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Abstract—We consider spatially-coupled protograph-based
LDPC codes forthe three terminal erasure relay channel. It is ob-
served that BP threshold value, the maximal erasure probability
of the channel for which decoding error probability converges to
zero, of spatially-coupled codes, in particular spatially-coupled
MacKay-Neal code, is close to the theoretical limit for the
relay channel. Empirical results suggest that spatially-coupled
protograph-based LDPC codes have great potential to achieve
theoretical limit of a general relay channel.

I. I NTRODUCTION

Felström and Zigangirov constructed the time-varying peri-
odic Low-Density Parity-Check (LDPC)convolutional codes
from LDPC block codes [1]. Surprisingly, the LDPC convo-
lutional codes outperform the constituent underlying LDPC
block codes. Recently, Kudekaret al. rigorously proved such
decoding performance improvement over binary erasure chan-
nels (BEC) and showed that the terminated LDPC convolu-
tional coding increases the belief propagation (BP) threshold
up to the maximum a-priori (MAP) threshold of the underlying
block code. This phenomenon is calledthreshold saturation
[2]. A protograph of an LDPC convolutional code can be seen
that a spatially coupled protograph of the underlying LDPC
code, hence Kudekaret al. named this code spatially-coupled
protograph-based LDPC code.

Spatially-coupled protograph-based LDPC codes, composed
of many identical protographs coupled with their neighboring
protographs, have recently attracted much attentions.The
threshold saturation phenomenon is observed not only for
the BEC, but also for general binary memoryless symmetric
(BMS) channels [3]. It is expected thatthe spatially-coupled
protograph-based LDPC codes achieve universally the capacity
of the BMS channels under BP decoding. Such universality is
not possessed by polar codes [4] or irregular LDPC codes [5].
Depending on the channel, frozen bits need to be optimized
for polar codes and degree distributions need to be optimized
for irregular LDPC codes. Therefore, it is expected that the
spatially-coupled protograph-based LDPC codesare able to
be applied to many other problems in communications.

Recently, Kudekar and Kasai showed empirical evi-
dences that the BP threshold value of the spatially-coupled
protograph-based LDPC codes is approaching the theoretical
limit for a class of channels with memory [6] and the Shannon
threshold over multiple access channels [7].

MacKay-Neal (MN) codes [8] are non-systematic two-edge
type LDPC codes [9]. The MN codes are conjectured to
achieve the capacity of BMS channels under maximum like-
lihood decoding. Murayamaet al. [10] and Tanakaet al. [11]
reported the empirical evidence of the conjecture for BSC
and AWGN channels, respectively by a non-rigorous statistical
mechanics approach known asreplica method. Recently, Kasai
et al. have shown that spatially-coupled MN codes have the
BP thresholds very close to the Shannon limit of the BEC
[12].

It is naturally expected that the same phenomenon oc-
curs also for transmission over relay channels. We propose
spatially-coupled protograph-based LDPC and MN codes for
DF strategy over erasure relay channels. BP decoding of
joint use of Tanner graphs is presented, and density evolution
analysis gives an empirical evidence that spatially-coupled
protograph-based MN codes achieve theoretical limit of the
erasure relay channel.

The paper is organized as follows.Section II introduces
the erasure relay channel and the DF strategy. Section III
defines spatially-coupled protograph-based LDPC and MN
codes. Section IV describes the density evolution equations.
The numerical results are presented in Section V. Thelast
section will conclude.

II. ERASURE RELAY CHANNEL

A. Channel Model

We show the erasure relay channel used in this paper in
Fig. 1. The relay channelcomprises of a sender nodeS,
a destination nodeD, and a relay nodeR. For simplicity,
interferences between the sender and the relay transmissions
are not considered in this paper, therefore we can view the
above relay channel as two separate channels.One is an
erasure-broadcast channel fromS to R andD, and the other is
a point-to-point erasure channel fromR to D. We denote that
the erasure probabilities on the channels fromS toR, fromR to
D, and fromS to D by ǫSR, ǫRD, andǫSD, respectively.This relay
channel can be regarded as wireless communication network
from the viewpoint of higher layer[13].

B. Capacity of Erasure Relay Channel

Denote the coding rate atS by R.
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Fig. 1. Erasure relay channel.

Theorem 1 (Capacity [13]). The achievable rate region of the
erasure relay channel without interferences at D is given by:

R ≤ min{(1− ǫSDǫSR), (1− ǫSD) + β(1− ǫRD)},

where β = 1 if R < 1 − ǫSR and β = ǫSR otherwise. Since
the DF strategy is employed, i.e., R < 1 − ǫSR in this paper,
it holds that β = 1. The region, therefore, becomes

R ≤ min{(1− ǫSR), (1− ǫSD) + (1 − ǫRD)}. (1)

The dashed lines in Fig. 2 represents the boundary of the
region for fixed coding rateR = 0.5. We will define a code
pair used atS and R in Section III. In Section IV, we will
investigate the achievable region of(ǫSR, ǫSD) for the code pair.

C. LDPC Coding for DF Strategy

Let NS andNR are the lengths of codes used atS andR,
respectively. We denote the codewords sent fromS andR by
x ∈ {0, 1}NS and x

′ ∈ {0, 1}NR, respectively. We denote
the received words atR andD from S by yR ∈ {0, 1, ?}NS,
yD ∈ {0, 1, ?}NS, respectively. We denote the received words
at D from R by y

′ ∈ {0, 1, ?}NR.
Design of LDPC codes for relay channels with DF strategy

was discussed in several papers [14], [15], [16], [17]. The
senderS sends a codewordx encoded by an LDPC code. The
relayR decodesx. We assume the decoding error probability
is arbitrary small. This is realized by capacity approaching
codes and due to the DF strategy assumptionR < 1 − ǫSR.
Then R generatesx′ from x using another LDPC code.x′

is transmitted toD. D decodes the codewordx from yD and
y
′. This decoding process atD is performed by joint use of

Tanner graphs of the two LDPC codes.

III. SPATIALLY -COUPLED PROTOGRAPH-BASED CODES

In this section, we define spatially-coupled protograph-
based LDPC and MN codes, respectively.

A. Protograph-based Codes

Protograph-based codes are defined by the Tanner graphs
lifted from relatively small graphs calledprotographs [18]
[19]. Protographs are defined by non-negative integer matrices

calledbase-matrices [20]. Let us assume we are given a base-
matrix B ∈ (Z+)mp×np . The parity-check matrix is obtained
by replacing each entry ofB(i, j) with a q × q binary matrix
which is the sum ofB(i, j)-times randomly chosenq × q
permutation matrices overGF(2). Note that the zero entry of
B is replaced with aq× q all-zero binary matrix. This lifting
process of matrices keeps the weight of columns and rows the
same.

B. Spatially-Coupled Protograph-based Codes

We define a spatially-coupled base-matrixB[0,L−1] from a
given base-matrixB ∈ (Z+)mp×np . Let L be a non-negative
integer, which is referred to ascoupling number. We define
B[0,L−1] as follows.

B[0,L−1] =

















B0

...
. . .

Bd B0

. . .
...

Bd

















∈ (Z+)mp(L+d)×npL,

where B0, . . . ,Bd ∈ (Z+)mp×np are non-negative integer
matrices chosen so that

d
∑

i=0

Bi = B ∈ (Z+)mp×np ,

for somed. These matrices are referred to asspreading base-
matrices.

C. Spatially-Coupled Protograph-based (l, r, L)-regular
LDPC Codes

We define the base-matrix of protograph-based (l,r)-regular
LDPC codes as

B
(l,r) := [l, · · · , l] ∈ (Z+)1×k,

where we assumedr = kl for some integerk, for simplic-
ity. Spatially-coupled protograph-based (l, r, L)-regular LDPC
codes are defined as protograph-based codes defined by
spreading base-matrices

B
(l,r)
i = [1, . . . , 1] ∈ (Z+)1×k for 0 ≤ i ≤ l − 1.

The design rateR(l,r,L) of the spatially-coupled protograph-
based (l, r, L)-regular LDPC codes is given by

R(l,r,L) = 1−
(L+ l − 1)

Lk
= R(l,r) −

(1−R(l,r))(l − 1)

L
.

(2)

R(l,r) = 1 − 1/k is the design rate of the underlying code.
R(l,r,L) converges toR(l,r) as increasingL with gapO(1/L).
We use bits corresponding to the leftmost column ofB

(l,r)

andB(l,r)
i for i = 0, . . . , l− 1 as information bits.



D. Spatially-Coupled Protograph-based (l, r, g, L)-MN Codes

We define the base-matrix of protograph-based (l, r, g)-MN
codes as

B
MN(l,r,g) :=







r 1 · · · 1
...

...
. . .

...
r 1 · · · 1






∈ (Z+)g×g+1,

where we assumedl = gr, for simplicity. MN codes have
punctured nodes, therefore the bits corresponding to the left-
most column ofBMN(l,r,g) are punctured.

Spatially-coupled protograph-based (l, r, g, L)-MN codes
are defined as protograph-based codes defined by spreading
base-matricesBMN(l,r,g)

i for i = 0, . . . , g − 1 as follows

B
MN(l,r,g)
i =





0i−1×g+1

bi

0g−i×g+1



 ,

bi = [r − 1,01×g−i,1i] for 1 ≤ i ≤ g − 1,

B
MN(l,r,g)
0 = B

MN(l,r,g) −

g−1
∑

i=1

B
MN(l,r,g)
i ,

where 0a×b represents ana × b all-zero matrix and1i

represents an all-one row vector of lengthi.
The design rateRMN(l,r,g,L) of the spatially-coupled

protograph-based (l, r, g, L)-MN codes is given by

RMN(l,r,g,L) = 1−
(g + 1)L− (gL+ g − 1)

L(g + 1)− L

= RMN(l,r,g) −
1−RMN(l,r,g)

L
. (3)

RMN(l,r,g) = 1/g is the design rate of the underlying code.
RMN(l,r,g,L) converges toRMN(l,r,g) as increasingL with gap
O(1/L).

We use bits corresponding to the leftmost column of
B

MN(l,r,g) andBMN(l,r,g)
i for i = 0, . . . , g− 1 as information

bits.

E. Relay Channel Coding via Spatially-Coupled Protograph-
based Codes

As explained in Section II-A, we use two LDPC codes for
coding atS andR. We propose a relay channel coding scheme
via spatially-coupled protograph-based codes in the following
way.

The senderS encodes the information bits intox with a
spatially-coupled (l, r, L)-regular LDPC (resp. (l, r, g, L)-MN)
code defined by a base-matrixB(l,r)

[0,L−1] (resp.BMN(l,r,g)
[0,L−1] ). The

relayR decodesx from yR and encodes the information bits
into x

′ with another spatially-coupled (l, r, L)-regular LDPC
(resp. (l, r, g, L)-MN) code defined by the same base-matrix
B

(l,r)
[0,L−1] (resp.BMN(l,r,g)

[0,L−1] ).
The destinationD decodesx from yD and y

′ by BP
decoding. The BP decoding algorithm is performed on a
Tanner graph which represents the two codes. The joint Tanner
graph is obtained by connecting information variable nodesin

the two codes with check nodes of degree 2. For example, the
joint protograph of spatially-coupled (3,6,24)-regular LDPC
and (4,2,2,12)-MN codes are depicted in Figs. 4 and 7,
respectively.

IV. D ENSITY EVOLUTION ANALYSIS

The BP decoder [21] iteratively exchanges messages∈
{0, 1, ?} between variable nodes and check nodes in the Tanner
graphs. For transmissions over the BEC, the density evolution
allows us to predict the message erasure probability at each
iteration round.

Let us assume we are given two protograph-based codes
defined by a spatially-coupled base-matrixB. We refer to the
edges in the Tanner graph corresponding to the base-matrix
entry B(i, j) as edges atsection (i, j). Let y(ℓ)i,j denote the
probability that the messages from check nodes to variable
nodes along the edges at section(i, j) are “?” at iteration ℓ.
Similarly, we definex(ℓ)

i,j as the probability that the messages
from variable nodes to check nodes along the edges at section
(i, j) are “?” at iteration ℓ. The messages at the 0-th round
are initialized with channel outputs. It follows thatx(0)

i,j =
ǫj, where ǫj is defined byǫj = ǫSD (reps. ǫRD) if the bits
are transmitted byS (resp.R) and corresponding to thej-
th column of the base-matrix entryB are not punctured, and
ǫj = 1 otherwise.

A message sent from a check node is “?” if and only if at
least one of the incoming messages are “?”. Consequently, we
have

y
(ℓ)
i,j = 1− (1− x

(ℓ−1)
i,j )(B(i,j)−1)

∏

j′ 6=j

(1− x
(ℓ−1)
i,j′ )B(i,j′),

for (i, j) such thatB(i, j) 6= 0.
A message sent from a variable node is “?” if all the

incoming messages and the message from the channel are “?”.
Consequently, we have

x
(ℓ)
i,j = ǫj(y

(ℓ)
i,j )

(B(i,j)−1)
∏

i′ 6=i

(y
(ℓ)
i′,j)

B(i′,j),

for (i, j) such thatB(i, j) 6= 0.
The channel erasure probability pair (ǫRD, ǫSD) is said to be

achievable by the protograph-based codes iflimℓ→∞ x
(ℓ)
i,j = 0

for all i, j such thatB(i, j) 6= 0.

V. NUMERICAL RESULTS

In this section, we evaluate the achievable (ǫRD, ǫSD) region,
referred to asachievable erasure probability region, for LDPC
codes and spatially-coupled protograph-based LDPC and MN
codes.We chooseL = 128 so that the difference between
RMN(l,r,g,L) and 0.5 is less than 0.01.

A. Regular LDPC Codes

The joint base matrix of the joint (3,6)-regular LDPC code
at D is given as

B =





3 3 0 0
0 0 3 3
1 0 1 0



 . (4)
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Fig. 2. Achievable erasure probability region of (3,6)-regular LDPC codes
at S and R. The black dashed line represents the theoretical limitEq. (1)
for rate 0.5. It can be seen that there is a large gap in the slope region for
0.5 < ǫRD < 1, 0.5 < ǫSD < 1.

The 2 leftmost columns and the other columns correspondx

andx′, respectively. Thereforeǫj = ǫSD for j = 0 and1, and
ǫj′ = ǫSD for j′ = 2 and3. Note that the indices of matrices
start from 0. We compute achievable erasure probability region
using density evolution withB as shown in Eq. (4).

Figure 2 shows the achievable erasure probability region of
(3,6)-regular LDPC codes of rate 0.5 atS andR. The vertical
axis representsǫSD and the horizontal axis representsǫRD. The
black dashed line represents the theoretical limitEq. (1) for
rate 0.5. It can be seen that there is a large gap in the slope
region for0.5 < ǫRD < 1, 0.5 < ǫSD < 1.

When ǫRD = 1, y′ is all erased,D needs to decodex only
from yD. Hence, the achievableǫSD when ǫRD = 1 is equal to
the BP threshold of the (3,6)-regular LDPC code 0.4294.

B. Split-extended LDPC codes [17]

Recently asplit-extension technique for LDPC coding over
the Gaussian relay channels has been developed by Savin [17].
The performance over the BEC has not been known, therefore
we evaluate by using achievable erasure probability regionfor
comparison purpose.

Split-extension technique splits the check node of the pro-
tograph to two or more check nodes with variable node of
degree 2 in order to generate extra parity bitsx

′ sent from the
R toward theD. When generated variable nodes of degree 2
are punctured, splitted protograph is identical to the original
protograph. HenceR sends bits corresponding to the variable
nodes of degree 2 to theD. The extra bits can help to decode
thex at D.

The base matrix of the accumulate repeat jagged accumulate

0.5
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0.5 1.0

0.4387

ǫSD

ǫRD

Fig. 3. Achievable erasure probability region of accumulate repeat jagged
accumulate (ARJA) code [22] withsplit-extension technique [17]. The black
dashed line represents the theoretical limitEq. (1) for rate 0.5. It can be seen
that there still remains a large gap in the slope region for0.5 < ǫRD < 1,
0.5 < ǫSD < 1.

(ARJA) codes [22] with the split-extension is given as

B =





















0 0 0 1 0 0 1 0 0
0 1 0 0 1 1 1 0 0
1 1 0 1 0 1 0 0 0
1 1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 1 1
1 0 0 0 1 0 0 0 1
2 0 1 0 0 0 0 0 0





















. (5)

The j-th columns j = 1, . . . , 4 and the j′-th columns
j′ = 5, . . . , 8 and correspondx and x

′, respectively. The
leftmost column corresponds to the punctured bits of ARJA
codes. Thereforeǫj = ǫSD for j = 1, 2, 3, 4, ǫj′ = ǫRD for
j′ = 5, 6, 7, 8, and ǫ0 = 1. Note that the indices of matrices
start from 0. We compute achievable erasure probability region
using density evolution withB as shown in Eq. (5).

Figure 3 shows achievable erasure probability region of
ARJA codes with the split-extension.When ǫRD = 1, y

′ is
all erased,D needs to decodex only from yD. Hence, the
achievableǫSD when ǫRD = 1 is equal to the BP threshold of
the ARJA code 0.4387. It can be seen that thereremains a gap
in the slope region for0.5 < ǫRD < 1, 0.5 < ǫSD < 1.



C. Spatially-Coupled Protograph-based (l, r, L)-regular
LDPC Codes

The joint base matrix of the spatially-coupled (3,6,128)-
regular LDPC codes atD is given as

B =

[

B
(3,6)
[0,127] B

(3,6)
[0,127]

I
′

128×256
I
′

128×256

]

=





























1 1 0 0 · · · 1 1 0 0 · · ·
1 1 1 1 · · · 1 1 1 1 · · ·
1 1 1 1 · · · 1 1 1 1 · · ·
0 0 1 1 · · · 0 0 1 1 · · ·
...

...
...

...
. . .

...
...

...
...

. . .
1 0 0 0 · · · 1 0 0 0 · · ·
0 0 1 0 · · · 0 0 1 0 · · ·
...

...
...

...
. . .

...
...

...
...

. . .





























, (6)

whereI′
128×256

is 128× 256 matrix whose(j, 2j)-th entry is
1 and the other entries are 0. These2j-th columns correspond
to information bits. Note that the indices of matrices startfrom
0. The left 256 columns and the other correspond tox andx′,
respectively. Thereforeǫj = ǫSD for j = 0, . . . , 255, andǫj′ =
ǫRD for j′ = 256, . . . , 511. We compute achievable erasure
probability region using density evolution withB as shown in
Eq. (6).

Figure 5 shows achievable erasure probability region of
spatially-coupled protograph-based (3,6,128)-regular LDPC
codes atS andR. The design rateR(3,6,128) is 0.4921875. AsL
goes to infinity,R(3,6,L) converges to 0.5 as shown in Eq. (2).
The black dashed line represents the theoretical limit for rate
0.4921875 and the gray dotted line represents the theoretical
limit for rate 0.5. At the corner pointǫRD = 1 (ǫSD = 1), ǫSD

(ǫRD) is almost equal to the MAP threshold of (3,6)-regular
LDPC code 0.48815. However, there is still a small gap in the
slope region for0.5 < ǫRD < 1, 0.5 < ǫSD < 1.

We omit the joint base matrix of the spatially-coupled
(5,10,128)-regular LDPC codes atD, because it is naturally
derived fromB as shown in Eq. (6). Figure 6 shows achievable
erasure probability region of spatially coupled (5,10,128)-
regular LDPC codes atS andR. The design rateR(5,10,128)

is 0.484375. AsL goes to infinity,R(5,10,L) converges to 0.5
as shown in Eq. (2). The black dashed line represents the
theoretical limit for rate 0.484375 and the gray dotted line
represents the theoretical limit for rate 0.5. At the cornerpoint
ǫRD = 1 (ǫSD = 1), ǫSD (ǫRD) is almost equal to the MAP
threshold of (5,10)-regular LDPC code 0.4995.However, there
still remains a small gapin the slope region for0.5 < ǫRD < 1,
0.5 < ǫSD < 1.
x
′ from R includes repetition bits of thex from S, since

the lower part of the joint base matrix has rows of weight 2,
i.e., [I′

128×256
I
′

128×256
]. This repetition causes rate loss in

the slope region, hence we don’t believe that spatially-coupled
(l, r, L)-regular LDPC codes can achieve the theoretical limit
of erasure relay channel.

Fig. 4. Protograph of spatially-coupled protograph-based (3,6,24)-regular
LDPC codes.The lower protograph with gray circle nodes corresponds to the
code used atS, and the upper protograph with dark circle nodes corresponds
to thecode used atR. The lower and upper protographs will be connected at
D for jointly BP decoding. The channel parameters ofthe gray circlenodes
are ǫSD and those ofthe dark circlenodes areǫRD.

0.5

1.0

0.5 1.0

0.4881

ǫSD

ǫRD

Fig. 5. Achievable erasure probability region ofspatially-coupled
protograph-based (3,6,128)-regular LDPC codes atS andR. The black dashed
line represents the theoretical limitEq. (1) for design rate 0.4921875and the
gray dotted line represents the theoretical limitEq. (1) for rate 0.5. There still
remains a small gap in the slope region for0.5 < ǫRD < 1, 0.5 < ǫSD < 1.



D. Spatially-Coupled Protograph-based (l, r, g, L)-MN Codes

The joint base matrix of the spatially-coupled (4,2,2,128)-
MN codes atD is given as

B =

[

B
MN(4,2,2)
[0,127] B

MN(4,2,2)
[0,127]

I
′′

128×384
I
′′

128×384

]

=





























1 1 0 0 · · · 1 1 0 0 · · ·
2 1 1 1 · · · 2 1 1 1 · · ·
1 0 1 1 · · · 1 0 1 1 · · ·
0 0 0 2 · · · 0 0 0 2 · · ·
...

...
...

...
. . .

...
...

...
...

. . .
1 0 0 0 · · · 1 0 0 0 · · ·
0 0 0 1 · · · 0 0 0 1 · · ·
...

...
...

...
. . .

...
...

...
...

. . .





























, (7)

whereI′′
128×384

is 128× 384 matrix whose(j, 3j)-th entry is
1 and the other entries are 0. These3j-th columns correspond
to information bits. Note that the indices of matrices startfrom
0. The left 384 columns and the other columns correspondx

andx′, respectively. Thereforeǫj = ǫSD if j = 3t+ 1, 3t+ 2
for t = 0, . . . , 127, ǫ′j = ǫRD if j′ = 3t + 1, 3t + 2 for t =
128, . . . , 255, andǫj′′ = 1 if j′′ = 3t for t = 0, . . . , 255. We
compute achievable erasure probability region using density
evolution withB as shown in Eq. (7).

Figure 8 shows achievable erasure probability region of
spatially-coupled (4,2,2,128)-MN codes atS andR. The design
rate RMN(4,2,2,128) is 0.49609375. AsL goes to infinity,
RMN(4,2,2,L) converges to 0.5 as shown in Eq. (3). The black
dashed line represents the theoretical limit for rate 0.49609375
and the gray dotted line represents the theoretical limit for
rate 0.5. At the corner pointǫRD = 1 (ǫSD = 1), ǫSD = 0.4999
(ǫRD = 0.4999) is almost equal to the point-to-point Shannon
limit of rate one half codes. The boundary of the achievable
region is very close to the theoretical limit. However thereis
a very small gap less than10−4 between the boundary of the
region and the theoretical limit. This gap is due to wiggles
[2].

VI. CONCLUSION

We have designed spatially-coupled protograph-based
LDPC and MN codes for erasure relay channels. It is ob-
served that spatially-coupled protograph-based MN codes ap-
proach the theoretical limit. We expect that spatially-coupled
protograph-based MN codes approach the capacity over the
relay channelsalso with other channel impairments, such that
the binary symmetric relay channels and the Gaussian relay
channels.

In the future work, we propose spatially-coupled
protograph-based MN codesfor Gaussian relay channels
and prove the rate achievability of the spatially-coupled
protographs-basedMN codes to the theoreticallimit .
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