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ABSTRACT 

This paper deals with underwater target classification using 
synthesized active sonar signals. Firstly, we synthesized ac-
tive sonar returns from 3D highlight model of underwater 
targets using the ray tracing algorithm. Then, we applied a 
multiaspect target classification scheme based on a hidden 
Markov model to classify them. For feature extraction from 
the synthesized sonar signals, a matching pursuit algorithm 
was used. Experimental results depending on the number of 
observations and signal-to-noise ratio are presented with 
our discussions. 

1. INTRODUCTION 

Underwater target detection and classification problems 
have been studied from many researchers for both military 
purposes and non-military ones. Various pattern recognition 
approaches with active sonar signals are under study, but 
there are many problems to be considered. The sonar signals 
are distorted in underwater environment, and the temporal 
and spectral characteristics of active sonar signals change in 
accordance with the aspect of the target even though it 
comes from the same one. In addition, since it is difficult to 
collect real data for research, most researchers focus on the 
experimentally generated data such as sonar returns from 
submerged elastic cylindrical shaped targets in the water 
tank or lake [1]-[3]. As an alternative approach to this, syn-
thesized sonar signals on the certain target condition can be 
used. In that case conventional echo highlight model [4] 
could be used because of its simplicity.  
HMM is a statistical signal processing technique to model 
non-stationary time sequences. In this model, a transition of 
state would occur when the statistical characteristics of a 
signal is changed in time. HMM has been widely used in 
pattern recognition areas such as speech, handwriting, ges-
ture recognitions, and bioinformatics. In 1999, Paul Runkle 
et al introduced the HMM to multiaspect target recognition 
[5]-[6]. Each state of the HMM is characterized by the as-
pect of the target and a state transition occurs when the tar-
get aspect changes by the received sonar signals of different 
directions. In this paper, we applied the HMM-based multi-
aspect target classification method to the synthetic linear 
frequency modulated (LFM) sonar returns from highlight 
models of underwater targets.  

Matching pursuit is a signal decomposition method that 
finds maximum correlations with basis vectors contained in 
an over-complete dictionary. It repeatedly calculates best 
matching coefficients for residual signals subtracted in the 
previous step. It has an important advantage to decompose a 
signal that any type of basis much correlated with the signal 
can be chosen for decomposition. In active sonar systems 
LFM signals or continuous wave signals are generally used. 
So a sinusoidal short pulse might be the best choice of basis 
when we use matching pursuit algorithm for feature extrac-
tion. 
In this work, we synthesized active sonar returns based on 
ray tracing algorithm for 3D highlight models. We extracted 
feature vectors from each synthesized active sonar signal 
using matching pursuit algorithm [7]. Then we employed an 
HMM-based multiaspect target recognition scheme to classi-
fy each target correctly. Though the synthesized active sonar 
signals are in very limited conditions because we assumed 
very simple target models and environment, simulation re-
sults have shown that the given multiaspect HMM scheme is 
appropriate for underwater target classification.  
This paper is organized as follows. The synthesis of active 
sonar signals from highlight models is described in the next 
section. In section 3, we briefly explain about matching pur-
suit based feature extraction from the synthesized sonar re-
turns. The HMM-based multiaspect target classification 
method is explained in section 4, and its experimental results 
with discussions are given in section 5. Finally, conclusion 
is given in section 6. 

 

 

Figure 1 – Environment for synthesis of active sonar target signals. 
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Figure 2 – The sound velocity profile 

2. SYNTHESIS OF ACTIVE SONAR RETURNS 
USING HIGHLIGHT MODELS 

For the synthesis of active sonar signals, we assumed a sim-
ple environment of active sonar returns as shown in Figure 1. 
We considered the direct reflections as well as indirect re-
flections from sea level and bottom level. The depth of wa-
ter is set to 300 m, the transmitter and receiver are located at 
the same position of the sea level, i.e., monostatic mode, and 
an unknown target is at 50m below the sea level. We adopt-
ed the sound velocity profile to calculate the sound velocity 
at a certain depth of water as given in Figure 2. Figure 3 
shows 4 types of highlight models of underwater targets 
designed for synthesis of sonar returns. All the targets have 
several highlights mainly lying in the horizontal line. Each 
highlight reflects acoustic wave in all directions. Underwater 
acoustic wave is then propagated over being attenuated and 
bent by sound velocity.  
We can obtain the synthesized signal by summing traced 
signals from each highlight at the receiver position. In this 
work, we generated active sonar returns for each target by 
varying its aspect from 0 to 360 degrees by 1 degree incre-
ment. Figure 4 shows examples of synthesized active sonar 
signals from the target (d) in Figure 3. Three segments of the 
signal shown in 60 and 90 degrees of aspect might be due to 
three paths of reflection (direct, surface reflection, and bot-
tom reflection) that we considered when synthesizing.  

 

Figure 3 – 3D highlight models of targets for synthesis of active 
sonar signals. 

 

Figure 4 – Examples of generated active sonar signals from target 
(d) in Figure 3. 

3. FEATURE EXTRACTION USING MATCHING 
PURSUIT ALGORITHM 

Matching pursuit is a recursive signal decomposition meth-
od used for finding the maximum correlations with basis 
vectors from multi-dimensional data using an over-complete 
dictionary. Here dictionary denotes the list of basis functions 
used for analysis. Matching pursuit is widely used for sparse 
coding, compression, and feature extraction. It has a power-
ful advantage in choosing appropriate basis compared with 
other signal processing techniques such as Fourier transform 
or wavelet transform. It can choose any wave that has much 
correlation with analysing signals. In this work, we used a 
chirp-based dictionary, since the synthesized active signals 
are supposed to be transmitted using the LFM signals. 
Firstly, an arbitrary signal is projected onto the dictionary 
using matching pursuit. From the first iteration, we are able 
to get the coefficient as described in equations (1) and (2). 
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Here )(0 tw  is a first basis selected by having highest cor-

relation coefficient on the dictionary and )(1 tR  is a residual 

signal after first iteration of matching pursuit process. Se-
cond matching pursuit iteration is processed on the residual 
obtained from the first iteration. After L-th iteration a signal 
is decomposed as shown in equation (3). 
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Since we assumed that the LFM signals were transmitted 
from the sensor to synthesize active sonar returns, we used 
the chirp-based dictionary given in equation (4). 
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Here, 0f  denotes the center frequency of a chirp signal, k  

is a chirp rate,   is a time delay, and   is phase, and all 

parameters can be extracted during iterations. And T  is the 
width of rectangular window applied in process. Since 

0f and k  of the sonar return have little information about 

the target, in our work, we used the time delay parameters 
obtained after 15 iteration processes as a feature vector, and 
is given like equation (5). 
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4. HIDDEN MARKOV MODEL-BASED MULTI-
ASPECT TARGET CLASSIFICATION 

4.1 Multiaspect HMM model 

In a multiaspect HMM-based classification method, a state 
is characterized by aspect angle interval of a target and a 
transition of state occurs when statistical characteristics of 
aspect angle interval are significantly changed. Each aspect 
angle interval is modelled by mixtures of Gaussian distribu-
tion. In our research we applied it for underwater target clas-
sification with synthesized active sonar signals. In the model 
0~90 degrees of the target aspect is divided into five states 
having different characteristics as shown in Figure 5-(a) [5]. 
Because targets have almost symmetric shape, other aspect 
of a target can share the states defined above. Fig. 5-(b) 
shows a modified ergodic HMM used in this work. In this 
model, a state transition is allowed only from one to adja-
cent state except at state 1 and 5. At these states, a transition 
is restricted to only one state, i.e., state 2 and 4, respectively. 
 

 
(a) 

 
(b) 

Figure 5 – Schematics of multiaspect HMM 

Figure 6 – The block diagram of training phase. 

4.2 HMM model training phase 

Fig. 6 shows the block diagram of training phase of a multi-
aspect HMM. To assign initial angle interval to each state, 
we generated a codebook using vector quantization from all 
feature vectors having aspect from 0 to 360 degrees. Then 
optimal initial state assignment is carried out based on in-
formation theoretic approach. That is, we minimized the 
conditional entropy of equation (6) using a recursive ap-
proach. 


 




N

n

I

i
nn ivsqPivsqP

vqH

1 1
2 )|(log),(

)|(

  (6) 

Here )|( H  denotes conditional entropy, N is the number 

of states, and I is the size of a codebook. From this we can 

calculate initial state intervals, N ,,1  , with the follow-

ing equations (7). 

1,),|(),|(

1,0

1,
2

)|(

)|(

11

1

1

1
























L

l
l

L

l
knkmllknkmin

nm

n
nkmknm

n

n
nknknn

N

n
n

n
n

wTsqgwTsqpb

mna

mnsqsqpa

sqsqpa

yy










(7) 

Then we reiterate each initial HMM model using the Baum-
Welch re-estimation until the model is converged. 

5. EXPERIMENTAL RESULTS 

In the synthesis of active sonar signals, we set the sampling 
frequency to 31.25 kHz, and LFM pulse duration to 50 ms. 
The center frequency and bandwidth of the LFM signal are 
7 kHz, and 400 Hz, respectively. For training each HMM 
model, 181 observation sequences having initial aspect from 
0 to 180 degrees were used and for testing 361 observation 
sequences having initial aspect from 0 to 360 degrees were 
used. Each observation sequence has 10 concatenated fea-
ture vectors with 5 degree interval. We investigated classifi-
cation performance by varying the number of observations 
from 1 to 10. Matching pursuit feature extraction method 
was employed with MPTK[8] and all recognition results 
were obtained using the HMM toolbox, i.e., HTK[9]. 
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Figure 7 – The classification results under noisy environment. 

Figure 7 shows the classification results depending on the 
number of observations as well as signal-to-noise ratio 
(SNR). In principle, correct classification rate decreases as 
the number of observation decreases as well as SNR. From 
the analysis of the above results with the HTK output file, 
we found that most classification errors occurred at target 
(b) in Figure 3 when the aspect is 180 to 360 degrees. We 
think this result comes out because the target 2 is asymmet-
ric unlike others, and further study is under way to verify it. 
Figure 8 shows the classification results depending on angle 
interval variation of the observation sequences. It shows that 
the HMM-based recognition is robust against some varia-
tions in the aspect angle interval. This is an advantage of an 
HMM-based recognition system. On the contrary to this, we 
found that the HMM recognition system should have a suf-
ficient length of observation sequences for train and recogni-
tion compared to other pattern recognition algorithms. 
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Figure 8 – The classification results according to aspect angle inter-
val of the observation sequences. 

6. CONCLUSION 

In this paper, we synthesized active sonar signals using tar-
get highlight models based on ray tracing algorithm. Then 
multiaspect HMM-based target classification experiments 
were carried out by varying the number of observations and 
aspect angle interval of observation sequences. Experi-
mental results have shown that the method in this study 
works quite well even if we do not know the aspect infor-
mation of the target. Further research will be focused on the 
modelling the HMM more accurately to improve the recog-
nition performance as well as synthesizing active sonar re-
turns with a more elaborate model of a target.  
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