
ar
X

iv
:1

00
3.

17
87

v2
  [

cs
.IT

]  
2 

N
ov

 2
01

0
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.11 NOVEMBER 2010

2026

PAPER Special Section on Information Theory and Its Applications

Vulnerability of MRD-Code-based Universal
Secure Network Coding against Stronger Eavesdroppers∗∗

Eitaro SHIOJI †∗a), Nonmember, Ryutaroh MATSUMOTO †b), Member,
and Tomohiko UYEMATSU †c), Senior Member

SUMMARY Silva et al. proposed a universal secure network coding
scheme based on MRD codes, which can be applied to any underlying net-
work code. This paper considers a stronger eavesdropping model where the
eavesdroppers possess the ability to re-select the tappinglinks during the
transmission. We give a proof for the impossibility of attaining universal
security against such adversaries using Silva et al.’s codefor all choices of
code parameters, even with a restricted number of tapped links. We also
consider the cases with restricted tapping duration and derive some condi-
tions for this code to be secure.
key words: network coding, secure network coding, linear network coding,
universal security, MRD code

1. Introduction

The notion of network coding, proposed by Ahlswede et
al. [1], has been attracting much attention. On a conven-
tional routing network, each node is only allowed to relay
the received packets to the next node, while on a network
with network coding support, each node is allowed to per-
form some data processing using the received packets and
send the result to the next node. It is known that the use
of network coding offers many advantages over the use of
conventional network, such as achievement of higher rate
in multicast communications or better energy efficiency in
wireless communications [2].

Secrecy of communication, or more specifically,
information-theoretically secure communication in the pres-
ence of an adversary capable of tapping a fixed number of
links of its choice, is considered as one of such advantages
of network coding. Such a scheme, referred to as secure net-
work coding, consists of the following two components: the
network code which determines how packets are coded at in-
termediate nodes, and the outer code which is a pre-coding
done at the source before transmission. Several secure net-
work codes have been proposed, such as the one by Cai et
al. [3]. However, these codes require the reconstruction of
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the network code, or the reconstruction of the outer code in
order to attain security for a given set of tapped links. Sucha
property causes problems, such as difficulty when securing
random network codes [4], where network codes are con-
structed randomly.

Silva et al. proposed a universal secure network cod-
ing method [5] based on MRD codes [6] and coset coding
scheme [7]. This code can be applied on top of any already-
constructed network code to attain security. However, due to
its use of vector outer code which requires that each symbol
be transmitted over multiple time slots, it must assume that
the tapped links are fixed during the transmission period.

We consider a stronger eavesdropping model where the
eavesdroppers possess the ability to re-select the tapping
links during the transmission. Such a model is worth consid-
eration because the conventional non-universal secure net-
work codes (e.g. [3], [8]) are guaranteed to be secure against
it. Moreover, this model corresponds to some practical situ-
ations where random network coding is used and the coding
vectors are time-varying, such as the robust random network
coding scheme proposed by Chou et al. [9]. Also, the cur-
rent standard of the IP protocol allows the network to split
a packet into multiple fragments and carry them through
multiple distinct routes, as explained in [10, Section 11.5].
Thus, the stronger eavesdropping model considered here has
practical importance when Silva et al.’s method is used over
the current Internet.

This paper aims to clarify the security of Silva et al.’s
universal code against this eavesdropping model, and is or-
ganized as follows. In Section 2 we define some notations
and briefly review some of the existing results of secure net-
work coding, and describe Silva et al.’s universal secure net-
work code. In Section 3 we introduce our stronger eaves-
dropping model. In Section 4 we prove the vulnerability of
this universal code against our model for all code parame-
ters. We also prove that the code is vulnerable even with a
limited number of tapped links. Moreover, the cases with
shorter tapping duration are considered, and sufficient con-
ditions and necessary conditions for the code to be secure
are given. In Section 5 we state our conclusion and the fu-
ture tasks.

2. Preliminaries

In this section we define our basic notations and review
some of the existing results of secure network coding.
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2.1 Extension Field

The extension fieldFqm of Fq can be regarded as a vector
space overFq. Thus, when the basis of this space is fixed,
an element ofFqm can be represented as anm-dimensional
vector overFq. For y ∈ Fqm, denote thei-th element of its
vector representation asy(i). Accordingly, the vector repre-
sentation ofx ∈ Fqm is written as (x(1), x(2), · · · , x(m)) ∈ Fm

q .

2.2 Network Coding

Data communication over a network is considered. We use
a network model defined by an acyclic and directed graph
G = (V,E), whereV and E denote the set of nodes and
the set of links, respectively. In this model we assume that,
each link can carry an element ofFq per unit time, and data
flowing on the network is not affected by delays, erasures or
errors.

Let s ∈ V andR ⊂ V denote the source node and the
set of sink nodes, respectively. The source node wishes to
multicast the sequenceX = (X1,X2, · · · ,Xn)T ∈ Fn

q to all
sink nodes at raten. The rate is defined as the number
of elements ofFq transmitted at the source node per unit
time. Assumen ≤ min{maxflow(s, r) | r ∈ R} holds, where
maxflow(i, j) denotes the maximum flow from nodei and
j. We assume that linear network coding [11] is employed
on the network, i.e. the type of data processing performed
on the packets at each node is limited to linear combination.
This implies that the data flowing on any link on the net-
work can be represented as anFq-linear combination of the
sequenceX1,X2, · · · ,Xn. Thus, the information flowing on
a link e can be denoted asYe = ~be · X using a global coding
vector (GCV),~be = (b1, b2, · · · , bn)T ∈ Fn

q, where “·" de-
notes the inner product operator for vectors. When one has
access to, say, thel links e1, e2, · · · , el , then the information
obtained from these links is denoted asMX ∈ Fl

q, where

M = (~be1,
~be2, · · · ,

~bel )
T.

Constructing a network code is equivalent to fixing the
GCV of each link by setting the coefficients of the linear
combination performed at each node. A network code is
called feasible if every sink is able to decodeX. Whenq is
sufficiently large, a feasible network code for raten multi-
cast can always be constructed [2].

2.3 Secure Network Coding

The wiretap network model used in the works [3] and [5]
on which secure network coding is employed is described
below. For simplification, only one receiver is assumed. Let
F be some extension field ofFq.

• Sender:The sender wishes to send the secret informa-
tion sequence represented by a random variableS =
(S1,S2, · · · ,Sk)T distributed uniformly overFk. S is
first coded into the sequenceX = (X1,X2, · · · ,Xn)T ∈

Fn using an outer code and thenX is sent over the net-
work with a feasible network code.
• Receiver: The receiver receives the information se-

quenceY = AX = (Y1,Y2, · · · ,Yn)T ∈ Fn, whereA
is the matrix constructed by appending the GCVs of
the input links to the receiver node.
• Eavesdropper: The eavesdropper is able to wiretap

any µ links on the network. Let the set of tapped
links beI = {e1, e2, · · · , eµ} ⊆ E. Then the wire-
tapped information sequence is represented asW =

BX = (W1,W2, · · · ,Wµ)T ∈ Fµ using the matrixB =
(~be1,

~be2, · · · ,
~beµ)

T ∈ F
µ×n
q .

The security which guarantees that no information
aboutS leaks out to the wiretapper even whenµ arbitrary
links are wiretapped, is defined as follows.

Definition 1 (strong security [3]).

H(S|Y) = 0, (1)

I (S; W = BX) = 0,∀I ⊆ E, |I| = µ.

Condition (1) is satisfied if the outer code used is uniquely
decodable and the network code used is feasible. Cai et al.
showed a construction method [3] for secure network codes
that satisfies the conditions in Definition 1 forµ = n − k,
usingF = Fq.

2.4 Universal Secure Network Code

The definition of strong security depends on the GCVs of
the set of tapped linksI, implying that it is dependent on
the underlying network code. Silva et al. proposed a coding
scheme that attains strong security that is independent of the
network code, as defined below.

Definition 2 (universal strong security [5]).

H(S|Y) = 0, (2)

I (S; W = BX) = 0,∀B ∈ Fµ×n
q . (3)

The universal code is based on MRD codes[6] and coset
coding scheme[7]. MRD codes are a class of linear code
overFqm which is optimal in the rank-distance sense. Coset
coding scheme is a type of randomized coding described as
follows. Let H be the parity check matrix of a [n, n − k]
linear codeC overF. To codeS = (S1, · · · ,Sk) ∈ Fk into
X = (X1, · · · ,Xn) ∈ Fn, regardS as a syndrome ofC, and
chooseX uniformly random from the corresponding coset.
Using these tools, the communication procedure of the uni-
versal network code is briefly described as follows:

The procedures of secret communication using the uni-
versal secure network code is briefly described as follows:

1. Choose an integerm≥ n.
2. Construct an [n, µ = n− k] MRD code overFqm.
3. EncodeS ∈ Fk

qm → X ∈ Fn
qm by coset coding scheme

based on the MRD code.
4. SplitX and send them overm time slots using a feasible
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network code, i.e. transmit (X(t)
1 ,X

(t)
2 , · · · ,X

(t)
n )T ∈ Fn

q at
time 1≤ t ≤ m.

3. Stronger Eavesdropping Model

In this section, we propose a stronger eavesdropping model
than the one presented in Section 2.3.

3.1 Model Definition

In the conventional non-universal secure network coding
scheme,F = Fq is used, but note that in the universal
scheme, due to the use of MRD code overFqm, F = Fqm

is used. Since the network can only transmit up ton ele-
ments ofFq per unit time, the universal code requires that
a secret messageS be transmitted over multiple time slots,
while the conventional codes require only one. The defini-
tion of the wiretap network model implies that the universal
code assumes the selection of tapped links to be fixed dur-
ing the transmission. Hence, we replace the eavesdropper
model presented in Section 2.3 with the following stronger
model.

Stronger Eavesdropper: At each time slot of the trans-
mission overm time slots, the wiretapper can re-select
the set of µ tapping links. Let ei,t ∈ E denote the
i-th link tapped at timet. The wiretapped links are
then,e1,1, e2,1, · · · , eµ,1, · · · · · · , e1,m, e2,m, · · · , eµ,m. For x =
(x1, x2, · · · , xn)T ∈ Fn

qm, definex̄ ∈ Fmn
q as

x̄ , (x(1)
1 , x(1)

2 , · · · , x(1)
n , · · · · · · , x(m)

1 , x(m)
2 , · · · , x(m)

n )T .

Note that there is a one-to-one correspondence betweenx
and x̄. For simplification, let~bi,t ,

~bei,t . The GCVs of the

µ links tapped at timet are~b1,t, · · · , ~bµ,t ∈ Fn
q. Also, define

B̃ ∈ Fmµ×mn
q andBt ∈ F

µ×n
q as follows:

B̃ ,





B1

B2

. . .

Bm





, Bt ,





~b1,t
T

~b2,t
T

...
~bµ,tT





.

Then, the information obtained by the wiretapper is repre-
sented by the random variablẽW distributed overFmµ

q , de-
fined by

W̃ , B̃X̄.

We now define the following security conditions that assure
security against our eavesdropping model.

Definition 3 (universalm-strong security).

H(S|Y) = 0,

I (S; W̃ = B̃X̄) = 0,∀Bt ∈ F
µ×n
q , t = 1, · · · ,m.

Note that, the conventional eavesdropping model defined in
Section 2.3 corresponds to the special case of our model

Table 1 The elements ofF22

Power Polynomial Vector

Zero 0 (0, 0)
α0 1 (0, 1)
α1 α1 (1, 0)
α2 α1 + 1 (1, 1)

with ~bi,t1 =
~bi,t2,∀t1, t2, i. Also note that the security of

the non-universal conventional secure network codes such
as the one by Cai [3], is not affected by such a strengthening
of the eavesdropper because a secret message is transmitted
over only one time slot. To be fair with the universal code,
we also mention that even whenm secret messages are re-
garded as one message and are sent overm time period, the
conventional non-universal codes remain secure. To avoid
confusion, we mention that universalm-strong security and
k-strong security[12] are distinct notions.

3.2 Code Example

We present an example of Silva et al.’s universal secure net-
work code and show that it is insecure against our eaves-
dropping model. The example code is constructed using the
following parameters.

• q = 2, k = 1, n = 2, m= 2, µ = n− k = 1.
• F22 constructed with the rootα of primitive polynomial

f (x) = x2 + x+ 1. (Table 1 shows the elements of this
field in power, polynomial, and vector representation)
• A parity check matrixH = [1, α] of a [2, 1]MRD code

overF22.

Note that betweenX = (X1,X2)T andS, we have the relation

S = HX = X1 + αX2. (4)

This code uses a network code overF2 at rate 2, so it is
sufficient to consider only the linkse1, e2, e3 with GCVs
~be1 = (0, 1)T, ~be2 = (1, 0)T, ~be3 = (1, 1)T. This implies
that the information flowing on an arbitrary link is one of
X · ~be1 = X1, X · ~be2 = X2, or X · ~be3 = X1 + X2. Table 2
shows the value, represented in power and vector form, on
each link with all distinct GCVs for eachX sent. The value
of S is also shown.

An eavesdropper capable of re-selecting the tapping
links at each time is able to wiretap an element of
{(P(1),Q(2)) | P,Q ∈ {X1,X2, (X1 + X2)}}. Recall thatP(i)

represents thei-th element of the vector representation of
P ∈ Fqm. When the sequence (X(1)

1 , (X1 + X2)(2)) = (0, 1)
(underlined on the table) is wiretapped, the candidates forS
are narrowed down toα0, α1, implying

H(S|X(1)
1 , (X1 + X2)(2)) , H(S)

⇒ I (S; X(1)
1 , (X1 + X2)(2)) , 0

⇒ I (S; W̃ = B̃X̄) , 0, for someB̃, rankB̃ = 2.

Therefore, we can conclude that this code does not attain
universalm-strong security.
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Table 2 The value flowing on each link andS, for eachX

X1 X2 X1 + X2 S

0 = (0, 0) 0 = (0, 0) 0 = (0, 0) 0
0 = (0, 0) α0 = (0, 1) α0 = (0, 1) α1

0 = (0, 0) α1 = (1, 0) α1 = (1, 0) α2

0 = (0, 0) α2 = (1, 1) α2 = (1, 1) α0

α0 = (0, 1) 0 = (0, 0) α0 = (0, 1) α0

α0 = (0, 1) α0 = (0, 1) 0 = (0, 0) α2

α0 = (0, 1) α1 = (1, 0) α2 = (1, 1) α1

α0 = (0, 1) α2 = (1, 1) α1 = (1, 0) 0
α1 = (1, 0) 0 = (0, 0) α1 = (1, 0) α1

α1 = (1, 0) α0 = (0, 1) α2 = (1, 1) 0
α1 = (1, 0) α1 = (1, 0) 0 = (0, 0) α0

α1 = (1, 0) α2 = (1, 1) α0 = (0, 1) α2

α2 = (1, 1) 0 = (0, 0) α2 = (1, 1) α2

α2 = (1, 1) α0 = (0, 1) α1 = (1, 0) α0

α2 = (1, 1) α1 = (1, 0) α0 = (0, 1) 0
α2 = (1, 1) α2 = (1, 1) 0 = (0, 0) α1

4. Security Analysis

In this section, we analyze the security of the universal
secure network code against our stronger eavesdropping
model. The example presented in the previous section shows
that the universal code is not universalm-strongly secure
in general. Construction of the universal code involves the
choice of parametersn, k, q,m, a parity check matrixH, and
a basis ofFqm. A natural question to ask at this point is, if
it is possible to secure this code by restricting these param-
eters. We show that universalm-strong security cannot be
attained no matter how they are chosen. We also analyze the
cases with a restricted number of tapping links and tapping
duration.

4.1 Proof of Vulnerability forµ = n− k

As a preparation, we first derive the necessary and sufficient
condition for the universal code to be universalm-strongly
secure. Let

NB̃
s,w , |{x ∈ F

n
qm | s= Hx, w = B̃x̄}|.

Lemma 1. The necessary and sufficient condition for the
universal coding scheme with parameters n, k, q,m,H and a
fixed basis ofFqm to attain universal m-strong security for
µ ≥ 1 is, for ∀w ∈ Fmµ

q ,∀Bt ∈ F
µ×n
q , rankBt = µ, 1 ≤ t ≤ m

the following holds:

NB̃
s,w = NB̃

s′,w,∀s, s′ ∈ Fk
qm.

Proof. By the definition of universalm-strong security, for
∀w ∈ F

mµ
q ,

I (S; W̃) = 0

⇔ Pr(S = s|W̃ = w) = Pr(S = s),∀s∈ Fk
qm

⇔
|{x ∈ Fn

qm | s= Hx, w = B̃x̄}|

|{x ∈ Fn
qm | w = B̃x̄}|

=
1

qmk
,∀s (5)

⇔ NB̃
s,w =

|{x ∈ Fn
qm | w = B̃x̄}|

qmk
,∀s.

Equation (5) holds becauseX is distributed uniformly over
F

n
qm andS is distributed uniformly overFk

qm. Note that to
attain universalm-strong security, it is sufficient to satisfy
the security condition for all full-rankBt, 1 ≤ t ≤ m. �

We prove the vulnerability for the special caseµ = n − k,
which corresponds to the case considered in the work by
Silva et al.

Lemma 2. The necessary and sufficient condition for the
universal coding scheme with parameters n, k, q,m,H and a
fixed basis ofFqm to attain universal m-strong security for
µ = n− k is, for∀w ∈ Fmµ

q , ∀Bt ∈ F
µ×n
q , rankBt = µ, 1 ≤ t ≤

m,Xw = {x ∈ Fn
qm | w = B̃x̄}, the following holds:

x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ Xw.

Proof. By Lemma 1,∀w ∈ Fmµ
q ,

NB̃
s,w =

|{x ∈ Fn
qm | w = B̃x̄}|

qmk
,∀s

⇔ |{x ∈ Xw | s= Hx}| = 1,∀s (6)

⇔ x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ Xw.

Equation (6) holds since

|{x ∈ Fn
qm | w = B̃x̄}| = qdim kerB̃

= q(mn−rankB̃)

= q(mn−m(n−k)) = qmk.

�

Note that if Lemma 2 holds for setXw then the lemma holds
for any of its subsets. Letwi,t ∈ Fq be the information tapped
at timet on thei-th link. Then, by representingw as

w = (w1,1, w2,1, · · · , wµ,1, · · · · · · , w1,m, w2,m, · · ·wµ,m)T ,

Lemma 2 yields the following corollary.

Corollary 1. The necessary and sufficient condition for the
universal coding scheme with parameters n, k, q,m,H and a
fixed basis ofFqm to satisfy universal m-strong security for
µ = n− k is that

x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ X

holds for an arbitrary setX ⊆ Fn
qm such that∀x ∈ X satisfies






(~b1,1 · x)(1) = w1,1, · · · , (~b1,m · x)(m) = w1,m,

(~b2,1 · x)(1) = w2,1, · · · , (~b2,m · x)(m) = w2,m,
...

(~bµ,1 · x)(1) = wµ,1, · · · , (~bµ,m · x)(m) = wµ,m,

for ∀w ∈ Fmµ
q .

Proof. By denoting thel-th element of~bi,t asb[l]
i,t ∈ Fq,

(~bi,t · x)(t) = (b[1]
i,t x1 + b[2]

i,t x2 + · · · + b[n]
i,t xn)(t)
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= (b[1]
i,t x(t)

1 + b[2]
i,t x(t)

2 + · · · + b[n]
i,t x(t)

n ) (7)

= ~bi,t · (x
(t)
1 , x

(t)
2 , · · · , x

(t)
n )T

holds. Note that sinceFqm is a linear space onFq,

b[l]
i,t xl = b[l]

i,t (x
(1)
l , x(2)

l , · · · , x(m)
l )T

= (b[l]
i,t x

(1)
l , b[l]

i,t x
(2)
l , · · · , b[l]

i,t x
(m)
l )T

holds for every 1≤ l ≤ n, and adding thet-th element of
each ofb[1]

i,t x1, · · · , b
[n]
i,t xn yields Eq. (7). Therefore, we have

the relation,

wi,t = ~bi,t · (x
(t)
1 , x

(t)
2 , · · · , x

(t)
n )T = (~bi,t · x)(t). (8)

The corollary holds immediately from Eq. (8) and Lemma
2. �

Using this corollary, we prove the following theorem.

Theorem 1. For any choice of parameters n, k, q,m,H
and the basis forFqm, the universal secure network coding
scheme cannot satisfy the universal m-strong security con-
dition for µ = n− k.

Proof. Assume the existence of the universal code which
satisfies the universalm-strong security condition. LetX
denote the set of allx ∈ Fn

qm satisfying the relation,






x(1)
1 = x(2)

1 = · · · = x(m)
1 = 0,

x(1)
2 = x(2)

2 = · · · = x(m)
2 = 0,

...

x(1)
µ = x(2)

µ = · · · = x(m)
µ = 0.

(9)

Note that,|X| = qmn/qmµ = qmk. Let α be an element ofFq,
and choose ˆx ∈ Fn

qm that satisfies the following:






x̂(1)
1 = x̂(2)

1 = · · · = x̂(m)
1 = 0,

x̂(1)
2 = x̂(2)

2 = · · · = x̂(m)
2 = 0,

...

x̂(1)
µ = x̂(2)

µ = · · · = x̂(m−1)
µ = 0, x̂(m)

µ = 1, x̂(m)
µ+1 = α.

Such x̂ always exists, and satisfies ˆx < X. Forψ ∈ Fq, let
Xψ ⊆ X be the set of allx ∈ X satisfyingx(m)

µ+1 = ψ. In other
words,∀x ∈ Xψ satisfies Eq. (10).






x(1)
1 = x(2)

1 = · · · = x(m)
1 = 0,

x(1)
2 = x(2)

2 = · · · = x(m)
2 = 0,

...

x(1)
µ = x(2)

µ = · · · = x(m)
µ = 0, x(m)

µ+1 = ψ.

(10)

Note that,
⋃

ψ∈Fq

Xψ = X (11)

holds. We see that,






x(1)
1 = x(2)

1 = · · · = x(m)
1 = 0,

x(1)
2 = x(2)

2 = · · · = x(m)
2 = 0,

...

x(1)
µ = x(2)

µ = · · · = x(m−1)
µ = 0, (γxµ + xµ+1)(m) = ψ,

(12)
holds for∀x ∈ {x̂}∪Xψ by the definition of ˆx andXψ, where
γ = ψ − α. Note that, Corollary 1 can be applied to the set
{x̂} ∪ Xψ because relation (12) can be represented as






((1, 0, · · · · · · · · · · · · · , 0) · x)(1) = 0, · · · , ((1, 0, · · · · · · · · · · · · · ·· , 0) · x)(m) = 0,
((0, 1, 0, · · · · · · · · · · · ,0) · x)(1) = 0, · · · , ((0, 1, 0, · · · · · · · · · · · · , 0) · x)(m) = 0,

.

.

.

((0, ··,0, 1
︸︷︷︸

µ-th

,0, ··,0) · x)(1) = 0, · · · , ((0, ··,0, γ
︸︷︷︸

µ-th

, 1, 0, ··,0) · x)(m) = ψ,

and because it can be confirmed that the corresponding ma-
trices Bt in Corollary 1 satisfy rankBt = µ, 1 ≤ t ≤ m.
Applying Corollary 1 to the set{x̂} ∪ Xψ we have

x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ {x̂} ∪ Xψ,∀ψ ∈ Fq.

This result, combined with Eq. (11), yields

Hx̂ , Hx,∀x ∈ X. (13)

Corollary 1 can be applied to the setX as well by relation
(9), hence

x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ X (14)

holds. Therefore, Eqs. (13) and (14) yield

x , x′ ⇒ Hx , Hx′,∀x, x′ ∈ {x̂} ∪ X. (15)

However, by ˆx < X and|X| = qmk, for Eq. (15) to hold, it is
necessary that

|{Hx | x ∈ Fn
qm}| ≥ |{x̂} ∪ X| = qmk+ 1

holds, which contradicts with

|{Hx | x ∈ Fn
qm}| = (qm)rankH

= qmk,

Therefore, a code constructed by the universal coding
scheme that attains universalm-strong security does not ex-
ist. �

4.2 Proof of Vulnerability for 1≤ µ ≤ n− k

We now consider the more general case, 1≤ µ ≤ n− k, and
prove that the code still cannot be secure for anyµ. First, we
define the following to simplify the notations:

• Hs , {x ∈ Fn
qm | s= Hx},

• XB̃
w , {x ∈ F

n
qm | w = B̃x̄}.

Now we prove the following lemma.

Lemma 3. If the universal coding scheme is universal m-
strongly secure forµ = 1, then it is universal m-strongly
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secure forµ = n− k.

Proof. When universalm-strong security forµ = 1 is at-
tained for some code, by Lemma 1, for∀w ∈ Fm

q ,∀Bt ∈ F
1×n
q ,

rankBt = 1, 1 ≤ t ≤ m, the following must hold for this
code:

NB̃
s,w = NB̃

s′,w,∀s, s′ ∈ Fk
qm.

We will show that, then, such a code attains universalm-
strongly security forµ = n−k, which implies that by Lemma
1, for∀w∗ ∈ Fm(n−k)

q ,∀B∗t ∈ F
(n−k)×n
q , rankB∗t = n− k, 1 ≤ t ≤

m,

B∗ =





B∗1
B∗2

. . .

B∗m





,

the following holds:

NB∗
s,w∗ = NB∗

s′,w∗ ,∀s, s′ ∈ Fk
qm.

Let B∗t,i ∈ F
1×n
q denote thei-th row of B∗t , and letB′ denote

the matrix defined as below, using the matricesB[i] ∈ Fm×mn
q ,

1 ≤ i ≤ n− k:

B′ =





B[1]

B[2]

...

B[n−k]





, B[i] =





B∗1,i
B∗2,i

. . .

B∗m,i





.

Note thatB′ is obtained by permuting the rows ofB∗. Let
w′ be the column vector obtained by permuting the rows of
w∗ in the same order asB′, and letw[i] ∈ Fm

q , 1 ≤ i ≤ n− k,
denote eachm rows ofw′ as shown below:

w′ =





w[1]

w[2]

...
w[n−k]





. (16)

Using the notations above, we have

NB∗
s,w∗ = |{x ∈ F

n
qm | s= Hx, w∗ = B∗ x̄}|

= |{x ∈ Fn
qm | s= Hx, w′ = B′ x̄}|

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣






x ∈ Fqm | s= Hx,





w[1]

w[2]

...

w[n−k]





=





B[1]

B[2]

...

B[n−k]





x̄






∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

n−k⋂

i=1

{

x ∈ XB[i]

w[i] | s= Hx
}

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣





n−k⋂

i=1

XB[i]

w[i]





⋂

Hs

∣
∣
∣
∣
∣
∣
∣

.

Noting that
∣
∣
∣
∣∩

n−k
i=1X

B[i]

w[i]

∣
∣
∣
∣ = |{w

∗ = B∗ x̄}| = qmk, (17)

we proveNB∗
s1,w∗
= NB∗

s2,w∗
,∀s1, s2 ∈ F

k
qm for each of the fol-

lowing three cases of the set
(⋂n−k

i=1 X
B[i]

w[i]

)⋂

Hs.

Case 1
(⋂n−k

i=1 X
B[i]

w[i]

)⋂

Hs = φ,∀s: By
⋃

sHs = F
n
qm, we

have




n−k⋂

i=1

XB[i]

w[i]





⋂

Hs = φ,∀s⇔
n−k⋂

i=1

XB[i]

w[i] = φ,

which contradicts with Eq. (17). Thus, this case does not
exist.
Case 2

(⋂n−k
i=1 X

B[i]

w[i]

)⋂

Hs , φ,∀s: Clearly,
∣
∣
∣
∣
∣
∣
∣





⋂

i

XB[i]

w[i]



 ∩Hs

∣
∣
∣
∣
∣
∣
∣

≥ 1,∀s (18)

holds. By Eq. (17), we have
∣
∣
∣
∣
∣
∣
∣
∣
∣





⋂

i

XB[i]

w[i]



 ∩
⋃

s∈Fk
qm

Hs

∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ qmk

⇔

∣
∣
∣
∣
∣
∣
∣
∣
∣

⋃

s∈Fk
qm









⋂

i

XB[i]

w[i]



 ∩Hs





∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ qmk

⇔

∣
∣
∣
∣
∣
∣
∣





⋂

i

XB[i]

w[i]



 ∩Hs

∣
∣
∣
∣
∣
∣
∣

= 1,∀s.

The last line yields from Eq. (18),|Fk
qm| = qmk, and

Hs1 ∩Hs2 = φ,∀s1, s2 ∈ F
k
qm, s1 , s2.

Thus, the lemma holds for this case.
Case 3Otherwise: There exists1, s2 ∈ F

k
qm and 1≤ l ≤ n− k

that satisfy the following:





XB[l]

w[l]

⋂

Hs1 = φ

XB[l]

w[l]

⋂

Hs2 , φ
⇔






NB[l]

s1,w[l] = 0

NB[l]

s2,w[l] , 0
.

However,NB[l]

s1,w[l] , NB[l]

s2,w[l] contradicts with the assumption
that universalm-strong security forµ = 1 is satisfied. Thus,
Case 3 does not exist.
We considered all three cases, which cover all possible cases
and are disjoint, and conclude that the lemma holds since it
holds for Case 2 which is the only existing case. �

Assume the existence of a secure network code that
satisfies the universalm-strong security condition for some
1 ≤ µ ≤ n − k. Then this code must satisfy the security
condition forµ = 1 because in this case, the amount of in-
formation that can be wiretapped is obviously no more than
the case for 1≤ µ ≤ n− k. Then by Lemma 3, this code sat-
isfies the security condition forµ = n− k, which contradicts
with Theorem 1 stating that universalm-strong security for
µ = n− k cannot be attained. Hence, we have the following
result.

Theorem 2. For any choice of parameters n, k, q,m,H
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and the basis forFqm, the universal secure network cod-
ing scheme cannot attain universal m-strong security for
1 ≤ µ ≤ n− k.

4.3 Restricted Tapping Time

Now we consider the case when the tapping duration is gen-
eralized to 1≤ m′ ≤ m in addition to the generalizedµ
considered in the previous part. Since the tapping duration
is restricted, we do not restrictµ to 1 ≤ µ ≤ n− k, and as-
sume 1≤ µ instead. This imposes an additional condition,
Bt = O,∀t ∈ M for any choice ofM ⊆ {1, 2, · · · ,m}, |M| =
m− m′, on Definition 3. Note that the setM represents the
set of time slot indices at which wiretapping does not occur.
We are interested in, with which pairs ofµ andm′ the uni-
versal code becomes secure. From the discussions up to this
point and the result of Silva et al., the following is clear:

• µ = 1 and 1≤ m′ ≤ n− k: secure
• 1 ≤ µ ≤ n andm′ = m: insecure
• 1 ≤ µ ≤ n− k andm′ = 1: secure

Additionally, by the necessary and sufficient condition of
universalm-strong security in Lemma 2 we have,

NB̃
s,w =

|{x ∈ Fn
qm | w = B̃x̄}|

qmk
,∀s

⇔ NB̃
s,w =

qmn−m′µ

qmk
,∀s (19)

Since the RHS takes a positive value, and by the definition
of NB̃

s,w the LHS must be a non-negative integer, a necessary
condition for satisfying Eq. (19), or the necessary condition
for the code to be universalm-strongly secure, is as follows:

qmn−m′µ

qmk
≥ 1

⇔ qmn−m′µ ≥ qmk

⇔ m′ ≤
m(n− k)

µ
. (20)

For any fixedm′, m, n, andk, Eq. (20) is unsatisfied for
µ ≥ m(n− k)+1 because of the restrictionm′ ≥ 1. Note that
being able to wiretapn arbitrary links allows the wiretapper
to obtain the maximum amount of information that can pos-
sibly be wiretapped over them′ time slots, by continuously
tapping then links with GCVs that form a basis ofFn

q. Thus,
the amount of information obtained by the wiretapper with
µ ≥ n is at least as much as what is obtained by the wire-
tapper withµ ≥ m(n − k) + 1, which implies that the code
is insecure withµ ≥ n. Thus, we have another necessary
condition,

µ ≤ n− 1. (21)

Combining Eqs. (20) and (21) yields the necessary condi-
tion,

µ ≤ min
{ m

m′
(n− k), n− 1

}

.

5. Conclusion

We proposed an eavesdropping model where the adversary
is able to re-select the tapping wires at each time slot during
the communication. We proved the impossibility of securing
against this model using the universal secure network code
proposed by Silva et al. for all choices of code parameters,
even with a restricted number of tapped links. Moreover,
we considered the case with shorter tapping duration, and
derived a necessary condition for this code to be secure. The
future tasks include improving this condition to a necessary
and sufficient one.
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