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Fourier Domain Decoding Algorithm of Non-Binary

LDPC codes for Parallel Implementation

Kenta KASAI†a), Member and Kohichi SAKANIWA†b), Fellow

SUMMARY For decoding non-binary low-density parity-
check (LDPC) codes, logarithm-domain sum-product (Log-SP)
algorithms were proposed for reducing quantization effects of SP
algorithm in conjunction with FFT. Since FFT is not applica-
ble in the logarithm domain, the computations required at check
nodes in the Log-SP algorithms are computationally intensive.
What is worth, check nodes usually have higher degree than vari-
able nodes. As a result, most of the time for decoding is used
for check node computations, which leads to a bottleneck effect.
In this paper, we propose a Log-SP algorithm in the Fourier do-
main. With this algorithm, the role of variable nodes and check
nodes are switched. The intensive computations are spread over
lower-degree variable nodes, which can be efficiently calculated
in parallel. Furthermore, we develop a fast calculation method
for the estimated bits and syndromes in the Fourier domain.
key words: LDPC code, non-binary LDPC codes, belief propa-

gation, Galois field, iterative decoding

1. Introduction

In 1963, Gallager invented binary low-density parity-
check (LDPC) codes [1]. Due to the sparseness of
the code representation, LDPC codes are efficiently de-
coded by sum-product decoders (SP) [2] or Log-SP de-
coders [3]. The Log-SP is also known as belief propa-
gation. By the powerful method density evolution [3],
invented by Richardson and Urbanke, messages of Log-
SP decoding are statistically evaluated. The optimized
LDPC codes can realize the reliable transmissions at
rate very close to the Shannon limit [4].

The binary LDPC codes are defined by sparse
parity-check matrices over GF(2). On the other hand,
the non-binary LDPC codes are defined by sparse
parity-check matrices over GF(2m) for 2m > 2. Non-
binary LDPC codes are invented by Gallager [1] and,
Davey and MacKay [5] found non-binary LDPC codes
can outperform binary ones. Non-binary LDPC codes
have captured much attention recently due to their de-
coding performance [6]–[10].

It is known that irregularity of Tanner graphs help
improve the decoding performance of binary LDPC
codes [4]. On the other hand, it is not the case for
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the non-binary LDPC codes. The (j = 2, k)-regular
non-binary LDPC codes over GF(2m) are empirically
known [11] as the best performing codes for 2m ≥ 64,
especially for short code length. This means that, for
designing non-binary LDPC codes, one does not need
to optimize degree distributions of Tanner graphs, since
(j = 2, k)-regular non-binary LDPC codes are best.
Therefore, we assume j = 2. Furthermore, the sparsity
of (j = 2, k)-regular Tanner graph leads to efficient de-
coding. The coding rate is given by R = 1 − 2/k. It
can be seen that k gets higher as R tends to 1.

In this paper, we deal with the decoding algorithms
of non-binary LDPC codes [5], which is applicable to
the binary LDPC code. Despite of the efficient and
parallel implementation of the Log-SP algorithm, the
application of LDPC codes to the industry is limited
so far. This is due to the requirement of large mem-
ory devices and computationally intensive non-linear
check-node computation for the decoders. The conven-
tional decoding algorithm for non-binary LDPC codes,
compared to the binary counterpart, is computationally
complex and require more memories to store messages.

Immediate use of the SP algorithm for non-binary
LDPC codes over GF(2m) requires O((k − 1)22m) ad-
ditions and multiplications per check node and O(2m)
multiplications per variable node. By FFT and IFFT
[12], the check node computation in the SP algorithm
is largely reduced to O(km2m) additions and multipli-
cations. However, the SP algorithm with FFT is not
robust to a quantization effect since the messages are
recursively multiplied among them. The quantization
effect can not be observed in normal PC-like comput-
ers equipped with 32-bit FPUs and large memory de-
vices. However, the use of such high quantization-level
processors and large memory devices prevents realizing
high-throughput decoders.

In order to avoid the quantization effect or large
memory devices, and to realize the high-throughput de-
coders, the SP algorithms in the logarithm domain [13],
[14] have been proposed. Multiplications are replaced
with additions by treating the messages in the loga-
rithm domain, which reduces the quantization effect.
However, with the logarithm-domain SP algorithm, we
have to give up the efficient calculation of check node
computations, since FFT and IFFT can not be applied
to the messages in the logarithm domain. The check
node computation requires at most O((k−1)22m) times
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of ln(·) exp(·) and additions, or is approximated by
simpler calculations [13], [14], which still requires much
higher computations than variable nodes.

In summary, we face the following problems when
using the SP algorithm in the logarithm domain.

• FFT and IFFT are not applicable to the check
node computations.

• The check node computation requires much higher
computation than that of variable nodes. What is
worse, check nodes have higher degree k = 2/(1−
R) > 2 than variable nodes of degree 2.

It can be seen that the most intensive computations are
calculated at the most crowded nodes, i.e., nodes of the
highest degree. These problems cause a bottleneck at
check node computation. Such a bottleneck problem
can not be solved even by using fully node-parallel pro-
cessors, since the node computations are triggered by
incoming messages. Most of the time for decoding is
used for the check node computations.

In this paper, we propose a decoding algorithm
whose messages consistently stays in the Log-Fourier
domain. With this algorithm, the computations of vari-
able nodes and check nodes are switched. Check nodes
still have higher degree k than variable nodes of degree
2, but the computations for the check node become
much lower. On the other hand, variable nodes re-
quire much more computations, but the degree is only
2. Consequently, the computations for the decoding are
spread all over the nodes.

Note that our interest is not reducing the total
amount of computations for decoding but reducing the
most intensive computation among all the node. Such
reduction is important in the situation that the com-
putation for each node is operated in parallel. The
proposed algorithm removes the obstacles which block
squeezing the potential of parallel implementation of
LDPC codes.

2. Conventional Decoding Algorithms and

Bottleneck Problem

For simplicity, we consider a non-binary (j, k)-regular
LDPC code over GF(2m). The extension to irregular
LDPC codes is straightforward. Let N be the code
length in terms of GF(2m) symbol, then the number of
parity-check constraints is given as M = jN/k. Once a
primitive element α of GF(2m) is fixed, each symbol is
given m-bit representation [15, pp. 110]. For example,
with a primitive element α ∈ GF(23) such that α3 +
α + 1 = 0, each symbol is represented as 0 = (0, 0, 0),
1 = (1, 0, 0), α = (0, 1, 0), α2 = (0, 0, 1), α3 = (1, 1, 0),
α4 = (0, 1, 1), α5 = (1, 1, 1) and α6 = (1, 0, 1). We
shall interchangeably use the two representations, i.e.,
x ∈ GF(2m) as a symbol in the Galois field and a m-bit
vector.

In the binary representation, the codewords can

be viewed as binary sequences of length mN . Given an
M × N parity-check matrix H = {hcv} over GF(2m)
of column weight j and row weight k, the non-binary
LDPC code defined by H is given as

{x ∈ GF(2m)N | Hx = 0 ∈ GF(2m)M}.

The c-th row of the parity-check matrix represents a
parity-check equation

hcv1xv1 + · · ·+ hcvkxvk = 0,

where hcvi , xvi ∈ GF(2m) for i = 1, . . . , k.
The Tanner graph of the non-binary LDPC code

is given by a bipartite graph of N variable nodes and
M check nodes. The v-th variable node and c-th check
node are adjacent each other iff hcv 6= 0. For simplicity,
we denote v-th variable node and c-th check node by
v and c, respectively. Define Vc as the set of adjacent
variable nodes of a check node c. Similarly, define Cv

as the set of adjacent check nodes of a variable node v.
For (j, k)-regular LDPC codes, we have |Vc| = k and
|Cv| = j.

The decoding algorithms for binary and non-
binary LDPC are usually viewed as message-passing

algorithms on the Tanner graphs. All the algorithms
dealt in this paper involve the following 4 steps.

1. INITIALIZATION : For each variable node v(v =
1, . . . , N), the initial message is calculated from the
channel output for the v-th transmitted symbol.
The variable node v sends the initial message to
the adjacent check node c for c ∈ Cv. The iteration
round ℓ is set as ℓ := 0.

2. CHECK TO VARIABLE : Each check node c(c =
1, . . . ,M) has k incoming messages sent from its
k adjacent variable nodes. The check node c com-
putes the outgoing messages to be sent to the k
adjacent variable nodes. Increment the iteration
round as ℓ := ℓ+ 1.

3. VARIABLE TO CHECK : Each variable node v has j
incoming messages sent from its j adjacent check
nodes. With the initial message, the variable node
v computes the outgoing messages to be sent to
the j adjacent check nodes.

4. TENTATIVE DECISION : For each variable node v, a

tentatively estimated symbol x̂
(ℓ)
v ∈ GF(2m) is cal-

culated from the messages sent from its j adjacent
check nodes and the initial message. If the ten-

tatively estimated symbols (x̂
(ℓ)
1 , . . . , x̂

(ℓ)
N ) form a

codeword, the decoder outputs the codeword, oth-
erwise repeats the steps 2, 3 and 4. If the iteration
round ℓ reaches at a pre-determined number, the
decoder outputs FAIL.

The subject in this paper is about the decoding
algorithms for the non-binary LDPC codes. To em-
phasize the difficulty of problems, we first review the
conventional decoding algorithms for non-binary LDPC



codes.

2.1 Conventional Sum-Product Algorithm for Non-
Binary LDPC Code

In this section, we review the conventional decoding
algorithm [16],[17] for non-binary LDPC codes over
GF(2m), i.e., the SP algorithm. In the SP algorithm,
the messages are represented as probability vectors over
GF(2m). Each message is represented as a vector in
[0, 1]2

m

. The algorithm is the symbol-wise maximum
a posterior probability (symbol MAP) decoding if the
Tanner graph is a tree. Even if the Tanner graph is
not a tree, due to its sparseness, the algorithm can ap-
proximates the symbol-MAP decoding. The following
describes the conventional SP algorithm [16],[17].

INITIALIZATION : For each variable node v, the initial
message is given as follows.

p(0)v (x) = Pr(Xv = x|Yv = yv), for x ∈ GF(2m),

whereXv is the random variable of the v-th transmitted
symbol, yv is the channel output of the v-th transmit-
ted symbol and Yv is its random variable. The variable

node v sends the message p
(0)
vc = p

(0)
v ∈ [0, 1]2

m

to c for
c ∈ Cv. Set ℓ := 0.

CHECK TO VARIABLE : Each check node c has k incom-
ing messages p

(ℓ)
vc ∈ [0, 1]2

m

(v ∈ Vc) sent from its k
adjacent variable nodes. The check node c sends the

message p
(ℓ+1)
cv ∈ [0, 1]2

m

to v for v ∈ Vc.

p̃(ℓ)vc (x) = p(ℓ)vc (h
−1
cv x), for x ∈ GF(2m)

p̃(ℓ+1)
cv =

⊗

v′∈Vc\{v}

p̃
(ℓ)
v′c, (1)

p(ℓ+1)
cv (x) = p̃(ℓ+1)

cv (hcvx), for x ∈ GF(2m),

where p1⊗p2 ∈ [0, 1]2
m

is a convolution of p1 ∈ [0, 1]2
m

and p2 ∈ [0, 1]2
m

. To be precise, for x ∈ GF(2m),

(p1 ⊗ p2)(x) =
∑

x1,x2∈GF(2m):x=x1+x2

p1(x1)p2(x2).

We denote p1 ⊗ · · · ⊗ pk by
⊗k

i=1 pi. Increment the it-
eration round as ℓ := ℓ+ 1.

VARIABLE TO CHECK : Each variable node v has j in-

coming messages p
(ℓ)
cv ∈ [0, 1]2

m

(c ∈ Cv) sent from its
j adjacent check nodes. The variable node v sends the

message p
(ℓ)
vc to c for c ∈ Cv.

p(ℓ)vc (x) = p(0)v (x)
∏

c′∈Cv\{c}

p
(ℓ)
c′v(x) for x ∈ GF(2m).

And normalize p
(ℓ)
vc so that

∑

x∈GF(2m) p
(ℓ)
vc (x) = 1 as

follows.

p(ℓ)vc (x) := p(ℓ)vc (x)/
∑

x∈GF(2m)

p(ℓ)vc (x), for x ∈ GF(2m).

The decoding output does not change even if this nor-
malization step were replaced with

p(ℓ)vc (x) := p(ℓ)vc (x)/p
(ℓ)
vc (0), for x ∈ GF(2m).

In this case, the messages are no longer probability vec-
tors.

TENTATIVE DECISION : The tentatively estimated sym-

bol x̂
(ℓ)
v ∈ GF(2m) for the v-th transmitted symbol is

given as

x̂(ℓ)
v = argmax

x∈GF(2m)

q(ℓ)v (x),

q(ℓ)v (x) := p(0)v (x)
∏

c′∈Cv

p
(ℓ)
c′v(x), for x ∈ GF(2m).

The calculation in Eq. (1) is the most complex part
of the decoding. However, the convolution is efficiently
calculated via the Fourier transforms [14]. For example,
the k-fold convolution

q =

k⊗

i=1

pi ∈ [0, 1]2
m

is efficiently calculated via the Fourier transform, for
i = 1, . . . , k,

Pi(z) :=
∑

x∈GF(2m)

pi(x)(−1)z·x for z ∈ GF(2m),

and component-wise multiplications,

Q(z) :=

k∏

i=1

Pi(z) for z ∈ GF(2m),

and the inverse Fourier transform

q(x) =
1

2m

∑

x∈GF(2m)

Q(z)(−1)z·x, for x ∈ GF(2m),

where z · x is the dot product of the binary rep-
resentations of z and x. For example, for z =
(1, 1, 0, 1, 1, 1, 0, 0) and x = (1, 0, 0, 1, 1, 0, 1, 1), z · x =
1+0+0+1+1+0+0+0 = 3. The Fourier transform
and inverse Fourier transform are efficiently calculated
by FFT and IFFT [12] and [14].

By using FFT, the SP algorithm can be viewed as
the iteration of FFT and component-wise multiplica-
tions. Compared to additions, multiplications requires
more complex computation devices and higher level
quantizations. Hence, it is strongly desired to avoid
multiplications in decoders, in order to meet the de-
mand of the high speed and low quantization level de-
coders.



2.2 Logarithm-Domain Sum-Product Decoding for
Non-Binary LDPC Codes

In the SP algorithm, lots of multiplications are needed.
Transforming the messages to logarithm domain, the
multiplications can be done by additions. The follow-
ing algorithm describes the logarithm-domain SP algo-
rithm which is referred to as the Log-SP algorithm [13].

INITIALIZATION : For each variable node v, the initial
message is given as follows.

λ(0)
v (x) = ln (Pr(Xv = x|Yv = yv)), for x ∈ GF(2m)

Each variable node v sends the message λ
(0)
vc = λ

(0)
v ∈

[−∞, 0]2
m

to c for c ∈ Cv. Set ℓ = 0.

CHECK TO VARIABLE : Each check node c has k incom-
ing messages λ

(ℓ)
vc ∈ [−∞, 0]2

m

(v ∈ Vc) sent from its k
adjacent variable nodes. The check node c sends the

message λ
(ℓ+1)
cv ∈ [−∞, 0]2

m

to v for v ∈ Vc.

λ̃(ℓ)
vc (x) = λ(ℓ)

vc (h
−1
cv x), for x ∈ GF(2m),

λ̃(ℓ+1)
cv = ⊠v′∈Vc\{v}λ̃

(ℓ)
v′c, (2)

λ(ℓ+1)
cv (x) = λ̃(ℓ+1)

cv (hcvx), for x ∈ GF(2m),

where λ1 ⊠ λ2 ∈ [−∞, 0]2
m

is defined as follows.

(λ1 ⊠ λ2)(x) = ln(
∑

x1,x2∈GF(2m):x=x1+x2

eλ1(x1)+λ2(x2)),

for x ∈ GF(2m). We denote λ1 ⊠ · · · ⊠ λk by ⊠
k
i=1λi.

Increment the iteration round as ℓ := ℓ+ 1.

VARIABLE TO CHECK : Each variable node v has j in-

coming messages λ
(ℓ)
cv (c ∈ Cv) ∈ [−∞, 0]2

m

sent from
its j adjacent check nodes. The variable node v sends

the message λ
(ℓ)
vc to c for c ∈ Cv.

λ(ℓ)
vc (x) =λ(0)

v (x) +
∑

c′∈Cv\{c}

λ
(ℓ)
c′v(x) for x ∈ GF(2m).

And normalize λ
(ℓ)
vc ∈ [−∞, 0]2

m

so that λ
(ℓ)
vc (0) = 0 as

follows.

λ(ℓ)
vc (x) := λ(ℓ)

vc (x)− λ(ℓ)
vc (0), for x ∈ GF(2m).

TENTATIVE DECISION : The tentatively estimated sym-

bol x̂
(ℓ)
v ∈ GF(2m) for the v-th transmitted symbol is

given as

x̂(ℓ)
v = argmax

x∈GF(2m)

µ(ℓ)
v (x),

µ(ℓ)
v (x) := λ(0)

v (x) +
∑

c′∈Cv

λ
(ℓ)
c′v(x) for x ∈ GF(2m).

It can be easily seen that the outputs of this Log-
SP algorithm is the same as those of the SP algorithm.
The check node computation Eq. (2) still is the most
complex part of the decoding. The computation in
Eq. (2) can be viewed as a convolution in the loga-
rithm domain. We refer to this operator · ⊠ · as the

log-convolution. Such a log-convolution can not be cal-
culated efficiently by FFT, IFFT and component-wise
multiplications, since the messages are transformed in
the logarithm domain. However, since the Log-SP al-
gorithm does not need multiplications but additions,
it is more robust to the quantization effects when the
messages are stored on a small number of bits [13], [16].

For computing Eq. (2), using look-up tables is pro-
posed in [13]. Declercq et al. proposed storing only
the most contributing messages [14], which gave a good
trade-off between the decoding complexity and the de-
coding performance.

2.3 Bottleneck Problem

Due to the demand of the high speed and low quanti-
zation level decoders, we can not afford multiplications
which are computationally expensive. Consequently,
one needs to choose the Log-SP algorithm rather than
the SP algorithm.

Compared to the variable node computations, the
check node computations have two reasons for being the
bottleneck of the Log-SP algorithm. First is obvious as
seen so far. The computations in variable nodes are
simple component-wise additions of message vectors,
while the computations in check nodes need non-linear
calculations as in Eq. (2).

The second reason is that the number of incoming
messages sent into check nodes is generally higher than
that of variable nodes. For (j, k)-regular non-binary
LDPC codes, variable and check nodes have j and k in-
coming message vectors, respectively. The coding rate
R is given as R = (k − j)/k. Therefore, the number of
incoming messages to check nodes are k/j = 1/(1−R)
times as higher as that of variable nodes. The ratio k/j
gets higher as R → 1.

Due to the above two asymmetry about computa-
tion at variable nodes and check nodes, i.e., the number
of incoming messages and the difference of computa-
tion functions, we face a bottleneck problem of check
node computations. One may think, in general, bottle-
neck problems can be solved by using parallel proces-
sors to allocate computation resources intensively to the
bottleneck computations. However, since the variable
and check node computations are triggered by incoming
messages, the bottleneck problem of check node com-
putations can not be solved even in the situation that
fully node-parallel processing is possible.

In the situation that each node-computation is
processed in parallel, the total decoding time depends
on the most complex node-computation among the



all nodes. In this paper, we propose a decoding al-
gorithm for non-binary LDPC codes, which reduces
the largest node-computation amount of among all the
nodes. Note that our interest is not for reducing the
total amount of computations for decoding.

3. New Fourier and Log-Fourier Sum-Product

Algorithms for Non-Binary LDPC Codes

In order to reduce the computation amount per check
node which is a bottleneck in the Log-SP algorithm,
we propose a decoding algorithm such that the role of
variable nodes and check nodes are switched by initial-
izing messages by the Fourier transform. To be precise,
log-convolutions are done at the computation at vari-
able nodes and component-wise additions are done the
computation at check nodes .

As a preparatory algorithm for the Log-Fourier SP
algorithm that will be introduced in Section 3.2, firstly,
in Section 3.1, we introduce the SP algorithm in the
Fourier domain, which is referred to as the Fourier
SP algorithm. The messages in the Fourier SP algo-
rithm are Fourier transformed at the beginning and
inverse Fourier transformed at the end. The computa-
tions at variable node and check nodes, i.e., component-
wise multiplications and convolutions, are switched in
the Fourier domain. To be precise, with the proposed
algorithm, messages are convoluted at variable nodes
and messages are component-wisely multiplied at check
nodes. The Fourier-SP algorithm is designed so that it
outputs the same decoding results as SP and Log-SP al-
gorithms do. Thus, the computational intensive tasks,
i.e., convolutions are assigned to the variable nodes
that have less incoming messages than check nodes.
On the other hand, the computationally less intensive
tasks, i.e., component-wise multiplications are assigned
to check nodes which have larger incoming messages
than variable nodes.

3.1 New Fourier Sum-Product Algorithm for Non-
Binary LDPC Code

The following describes the Fourier SP algorithm. Note
again that this is a preparatory algorithm for helping
understand the algorithm in the next Section 3.2.

INITIALIZATION : For each variable node v, the initial

Fourier-transformed message P
(0)
v ∈ [−1, 1]2

m

is given
as follows.

p(0)v (x) = Pr(Xv = x|Yv = yv), x ∈ GF(2m)

P (0)
v (z) =

∑

x∈GF(2m)

p(0)v (x)(−1)z·x, z ∈ GF(2m)

for z ∈ GF(2m). This can be done via FFT. Each vari-

able node v sends the message P
(0)
vc = P

(0)
v ∈ [−1, 1]2

m

to c for c ∈ Vc. Set ℓ = 0.

CHECK TO VARIABLE : Each check node c has k incom-
ing messages P

(ℓ)
vc ∈ [−1, 1]2

m

(v ∈ Vc) sent from its k
adjacent variable nodes. The check node c sends the

message P
(ℓ+1)
cv ∈ [−1, 1]2

m

to v for v ∈ Vc.

P̃ (ℓ)
vc (z) = P (ℓ)

vc (Hcvz), for z ∈ GF(2m)

P̃ (ℓ+1)
cv (z) =

∏

v′∈Vc\{v}

P̃
(ℓ)
v′c(z) for z ∈ GF(2m),

P (ℓ+1)
cv (z) = P̃ (ℓ+1)

cv (H−1
cv z), for x ∈ GF(2m).

In Appendix A, we give the definition of Hcv and the
explanation that this step is equivalent to the check-
to-variable step of the SP algorithm. Increment the
iteration round as ℓ := ℓ+ 1.

VARIABLE TO CHECK : Each variable node v has j in-

coming messages P
(ℓ)
cv (c ∈ Cv) ∈ [−1, 1]2

m

sent from its
j adjacent check nodes. The variable node v sends the

message p
(ℓ)
vc ∈ [−1, 1]2

m

to c for c ∈ Cv.

P̃ (ℓ+1)
cv = P (0)

v

⊗

c′∈Cv\{c}

P̃
(ℓ)
c′v ,

where P1 ⊗ P2 ∈ [−1, 1]2
m

is a convolution of P1 ∈
[−1, 1]2

m

and P2 ∈ [−1, 1]2
m

. To be precise, for x ∈
GF(2m)

(P1 ⊗ P2)(z) =
∑

z1,z2∈GF(2m):z=z1+z2

P1(z1)P2(z2).

And normalize P
(ℓ)
vc ∈ [−1, 1]2

m

so that P
(ℓ)
vc (0) = 1 as

follows.

P (ℓ)
vc (z) := P (ℓ)

vc (z)/P (ℓ)
vc (0), for z ∈ GF(2m).

TENTATIVE DECISION : The tentatively estimated sym-

bol x̂
(ℓ)
v for the v-th transmitted symbol is given as

x̂(ℓ)
v := argmax

x∈GF(2m)

q(ℓ)(x), (3)

where for x, z ∈ GF(2m),

Q(ℓ)
v (z) = P (0)

v (z)
∏

c′∈Cv

P
(ℓ)
c′v (z),

q(ℓ)v (x) =
∑

x∈GF(2m)

Q(ℓ)
v (z)(−1)z·x. (4)

It is cumbersome that we have to apply the inverse

Fourier transform Q
(ℓ)
v as in Eq. (4) to decide tenta-

tively estimated symbols in Eq. (3). We give an al-
ternative way of determining estimated symbols, which
does not need the inverse Fourier transform.

It is known [18] that Eq. (3) gives the MAP sym-
bol for the v-th transmitted symbol, when the Tan-
ner graph is a tree. When the Tanner graph is not a



tree, the approximated MAP symbol is obtained due
to the sparseness of the Tanner graph. The symbol-
MAP decoder minimizes the symbol error rate (SER)
while the bit-MAP decoder minimizes the bit error rate
(BER). For the digital communications, it is widely
desirable to lower the BER rather than the SER. For
x = (x1, . . . , xm) ∈ GF(2m), by marginalizing q

(ℓ)
v as

q
(ℓ)
v,i(xi) :=

∑

x1,...,xi−1,xi+1,...,xm∈GF(2)

q(ℓ)v (x),

the approximated MAP bit x̂v,i ∈ GF(2) for the i-th
bit in the v-th transmitted symbol is obtained by

x̂
(ℓ)
v,i := argmax

xi∈GF(2)

q
(ℓ)
v,i(xi).

Let α be the fixed primitive element of GF(2m). For
i = 1, . . . ,m, αi−1 ∈ GF(2m) is represented as a m-bit

sequence (

i−1
︷ ︸︸ ︷

0, . . . , 0, 1,

m−i
︷ ︸︸ ︷

0, . . . , 0). It follows that

Q(ℓ)
v (αi−1) =

∑

x∈GF(2m)

q(ℓ)v (x)(−1)α
i−1·x

=
∑

x∈GF(2m)

q(ℓ)v (x)(−1)xi

= q
(ℓ)
v,i(0)− q

(ℓ)
v,i(1).

Thus, without the inverse Fourier transform, directly

from Q
(ℓ)
v ∈ [−1, 1]2

m

, we can calculate the approxi-
mated MAP bit x̂v,i as

x̂
(ℓ)
v,i =

{

0 if Q
(ℓ)
v (αi−1) > 0,

1 if Q
(ℓ)
v (αi−1) < 0.

(5)

In a similar way, we can calculate the syndromes
without the inverse Fourier transform. For given es-

timated symbol sequence (x̂
(ℓ)
1 , . . . , x̂

(ℓ)
N ) ∈ GF(2m)N

with x̂
(ℓ)
v = (x̂

(ℓ)
v,1, . . . , x̂

(ℓ)
v,m) ∈ GF(2)mN , the syndrome

symbol for a check node c is given by

ŝ(ℓ)c :=
∑

v∈Vc

hcvx̂
(ℓ)
v .

In a similar way, it can be shown that i-th bit ŝc,i of
the syndrome symbol ŝc is given as

ŝ
(ℓ)
c,i =

{

0 if
∏

v∈Vc
Q

(ℓ)
v (Hcvα

i−1) > 0

1 if
∏

v∈Vc
Q

(ℓ)
v (Hcvα

i−1) < 0,

The sequence of the estimated symbols (x̂
(ℓ)
1 , . . . , x̂

(ℓ)
v ) ∈

GF(2m)N forms a codeword if ŝ
(ℓ)
c,i = 0 for all c =

1, . . . ,M and i = 1, . . . ,m.

3.2 New Log-Fourier Sum-Product Algorithm for
Non-Binary LDPC Codes

In this section, we proposed the Fourier SP algorithm

operated in the logarithm domain. The multiplications
in the Fourier SP algorithm are replaced with additions
in the in the logarithm domain.

The Fourier SP algorithm requires many multipli-
cations which can not be affordable for realizing the
high speed and low quantization level decoders. In an
analogous way as in Log-SP algorithm, we can con-
sider the Fourier-SP algorithm in the logarithm do-
main, which is referred to as Log-Fourier SP algorithm.

For the sake of simple description of the algo-
rithm, and in order to emphasize the analogy with the
Fourier SP algorithm, we use a logarithm-like function
Γ : [−1, 1] → GF(2)× [−∞, 0] as follows.

Γ(x) := (sgnGF(2)(x), ln(|x|)) ∈ GF(2)× [−∞, 0],

sgnGF(2)(x) :=







0 ∈ GF(2) (x > 0)
choose randomly 0 or 1 (x = 0)
1 ∈ GF(2) (x < 0).

Obviously, for any non-zero real numbers x, y it holds
that Γ(xy) = Γ(x) + Γ(y) and Γ−1(·) is well-defined.
The following describes the proposed Log-Fourier do-
main decoding of non-binary LDPC codes.

INITIALIZATION : For each variable node v, the ini-

tial message Λ
(0)
v ∈ (GF(2) × [−∞, 0])2

m

is given as
follows.

p(0)v (x) = Pr(Xv = x|Yv = yv), x ∈ GF(2m)

P (0)
v (z) =

∑

x∈GF(2m)

p(0)v (z)(−1)z·x, z ∈ GF(2m),

Λ(0)
v (z) = Γ(P (0)

v (z)), z ∈ GF(2m).

Each variable node v sends the message Λ
(0)
vc = Λ

(0)
v ∈

(GF(2)× [−∞, 0])2
m

to c for c ∈ Cv. Set ℓ = 0.

CHECK TO VARIABLE : Each check node c has k incom-
ing messages Λ

(ℓ)
vc ∈ (GF(2) × [−∞, 0])2

m

(v ∈ Vc) sent
from its k adjacent variable nodes. The check node c

sends the message Λ
(ℓ+1)
cv ∈ (GF(2) × [−∞, 0])2

m

to v
for v ∈ Vc.

Λ̃(ℓ)
vc (z) = Λ(ℓ)

vc (Hcvz),

Λ̃(ℓ+1)
cv =

∑

v′∈Vc\{v}

Λ̃
(ℓ)
v′c(z) for z ∈ GF(2m)

Λ(ℓ+1)
cv (z) = Λ̃(ℓ+1)

cv (H−1
cv z).

Increment the iteration round as ℓ := ℓ+ 1.

VARIABLE TO CHECK : Each variable node v has j in-

coming messages Λ
(ℓ)
cv (c ∈ Cv) ∈ (GF(2) × [−∞, 0])2

m

sent from its j adjacent check nodes. The variable node

v sends the message Λ
(ℓ)
vc ∈ (GF(2) × [−∞, 0])2

m

to c
for c ∈ Cv.

Λ(ℓ)
v (z) = Λ(0)

v (z)⊞c′∈Vc\{c}Λ
(ℓ)
c′v(z),



where Λ1 ⊞ Λ2 ∈ (GF(2) × [−∞, 0])2
m

is defined as
follows.

(λ1 ⊞ λ2)(x) (6)

= Γ(
∑

x1,x2∈GF(2m):x=x1+x2

Γ−1(λ1(x1) + λ2(x2))),

for x ∈ GF(2m). The difference between the 2 opera-
tors ⊠ and ⊞ is only a sign bit, which can be ignored.
We also refer to the operator ·⊞· as the log-convolution.

TENTATIVE DECISION : The tentatively estimated sym-

bol x̂
(ℓ)
v for the v-th symbol is given as

x̂(ℓ)
v = argmax

x∈GF(2m)

µ(ℓ)
v (x)

µ(ℓ)
v (x) :=

∑

z∈GF(2m)

M (ℓ)
v (z)(−1)z·x

M (ℓ)
v (z) := Λ(0)

v (z)⊞c′∈Vc
Λ
(ℓ)
c′v(z).

We calculated the MAP bit for the Fourier SP al-
gorithm in Eq. (5). In a similar way, we can calculate
the MAP bit for the i-th bit in the v-th transmitted
symbol x̂

(ℓ)
v,i, without the inverse Fourier transform, di-

rectly from M
(ℓ)
v ∈ (GF(2)× [−∞, 0])2

m

as

x̂
(ℓ)
v,i = the first entry of M (ℓ)

v (αi−1).

In a similar way, it can be shown that i-th bit

ŝ
(ℓ)
c,i ∈ GF(2) of the syndrome symbol ŝ

(ℓ)
c ∈ GF(2m)

of a check node c for the estimated MAP bits x̂
(ℓ)
v,i

(v = 1, . . . , N, i = 1, . . . ,m) is calculated, without the
inverse Fourier transform as

ŝ
(ℓ)
c,i = the first entry of

∑

v∈Vc

M (ℓ)
v (Hcvα

i−1),

for c = 1, . . . ,M and i = 1, . . . ,m. The sequence of the

estimated symbols (x̂
(ℓ)
1 , . . . , x̂

(ℓ)
v ) forms a codeword if

ŝc,i = 0 for all c = 1, . . . ,M and i = 1, . . . ,m.

4. Comparison of Computation Amount

In this section, we compare the computation amount of
the conventional and proposed algorithms.

In the conventional Log-SP algorithm, for each

check node c, with the k incoming messages λ
(ℓ)
vc ∈

[−∞, 0]2
m

for v ∈ Vc, c needs to compute a (k − 1)-
fold log-convolution

⊠v′∈Vc\{v}λ̃
(ℓ)
v′c

for v ∈ Vc, i.e., for k times. For each variable node

v, with the j incoming messages λ
(ℓ)
cv ∈ [−∞, 0]2

m

for
c ∈ Cv, v needs to compute a j-term component-wise
addition

λ(0)
v (x) +

∑

c′∈Cv\{c}

λ
(ℓ)
c′v(x) for x ∈ GF(2m).

for v ∈ Vc, i.e., for j times.
While, in the proposed Log-Fourier SP algorithm,

for each check node c, with the k incoming messages

Λ
(ℓ)
vc ∈ (GF(2), [−∞, 0])2

m

for v ∈ Vc, c needs to com-
pute a (k − 1)-term component-wise addition

∑

v′∈Vc\{v}

λ̃
(ℓ)
v′c(z) for z ∈ GF(2m),

for v ∈ Vc, i.e., for k times. For each variable node

v, with the j incoming messages Λ
(ℓ)
cv ∈ [−∞, 0]2

m

for
c ∈ Cv, v needs to compute a j-fold log-convolution

Λ(0)
v ⊞c′∈Cv\{c}Λ

(ℓ)
c′v

for v ∈ Vc, i.e., for j times.
The aim of this paper is reducing the most com-

plex node-computation among all the node for the
node-parallel implementation. And the most complex
node-computation in both conventional Log-SP and
proposed Log-Fourier SP is the log-convolution. In-
deed, one component-wise addition of vector of length
2m requires only 2m additions. On the other hand,
one log-convolution requires as much as 22m compu-
tations of additions, ln(·) and exp(·). Consequently,
we focus our attention to the computation amount of
log-convolutions for both algorithms. We assume we
use a (j = 2, k)-regular non-binary LDPC code over
GF(2m), since it is empirically known that good non-
binary LDPC codes have parity-check matrices of col-
umn weight 2 [11]. This property is extremely prefer-
able for the Log-Fourier SP algorithm, since it is only
needs 2 times log-convolutions per variable node. Ta-
ble 1 compares the computation amount per node for
(2, k)-regular non-binary LDPC codes over GF(2m) for
the conventional Log-SP and the proposed Log-Fourier
SP algorithm. It can be seen that the proposed Log-
Fourier SP algorithm needs only a constant number of
the log-convolutions per node even if k gets lager to
increase the coding rate R = (k − 2)/k. It can be seen
that the proposed Log-Fourier SP algorithm needs less
log-convolutions per node.

Due to the intensive computation and the large
number of incoming messages, the log-convolutions
have been the main obstacles blocking parallelized im-
plementations of high speed decoders for LDPC-codes.
The number of necessary component-wise additions per
node in the proposed Log-Fourier SP algorithm is larger
that in the conventional Log-SP algorithm. Neverthe-
less, the computation amount of log-convolutions per
node is largely reduced. With the Log-Fourier SP algo-
rithm, we can realize the node-parallel implementation
which does not have the bottleneck problem.

In the situation that each node-computation is pro-
cessed in parallel, the total decoding time depends on



Table 1 Comparison of the computation amount per node for (2, k)-regular non-binary
LDPC codes over GF(2m). ADD stands for the component-wise addition of vectors of length
2m. CONV stands for the log-convolution of vectors of length 2m, as defined in Eq. (6). Usu-
ally, k ≥ 3 is used. One ADD requires only 2m additions. On the other hand, one CONV
requires as much as 22m computations of additions, ln(·) and exp(·).

VARIABLE TO CHECK CHECK TO VARIABLE TENTATIVE DECISION

Log-SP 2-term ADD ×2 (k − 1)-fold CONV×k 3-term ADD
Log-Fourier SP 2-fold CONV ×2 (k − 1)-term ADD×k 3-fold CONV

the most complex computation among the all nodes.
The proposed Log-Fourier SP algorithm can reduce the
largest computation amount of among all the nodes. To
be precise, the (k− 1)-fold log-convolutions for k times
were the most complex node-computation in the con-
ventional Lot-SP algorithm. The most complex node-
computation in the Log-Fourier SP algorithm is re-
duced to 2-fold log-convolutions for 2 times.

5. Discussions and Conclusions

In this paper, we proposed a decoding algorithm suit-
able for fully node-parallel implementation of non-
binary LDPC codes. The proposed algorithm reduces
the most complex node-computation, which results
large reduction of the total decoding time in the sit-
uation that each node-computation is processed in par-
allel.

It should be noted that Hartman and Rudolph
(HR) [19] developed the decoding algorithm for the
dual code by using Fourier-transform. The HR de-
coding makes the MAP decoding possible by decoding
the dual codes with the Fourier transformed channel
outputs. However, the application of HR decoding to
LDPC codes have been limited to the decoding the con-
stituent high-rate codes, e.g. single parity-check codes
for LDPC codes. Gallager’s f function [1, pp. 43] can
be viewed as Fourier transforming log likelihood ratio
(LLR) to the Log-Fourier domain, which reduce decod-
ing of a single parity-check code to decoding a repeti-
tion code. Isaka used the HR decoding the constituent
Hamming codes for the generalized LDPC codes [20].
The dual code of LDPC code with a factor graph G
is given by replacing “=” nodes and “+” nodes [21].
Dual of an LDPC code with parity-check matrix H is
given by a low-density generator-matrix (LDGM) code
with parity-check matrix (HT |I) by puncturing the bits
corresponding to HT . The proposed algorithm can be
viewed as a slightly modified application of the HR de-
coding, not to the constituent codes, but to the whole
LDPC code. The modification is that the decoding al-
gorithm for the dual code of the LDPC code is not the
MAP decoding but the Log-SP algorithm.

Appendix A: Companion Matrix

For the primitive elements α ∈ GF(2m), we denote
the corresponding primitive polynomial by π(x) =

π0+π1x+ · · ·+πm−1x
m−1+xm, where π0, . . . , πm−1 ∈

GF(2). The companion matrix of α is given as

A =










0 0 . . . 0 π0

1 0 . . . 0 π1

0 1 . . . 0 π2

...
...

...
...

...
0 0 . . . 1 πm−1










.

As shown in [15], underm-bit representation of GF(2m)
symbols, it is readily checked that

Aiαj = αi+j = αiαj ,

where the αj and αi+j are interpreted as a m-bit vec-
tors. For hcv = αi, we define Hcv as a m × m binary
matrix Hcv = (Ai)T . Then we have hcvx = Hcvx and
h−1
cv x = H−1

cv x. We will show the check-to-variable step
of the Fourier SP algorithm is equivalent with that of
the SP algorithm. To this end, it is sufficient to show

that the Fourier transform of p̃
(ℓ)
vc is P̃

(ℓ)
vc .

∑

x∈GF(2m)

p̃(ℓ)vc (x)(−1)z·x =
∑

x∈GF(2m)

p(ℓ)vc (h
−1
cv x)(−1)z·x

=
∑

x∈GF(2m)

p(ℓ)vc (x)(−1)z·(Hcvx)

=
∑

x∈GF(2m)

p(ℓ)vc (x)(−1)(H
T

cv
z)·x = P (HT

cvz) = P̃ (z).
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