem 3].

2 Preliminaries

2.1 Price Models

LetG = (V,E, {wj}) be a reduced instance of the item pricing problem. For a hyperedge ej ∈ E and a price
vector p = (p1, p2, . . . , pn) over the n vertices, let p(ej) =

∑

i∈ej
pi be the sum of the profit on ej ∈ E, i.e.,

the profit that is returned from the customer ej ∈ E for the price vector p.
In most of the previous works [1, 4, 5, 10], the item pricing problem is considered under the model that

pi ≥ 0 for each item i ∈ V . By introducing the notion of loss-leader , however, Balcan, et al. [3] considered
several price models in which pi < 0 for some item i ∈ V , and showed that the seller could get more profit
in the case that pi < 0 is allowed than in the case that pi < 0 is not allowed. In the following, we formally
present the definitions of price models [3] with respect to the reduced instance.

Definition 2.1 (Positive Price Model) Under the condition that pi ≥ 0 for each i ∈ V , find a price vector

p = (p1, p2, . . . , pn) that maximizes Profitpos(p) =
∑

ej∈E:wj≥p(ej)
p(ej).

Definition 2.2 (Discount Model) Find a price vector p = (p1, p2, . . . , pn) that maximizes Profitdisc(p) =
∑

ej∈E:wj≥p(ej)
p(ej).

Definition 2.3 (B-Bounded Discount Model) Under the conditions that di = B and pi ≥ −B for each i ∈
V , find a price vector p = (p1, p2, . . . , pn) that maximizes ProfitB(p) =

∑

ej∈E:wj≥p(ej)
p(ej).

Definition 2.4 (Coupon Model) Find a price vector p = (p1, p2, . . . , pn) that maximizes Profitcoup(p) =
∑

ej∈E:wj≥p(ej)
max{p(ej), 0}.

Under the coupon model, if wj ≤ 0, then ej never contributes to the profit for any price vector p. So with-
out loss of generality, we assume that wj > 0 for each j ∈ [1,m] under the coupon model.

3



2.2 Highway Problem

For any pair of integers a ≤ b, let [a, b] = {a, a+ 1, . . . , b}. Informally, we say that G = (V,E, {wj}) is an
instance of the line highway problem [10] if each ej ∈ E is an interval in the line on V . We introduce the
cycle highway problem as a generalization of the line highway problem, and we say that G = (V,E, {wj}) is
an instance of the cycle highway problem if each ej ∈ E is an interval in the cycle on V .

Definition 2.5 We say that G = (V,E, {wj}) is a reduced instance of the line highway problem if ej =
[js, jt] ⊆ V for each ej ∈ E, where V = [1, n] and 1 ≤ js ≤ jt ≤ n.

Definition 2.6 We say that G = (V,E, {wj}) is a reduced instance of the cycle highway problem if ej =
[js, jt] ⊆ V or ej = [jt, n] ∪ [1, js] ⊆ V for each ej ∈ E, where V = [1, n] and 1 ≤ js ≤ jt ≤ n.

We say that G = (V,E, {wj}) is an instance of the line (or cycle) highway problem with [s, ℓ]-valuation if
s = minj∈[1,m]wj and ℓ = maxj∈[1,m]wj . In particular, we say that G = (V,E, {wj}) is an instance of the
line (or cycle) highway problem with a single valuation if wj = w > 0 for each j ∈ [1,m].

2.3 DAG Representation of the Line Highway Problem

In this subsection, we present the DAG representation of the line highway problem due to Balcan, et al. [3,
§3]. For a reduced instance G = (V,E, {wj}) of the line highway problem, define the DAG representation
H = (U,F, {wj}) of G as follows: For V = {1, 2, . . . , n}, let U = {u0, u1, . . . , un} be the set of n+1 vertices,
and for each ej = [js, jt] ∈ E, let fj = (ujs−1, ujt) ∈ F be the arc ujs−1 → ujt with weight wj.

Let p = (p1, p2, . . . , pn) be a price vector for G = (V,E, {wj}). Then for the DAG representation H =
(U,F, {wj}) of G, define the partial sum for ui ∈ U by si =

∑i
h=1 ph, where s0 = 0. On the other hand, let

s = (s0, s1, . . . , sn) be the partial sum vector for the DAG representation H of G. Then we can define the
price vector p = (p1, p2, . . . , pn) to be pi = si − si−1 for each i ∈ [1, n].

3 Algorithms for the Line Highway Problem

Balcan, et al. [3, Theorem 3] showed a 2.33-approximation algorithm for the line highway problem with a
single valuation. In this section, we consider the line highway problem with [s, ℓ]-valuation.

Let G = (V,E, {wj}) be a reduced instance of the line highway problem with [s, ℓ]-valuation. For each
x ∈ [s, ℓ], we use Ex to denote the set of customers with valuation x ∈ [s, ℓ] and let mx = |Ex|. Note that
ms+ms+1+· · ·+mℓ = m = |E|. Under the coupon model, let p∗

coup be the price vector with the maximum
profit, and let Optcoup(G) = Profitcoup(p

∗
coup) be the maximum total profit returned from the customers

in E. For each x ∈ [s, ℓ], we useOpt
x
coup(G) to denote the fraction ofOptcoup(G) that is returned from the

customers in Ex for the optimal price vector p∗
coup. From the definition ofOpt

x
coup(G) for each x ∈ [s, ℓ], we

immediately have that Optcoup(G) = Opt
s
coup(G) +Opt

s+1
coup(G) + · · ·+Opt

ℓ
coup(G).

Under the coupon model, our algorithm for the line highway problem with [s, ℓ]-valuation consists of
two algorithms Line Random and Line Cut.

3.1 Algorithm: LINE RANDOM

In this subsection, we present the algorithm Line Random for the line highway problem with [s, ℓ]-valua-
tion. The description of the algorithm Line Random is given in Figure 1.

Theorem 3.1 On an instance G = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation, the algo-
rithm Line Random outputs a price vector σ that satisfies

Optcoup(G)

E [Profitcoup(σ)]
≤
{

3/r 0 < r ≤ 1/2;
6 1/2 < r ≤ 1,

4



where r = s/ℓ is the ratio between the smallest and the largest valuations.

Input: A reduced instance G = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation.
Output: A price vector σ = (σ1, σ2, . . . , σn) for G.

1. Construct the DAG representation H = (U,F, {wj}) of G = (V,E, {wj}).
2. For each ui ∈ U , assign a partial sum si ∈ [0, ℓ] for ui uniformly and at random.

3. For each i ∈ V , compute a price σi = si − si−1 for the item i and let σ = (σ1, σ2, . . . , σn).

Figure 1: The algorithm Line Random

Proof: We begin by showing the following claims.

Claim 3.1 Opt
x
coup(G) ≤ mx · x for each x ∈ [s, ℓ].

Proof: For each x ∈ [s, ℓ], the maximum profit returned from a customer ej ∈ Ex is at most x. �

Claim 3.2 For each x ∈ [s, ℓ], let E[Profitx
coup(σ)] be the expected profit returned from the set Ex of cus-

tomers by the algorithm Line Random. Then

E
[

Profit
x
coup(σ)

]

=
mx

6(ℓ+ 1)2
· x(x+ 1)(−2x + 3ℓ+ 2).

Proof: For each x ∈ [s, ℓ] and each e ∈ Ex, let Y
e
x be the profit returned from a customer e ∈ Ex in Step 2

of the algorithm Line Random, and let Yx =
∑

e∈Ex
Y e
x . For each e ∈ Ex, we estimate E[Y e

x ].

E[Y e
x ] =

1

(ℓ+ 1)2
{1 · ℓ+ 2 · (ℓ− 1) + · · ·+ x · (ℓ− x+ 1)}

=
1

(ℓ+ 1)2

x
∑

k=1

k · (ℓ− k + 1) =
1

6(ℓ+ 1)2
· x(x+ 1)(−2x+ 3ℓ+ 2).

Thus from the linearity of expectation [11] and the fact that mx = |Ex|, it follows that for each x ∈ [s, ℓ],
E[Profitx

coup(σ)] = E[Yx] =
∑

e∈Ex
E[Y e

x ] = |Ex| ·E[Y e
x ] = mx ·E[Y e

x ]. �

From Claims 3.1 and 3.2, it follows that for each x ∈ [s, ℓ],

E[Profitx
coup(σ)]

Opt
x
coup(G)

≥ 1

6(ℓ+ 1)2
· (x+ 1)(−2x + 3ℓ+ 2).

Let f(x) = (x+1)(−2x+3ℓ+2) and let Fmin = minx∈[s,ℓ] f(x). Since the function f is convex with respect
to x ∈ [s, ℓ], we have that Fmin = min{f(s), f(ℓ)}. Let g(s, ℓ) = f(ℓ)−f(s) = (ℓ−2s)(ℓ−s) and this implies
that f(ℓ) ≥ f(s) if ℓ ≥ 2s; f(ℓ) < f(s) if s ≤ ℓ < 2s.

For the case that ℓ ≥ 2s, it follows that Fmin = f(s). So we have that for each x ∈ [s, ℓ],

E[Profitx
coup(σ)]

Opt
x
coup(G)

≥ f(x)

6(ℓ+ 1)2
≥ f(s)

6(ℓ+ 1)2
=

(s + 1)(3ℓ− 2s+ 2)

6(ℓ+ 1)2

=
1

6
· s+ 1

ℓ+ 1
· 3ℓ− 2s + 2

ℓ+ 1
≥ 1

6
· s
ℓ
·
(

3− 2s+ 1

ℓ+ 1

)

≥ 1

6
· s
ℓ
·
(

3− ℓ+ 1

ℓ+ 1

)

=
1

3
· s
ℓ
=

r

3
,

5



which implies that E[Profitx
coup(σ)] ≥ (r/3) ·Opt

x
coup(G) for each x ∈ [s, ℓ]. Thus we have that

E[Profitcoup(σ)]

Optcoup(G)
=

E[Profits
coup(σ)] +E[Profits+1

coup(σ)] + · · ·+E[Profitℓ
coup(σ)]

Opt
s
coup(G) +Opt

s+1
coup(G) + · · ·+Opt

ℓ
coup(G)

≥ r

3
·
Opt

s
coup(G) +Opt

s+1
coup(G) + · · ·+Opt

ℓ
coup(G)

Opt
s
coup(G) +Opt

s+1
coup(G) + · · ·+Opt

ℓ
coup(G)

=
r

3
.

For the case that s ≤ ℓ < 2s, it follows that Fmin = f(ℓ). So we have that for each x ∈ [s, ℓ],

E[Profitx
coup(σ)]

Opt
x
coup(G)

≥ f(x)

6(ℓ+ 1)2
≥ f(ℓ)

6(ℓ+ 1)2
=

(ℓ+ 1)(ℓ+ 2)

6(ℓ+ 1)2
=

1

6
· ℓ+ 2

ℓ+ 1
>

1

6
,

which implies that E[Profitx
coup(σ)] ≥ (1/6) ·Opt

x
coup(G) for each x ∈ [s, ℓ]. Thus in a way similar to the

above, we have that E[Profitcoup(σ) ≥ (1/6) ·Optcoup(G).

3.2 Algorithm: LINE CUT

In this subsection, we present the algorithm Line Cut for the line highway problem with [s, ℓ]-valuation.
The description of the algorithm Line Cut is given in Figure 2.

Input: A reduced instance G = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation.
Output: A price vector τ = (τ1, τ2, . . . , τn) for G.

1. Construct the DAG representation H = (U,F, {wj}) of G = (V,E, {wj}).
2. Mark each u ∈ U independently with probability 1/2.

3. Let L ⊆ U be the set of marked vertices and R = U − L ⊆ U be the set of unmarked vertices.

4. Let K be the set of arcs from the vertices in L to the vertices in R.

5. For each x ∈ [s, ℓ], assign a partial sum 0 to all vertices v ∈ L and a partial sum x to all vertices u ∈
R, and compute a price vector τ x.

6. Output the price vector τ that satisfies

Profitcoup(τ ) = max
x∈[s,ℓ]

Profitcoup(τ x).

Figure 2: The Algorithm Line Cut

Theorem 3.2 On an instance G = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation, the algo-
rithm Line Cut outputs a price vector τ that satisfies

Optcoup(G)

E[Profitcoup(τ )]
≤ 4(1− ln r),

where r = s/ℓ is the ratio between the smallest and the largest valuations.

Proof: For the set K of the arcs from the vertices in L to the vertices in R, let Val(K) be the sum of the
valuations of the arcs inK. For each x ∈ [s, ℓ], let Kx be the set of arcs inK with valuation x and let mx =
|Kx|. Then it is immediate to see that Val(K) = ms ·s+ms+1 · (s+1)+ · · ·+mℓ · ℓ. To comlete the proof
of the theorem, we need to show the following claims:

6



Claim 3.3 E[Val(K)] = (1/4) ·∑fj∈F
wj = (1/4) ·∑ej∈E

wj ≥ (1/4) ·Optcoup(G).

Proof: The first equality follows from the definition of U and the first inequality is trivial. �

Claim 3.4 For each x ∈ [s, ℓ], the following holds:

Val(K) = Profitcoup(τ s) +

ℓ
∑

x=s+1

Profitcoup(τ x)

x
.

Proof: From the definition of τx, we have that Profitcoup(τ x) = mx ·x+mx+1 ·x+ · · ·+mℓ ·x for each
x ∈ [s, ℓ]. Then the claim immediately follows from the definition of Val(K). �

From Claims 3.3 and 3.4 and the definition of τ , it follows that

1

4
·Optcoup(G) ≤ E[Val(K)] = E[Profitcoup(τ s)] +

ℓ
∑

x=s+1

E[Profitcoup(τx)]

x

≤ E[Profitcoup(τ )] +

ℓ
∑

x=s+1

E[Profitcoup(τ )]

x
=

(

1 +

ℓ
∑

k=s+1

1

k

)

·E[Profitcoup(τ )].

Since
∑ℓ

k=s+1 1/k ≤ ln(ℓ/s) = − ln r, we have that Optcoup(G) ≤ 4(1 − ln r) ·E[Profitcoup(τ )].

Remark 3.1 The algorithm Line Cut can be easily derandomized by applying pairwise independent 0/1-
random variables with a small sample space [12] in Step 2.

3.3 Algorithm: LINE[s,ℓ]

The algorithm Line[s,ℓ] works as follows: On an instanceG = (V,E, {wj}) of the line highway problem with
[s, ℓ]-valuation, (1) run Line Random on G to get the price vector σ; (2) run Line Cut on G to get the
price vector τ ; (3) output the price vector p that satisfies

Profitcoup(p) = max {Profitcoup(σ),Profitcoup(τ )} .

From Theorems 3.1 and 3.2, we immediately have the following theorem:

Theorem 3.3 On an instance G = (V,E, {wj}) of the line highway problem with [s, ℓ]-valuation, the algo-
rithm Line[s,ℓ] outputs a price vector p that satisfies

Optcoup(G)

E[Profitcoup(p)]
≤







4(1− ln r) 0 ≤ r ≤ α, 1/
√
e ≤ r ≤ 1;

3/r α < r ≤ 1/2;
6 1/2 < r < 1/

√
e,

where r = s/ℓ is the ratio between the smallest and the largest valuations and α ≈ 0.3824, i.e., α is the so-

lution of the equality 3/x = 4(1− lnx).

4 Algorithms for the Cycle Highway Problem

In this section, we first consider the cycle highway problems with [s, ℓ]-valuation and then we consider the
cycle highway problems with a single valuation as the special case of the cycle highway problem with [s, ℓ]-
valuation such that s = ℓ, which also can be regarded as an extension of the line highway problem with a
single valuation discussed by Balcan, et al. [3].
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4.1 Algorithms for the Cycle Highway Problem with [s, ℓ]-Valuation

In this subsection, we present an algorithm Cycle[s,ℓ] for the cycle highway problem with [s, ℓ]-valuation.
For a reduced instance G = (V,E, {wj}) of the cycle highway problem with [s, ℓ]-valuation, define a di-

rected graph H = (U,F, {wj}) as follows: Let V = {1, 2, . . . , n} and each item i ∈ V is arranged in a clock-
wise manner, i.e., we arrange 1 → 2 → · · · → n → 1. For each ej ∈ E, let 1 ≤ js ≤ jt ≤ n. If ej = [js, jt] ⊆
V , then we define fj = (js, jt) to be an arc js → jt with valuation wj ; if ej = [jt, n]∪ [1, js], then we define
fj = (jt, js) to be an arc jt → js with valuation wj. Let F = {fj : ej ∈ E} be the set of arcs and let
U = {js ∈ V : ej = (js, jt) ∈ E} ∪ {jt ∈ V : ej = (js, jt) ∈ E} be the set of vertices.

The description of the algorithm Cycle[s,ℓ] is given in Figure 3.

Input: A reduced instance G = (V,E, {wj}) of the cycle highway problem with [s, ℓ]-valuation.
Output: A price vector p = (p1, p2, . . . , pn) for G.

1. For G = (V,E, {wj}), construct a directed graph H = (U,F, {wj}).
2. Mark each u ∈ U independently with probability 1/2.

3. Let L ⊆ U be the set of marked vertices and R = U − L ⊆ U be the set of unmarked vertices.

4. Let JH = {fj = (aj, bj) ∈ F : aj ∈ L, bj ∈ R} be the set of arcs from the vertices in L to the vertices
in R and remove all arcs in F − JH .

5. For each x ∈ [s, ℓ], assign a partial sum −x/2 to all vertices v ∈ L and a partial sum x/2 to all ver-
tices u ∈ R, and compute a price vector px.

6. Output the price vector p that satisfies Profitcoup(p) = maxx∈[s,ℓ]Profitcoup(px).

Figure 3: The Algorithm Cycle[s,ℓ]

Theorem 4.1 On an instance G = (V,E, {wj}) of the cycle highway problem with [s, ℓ]-valuation, the al-

gorithm Cycle[s,ℓ] outputs a price vector p that satisfies

Optcoup(G) ≤ 4(1 − ln r) ·E[Profitcoup(p)],

where r = s/ℓ is the ratio between the smallest and the largest valuations.

Proof: For the set JH of arcs from the vertices in L to the vertices in R, let Val(JH) be the sum of the val-
uations of the arcs in JH . For each x ∈ [s, ℓ], let Jx

H be the set of arcs in JH with valuation x and let mx =
|Jx

H |. Then we can show the following claims:

Claim 4.1 E[Val(JH)] = (1/4) ·∑fj∈F
wj = (1/4) ·∑ej∈E

wj ≥ (1/4) ·Optcoup(G).

Proof: This can be shown in a way similar to the proof of Claim 3.3. �

Claim 4.2 For the price vector ps,ps+1, . . . ,pℓ and Val(JH), the following holds:

Val(JH) = Profitcoup(ps) +
ℓ
∑

x=s+1

Profitcoup(px)

x
.

Proof: Note that each vertex v ∈ L has no incoming arcs and each vertex u ∈ R has no outgoing arcs. De-
fine the set JG of intervals to be ej ∈ JG if fj ∈ JH . Thus for each x ∈ [s, ℓ], assigning a partial sum−x/2 to
all vertices v ∈ L and assigning a partial sum x/2 to all vertices u ∈ R implies that each ej ∈ JG is assigned
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x = x/2−(−x/2) as a total sum of prices for the corresponding items in ej . To define a price vector px, we
appropriately assign prices to all items that are not assigned prices (this does not reduce the profit returned
from the customers ej ∈ JG). Then we have that Profitcoup(px) = mx ·x+mx+1 ·x+ · · ·+mℓ ·x for each
x ∈ [s, ℓ]. In a way similar to the proof of Claim 3.4, the claim follows from the definition of Val(JH), i.e.,
Val(JH) = ms · s+ms+1 · (s+ 1) + · · ·+mℓ · ℓ. �

From Claims 4.1 and 4.2 and the definition of p, it follows that

1

4
·Optcoup(G) ≤ E[Val(JH)] = E[Profitcoup(ps)] +

ℓ
∑

x=s+1

E[Profitcoup(px)]

x

≤ E[Profitcoup(p)] +

ℓ
∑

x=s+1

E[Profitcoup(p)]

x
=

(

1 +

ℓ
∑

k=s+1

1

k

)

· E[Profitcoup(p)].

Since
∑ℓ

k=s+1 1/k ≤ ln(ℓ/s) = − ln r, we have that Optcoup(G) ≤ 4(1 − ln r) ·E[Profitcoup(p)].

Remark 4.1 The algorithm Cycle[s,ℓ] can be easily derandomized by applying pairwise independent 0/1-
random variables with a small sample space [12] in Step 2.

4.2 Algorithms for the Cycle Highway Problem with a Single Valuation

Let G = (V,E, {wj}) be a reduced instance of the cycle highway problem with a single valuation, i.e., r = 1.
So it follows from Theorem 4.1 thatOptcoup(G) ≤ 4·Profitcoup(p). To improve this, we present the algo-
rithm Cyc Single Val for the cycle highway problem with a single valuation. Without loss of generality,
we assume that wj = 1 for each customer ej ∈ E and we use G = (V,E) to denote an instance of the cycle
highway problem with a single valuation. The algorithm Cyc Single Val is given in Figure 4.

Theorem 4.2 On an instance G = (V,E) of the cycle highway problem with a single valuation, the algo-

rithm Cyc Single Val outputs a price vector p that satisfies

Optcoup(G) ≤ 2.747 · Profitcoup(p).

Proof: As in Subsection 4.2, it is obvious that Ein∪Eout ⊆ V . Without loss of generality, we assume that
Ein ∪Eout = V (otherwise the instance G of the cycle highway problem with a single valuation can be re-
garded as an instance of the line highway problem with a single valuation, which has a 2.33-approximation
algorithm due to Balcan, et al [3, Theorem 3]). Let p∗

coup be the price vector with the maximum profit and
Optcoup(G) = Profitcoup(p

∗
coup) be the maximum profit returned from the customers in E. For the opti-

mal price vector p∗
coup, we useOpt

in
coup(G) to denote the fraction of Optcoup(G) that are returned from the

customers in Ein, and we also useOpt
out
coup(G) to denote the fraction of Optcoup(G) that are returned from

the customers in Eout. It is obvious that Optcoup(G) = Opt
in
coup(G) +Opt

out
coup(G).

For each ej ∈ Ein, let e
L
j ⊆ ej−{h} (resp. eRj ⊆ ej−{h}) be the subinterval on the left (resp. the right)

of h. For each ej ∈ Ein, we have that e
L
j ∩eRj = ∅ and ej = eLj ∪eRj ∪{h}. To complete the proof of the the-

orem, we need to show the following claims:

Claim 4.3 Profitcoup(σ) = |Ein| ≥ Opt
in
coup(G).

Proof: This follows from the fact that each customer in Ein provides profit “1.” �

Claim 4.4 Profitcoup(τ out) ≥ Opt
out
coup(G)/a, where a ≈ 2.33.

Proof: This follows from the result due to Balcan, et al. [3, Theorem 3]. �
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Input: A reduced instance G = (V,E) of the cycle highway problem with a single valuation.
Output: A price vector p = (p1, p2, . . . , pn) for G.

1. Choose an item h ∈ V arbitrarily.

2. Let Jin = {j ∈ [1,m] : ej ∈ E, h ∈ ej} and Ein = {ej ∈ E : i ∈ Jin}. Let Vin = ∪j∈Jinej be the set
of items that the customers in Ein are interested in.

3. Let Jout = {j ∈ [1,m] : ej ∈ E, h 6∈ ej} and Eout = {ej ∈ E : j ∈ Jout}. Let Vout = ∪j∈Joutej be the
set of items that the customers in Eout are interested in.

4. Define a price vector σ by assigning x to 1 and by assigning 0 to all i ∈ V − {h}.
5. Regard Gout = (Vout, Eout) as an instance of the line highway problem with a single valuation.

6. On input Gout = (Vout, Eout), run the algorithm due to Balcan, et al. [3, Theorem 3] to compute a
price vector τ out for the set Vout of items.

7. For each x ∈ {−1, 0, 1, 2}, define a price vector τ x
in for the set Vin of items by assigning x to h and

by assigning 0 to all i ∈ Vin − (Vout ∪ {h}), and let τ = (τ out, τ in), where

Profitcoup(τ in) = max
x∈{−1,0,1,2}

Profitcoup(τ
x
in).

8. Output the price vector p that satisfies

Profitcoup(p) = max {Profitcoup(σ),Profitcoup(τ )} .

Figure 4: The Algorithm Cyc Single Val

Claim 4.5 For each ej ∈ Ein, the sum of the prices for the items in eRj is either 0 or 1, and the sum of the

prices for the items in eLj is either −1, 0, or 1.

Proof: For Gout = (Vout, Eout) in Step 6 of the algorithm Cyc Single Val, let Hout = (Uout, Fout) be the
DAG representation of Gout and let Uout = {u0, u1, . . . , uk}. Let s = (s0, s1, . . . , sk) be the partial sum vec-
tor output by the algorithm due to Balcan, et al. [3, Theorem 3] on Hout. On input Hout, the algorithm [3,
Theorem 3] computes the directed cut (UL

out : U
R
out) by running the algorithm due to Feige and Goemans [8]

and defines the partial sum vector s by assigning 0 to all i ∈ UL
out and by assigning 1 to al i ∈ UR

out. For the
DAG representation Hout = (Uout, Fout) of Gout, it is easy to see that u0 ∈ Uout has no incoming arcs. Thus
if u0 ∈ UR

out, then by moving u0 from UR
out to UL

out, we have the directed cut (UL
out∪{u0} : UR

out−{u0}}) in-
cluding more crossing arcs than the directed cut (UL

out : U
R
out}). So without loss of generality, we assume

that u0 ∈ UL
out for the directed cut (UL

out, U
R
out). This implies that s0 = 0 and si ∈ {0, 1} for each 1 ≤ i ≤ k.

For each ej ∈ Ein ⊆ Vin, let e
′
j = ej∩Vout = {vout1 , vout2 , . . . , voutt }. So the sum of the prices for the items

vout1 , vout2 , . . . , voutt is st−s0 = st ∈ {0, 1}. On the other hand, we have assigned 0 to all i ∈ Vin−(Vout∪{h})
in Step 7 of the algorithm Cyc Single Val, which implies that for each ej ∈ Ein, the sum of the prices
for the items i ∈ ej − (Vout ∪ {h}) is 0. Thus we have that for each ej ∈ Ein, the sum of the prices for the
items in eRj is st ∈ {0, 1}. In a way similar to eRj , we can immediately show that for each ej ∈ Ein, the sum

of the prices for the items in eLj is either −1, 0, or 1. �

Claim 4.6 Profitcoup(τ ) ≥ Opt
out
coup(G)/a +Opt

in
coup(G)/4, where a ≈ 2.33.

Proof: Define Mh,ML,MR,MLR ⊆ Ein as follows:

Mh = {ej ∈ Ein : eLj = eRj = ∅};

10



ML = {ej ∈ Ein : eLj 6= ∅, eRj = ∅};
MR = {ej ∈ Ein : eLj = ∅, eRj 6= ∅};

MLR = {ej ∈ Ein : eLj 6= ∅, eRj 6= ∅}.

From Claim 4.5, we have that for each ej ∈ Ein, the sum of the prices for the items in eRj is either 0 or 1, and

the sum of the prices for the items in eLj is either −1, 0, or 1. For each β ∈ {−1, 0, 1} and each γ ∈ {0, 1}, we
further partition ML, MR, and MLR according to the sum of the prices.

M(β)
L = {ej ∈ ML : the sum of the prices of items in eLj is β};

M(γ)
R = {ej ∈ MR : the sum of the prices of items in eRj is γ};

M(β,γ)
LR = {ej ∈ MLR : the sum of the prices of items in eLj is β

and the sum of the prices of items in eRj is γ}.

If the price of h ∈ V is x ∈ {−1, 0, 1, 2}, then from the customers in Ein, we can get

Profitcoup(τ
x
in) =



















|M(1,1)
LR | x = −1;

|M(1)
L |+ |M(1)

R |+ |M(0,1)
LR |+ |M(1,0)

LR | x = 0;

|Mh|+ |M(0)
L |+ |M(0)

R |+ |M(−1,1)
LR |+ |M(0,0)

LR | x = 1;

|M(−1)
L |+ |M(−1,0)

LR | x = 2;

Thus in Step 7, we have that Profitcoup(τ in) ≥ |Ein|/4 ≥ Opt
in
coup(G)/4, and it follows from Claim 4.4

that Profitcoup(τ ) ≥ Opt
out
coup(G)/a +Opt

in
coup(G)/4, where a ≈ 2.33. �

From Claims 4.3 and 4.6, we have that

Profitcoup(p) = max {Profitcoup(σ),Profitcoup(τ )}

≥ max

{

Opt
in
coup(G),

Opt
out
coup(G)

a
+

Opt
in
coup(G)

4

}

≥ 4− a

3a+ 4
·Opt

in
coup(G) +

4a

3a+ 4
·
{

Opt
out
coup(G)

a
+

Opt
in
coup(G)

4

}

=
4

3a+ 4
·
{

Opt
in
coup(G) +Opt

out
coup(G)

}

=
4

3a+ 4
·Optcoup(G).

Since a ≈ 2.33, we have that the algorithm Cyc Single Val is a 2.747-approximation algorithm for the
cycle highway problem with a single valuation.

5 Concluding Remarks

In this paper, we have considered the line and cycle highway problems with [s, ℓ]-valuation or a single val-
uation and have shown their approximation algorithms.

Balcan, et al. [2, Theorem 15] consider the tree highway problem with a single valuation as a natural ex-
tension of the line highway problem with a single valuation and showed that it has a 4-approximation algo-
rithm. As a straightforward extension of Theorem 3.1, we can easily show the following theorem for the tree
highway problem with [s, ℓ]-valuation.
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Input: A reduced instance G = (V,E, {wj}) of the tree highway problem with [s, ℓ]-valuation.
Output: A price vector σ = (σ1, σ2, . . . , σn) for G.

1. Choose r ∈ V arbitrarily as a root and construct the DAG representation H = (U,F, {wj}) of
G = (V,E, {wj}).

2. For each ui ∈ U , assign a partial sum si ∈ [0, ℓ] for ui uniformly and at random.

3. For each i ∈ V , compute a price σi = si − si−1 for the item i and let σ = (σ1, σ2, . . . , σn).

Figure 5: The algorithm Line Random

Theorem 5.1 On an instance G = (V,E, {wj}) of the tree highway problem with [s, ℓ]-valuation, the algo-
rithm Tree Random outputs a price vector σ that satisfies

Optcoup(G) ≤ 16

3r
·E [Profitcoup(σ)]

where r = s/ℓ is the ratio between the smallest and the largest valuations.

In this paper, we have focused on the highway problem under the coupon model, however, we do not
know much about the general item pricing problem under the other models such as the discount model,
the B-bounded discount model, etc. So the interesting problem to be considered is

(1) Design algorithms for the general item pricing problems under the (B-bounded) discount model.

We are also interested in the inapproximability for the line and cycle highway problems with [s, ℓ]-valuation
or a single valuation. Thus the interesting problem to be considered is

(2) Derive the nontrivial lower bounds on the approximability for the line and cycle highway problems
with [s, ℓ]-valuation or a single valuation.
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