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Abstract—In this paper, we show that the code-trellis and the
error-trellis for a convolutional code can be reduced simulta-
neously, if reduction is possible. Assume that the error-trellis
can be reduced using shifted error-subsequences. In this case,
if the identical shifts occur in the subsequences of each code
path, then the code-trellis can also be reduced. First, we obtain
pairs of transformations which generate the identical shifts both
in the subsequences of the code-path and in those of the error-
path. Next, by applying these transformations to the generator
matrix and the parity-check matrix, we show that reduction of
these matrices is accomplished simultaneously, if it is possible.
Moreover, it is shown that the two associated trellises are also
reduced simultaneously.

I. I NTRODUCTION

In this paper, we always assume that the underlying field is
F = GF(2). LetG(D) andH(D) be the generator matrix and
the parity-check matrix of an(n, n −m) convolutional code
C, respectively. Ariel and Snyders [1] presented a construction
of error-trellises based on the scalar check matrix derived
from H(D). They showed that when some (jth) “column”
of H(D) has a factorDl, there is a possibility that state-
space reduction can be realized. Being motivated by their
work, we also examined the same case. The time-k error
ek = (e

(1)
k , · · · , e

(n)
k ) and syndromeζk = (ζ

(1)
k , · · · , ζ

(m)
k )

are connected with the relationζk = ekH
T (D) (T means

transpose). From this relation, we noticed [9] that the trans-
formatione(j)k → Dle

(j)
k = e

(j)
k−l is equivalent to dividing the

jth column ofH(D) by Dl. That is, reduction can be realized
by shifting the “subsequence”{e(j)k } of the original error-path
e. It is stated [1] that their construction can be used also to
obtain code-trellises. However, it is not described in the paper.
On the other hand, our construction is based on an equivalent
modification of the relationζk = ekH

T (D). Hence, our
method can be directly extended to code-trellises. That is,
in the case of code-trellises, the construction is based on the
relationyk = ukG(D) and its equivalent modifications, where
uk andyk are the time-k information and code symbols, re-
spectively. Note that there exists a one-to-one correspondence
between the code-paths in a code-trellis and the error-paths in
the corresponding error-trellis. Accordingly, it is reasonable

to think that the two trellises can be reduced simultaneously,
if reduction is possible. Here, consider the situation thatthe
identical shifts occur both in the components ofyk and in
those ofek. In this case, if one trellis is reduced, then the other
trellis should be equally reduced. In this paper, based on this
idea, we discuss the simultaneous reduction of a code-trellis
and the corresponding error-trellis. First, we obtain the general
transformations which generate the identical shifts both in the
subsequences ofy and in those ofe. Next, we show that these
transformations preserve the relation thatone is a generator
matrix and the other is the corresponding parity-check matrix.
(In this paper, we call this relation the “GH Relation” and
if G(D) andH(D) have this relation, then it is denoted as
G(D) ⇔ H(D)). Using this property, it is shown thatG(D)
andH(D) are reduced simultaneously, if reduction is possible.
Moreover, it is shown that the corresponding two trellises
are also reduced simultaneously. These results again imply
that a code/error-trellis construction using shifted code/error-
subsequences is very effective.

II. T RELLIS CONSTRUCTION USING SHIFTED

PATH-SUBSEQUENCES

A. Error-trellis construction using shifted error-subsequences

Let H(D) be the parity-check matrix for an(n, n − m)
convolutional codeC. Consider the error-trellis based on the
syndrome formerHT (D). In this case, the adjoint-obvious
realization ofHT (D) is assumed unless otherwise specified.
Assume that thejth column ofH(D) has the form

(

Dljh′

1j(D) Dljh′

2j(D) . . . Dljh′

mj(D)
)T

, (1)

where lj ≥ 1. Let H ′(D) be the modified version ofH(D)
with the jth column being replaced by

(

h′

1j(D) h′

2j(D) . . . h′

mj(D)
)T

. (2)

Also, let e′k
△
= (e

(1)
k , · · · , e

′(j)
k , · · · , e

(n)
k ), where e

′(j)
k

△
=

Dlje
(j)
k = e

(j)
k−lj

. Then we have

ζk = e′kH
′T (D). (3)
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Hence, in the case where thejth column of H(D) has a
factor Dlj , there is a possibility that an error-trellis with
reduced number of states can be constructed by shifting the
jth error-subsequence bylj time units [9]. Assume that the
corresponding code-trellis is terminated in the all-zero state at
t = N . Then e

′(j)
k = e

(j)
k−lj

is modified ase′(j)k = e
(j)
<k−lj>

,
where< t > denotest mod(N + lj) (i.e., “cyclic shift”).

B. Error-trellis construction using backward-shifted error-
subsequences

The construction using shifted error-subsequences is fur-
ther extended [9], [10]. That is, a reduced error-trellis
can be equally constructed using “backward-shifted” error-
subsequences. Consider the transformatione

(j)
k → D−lje

(j)
k =

e
(j)
k+lj

. We see that this is equivalent to “multiplying” thejth
column of H(D) by Dlj . Let H ′(D) be the parity-check
matrix after modification. IfH ′(D) is reduced to an equivalent
H ′′(D) with overall constraint length less than that ofH(D),
then reduction can be realized. We remark that the powerlj of
D has to be determined properly for eachj. For the purpose,
we can use thereciprocal dual encoder [6] H̃(D) associated
with H(D).

Example 1 ([9]): Consider the canonical parity-check matrix

H1(D) =

(

D2 D2 1
1 1 +D +D2 0

)

. (4)

Since all the columns ofH1(D) are delay free, any further
reduction seems to be impossible. In fact, it follows from
Theorem 1 of [1] that the dimensiond1 of the state space of the
error-trellis based onHT

1 (D) is 4. However, a corresponding
generator matrix is given byG1(D) = (1 +D+D2, 1, D3 +
D4). Observe that the third “column” ofG1(D) has a factor
D2. (Remark: It suffices to divide the third column byD2 in
order to obtain a reduced code-trellis.) This fact implies that a
reduced error-trellis can be constructed [1], [9]. Then consider
the reciprocal dual encoder

H̃1(D) =

(

1 1 D2

D2 1 +D +D2 0

)

. (5)

Note that the third column ofH̃1(D) has a factorD2.
Accordingly, dividing the third column of̃H1(D) by D2, we
can construct an error-trellis with4 states (i.e.,d̃1 = 2) [1],
[9]. Here, notice that each error-path in the error-trellisbased
on HT

1 (D) can be represented in time-reversed order using
the error-trellis based oñHT

1 (D). Hence, a factorD2 in the
column of H̃1(D) corresponds to backward-shifting by two
time units (i.e.,D−2) in terms of the originalH1(D). Hence,
multiply the third columnH1(D) by D2. Then we have

H ′

1(D) =

(

D2 D2 D2

1 1 +D +D2 0

)

. (6)

We see that this matrix can be reduced to an equivalent
canonical parity-check matrix

H ′′

1 (D) =

(

1 1 1
1 1 +D +D2 0

)

(7)

by dividing the first “row” byD2. Hence, the dimensiond1
can be reduced to2.

C. Code-trellis construction using shifted code-subsequences

Note that the relationyk = ukG(D) holds with respect to
a generator matrixG(D), whereuk = (u

(1)
k , · · · , u

(n−m)
k )

and yk = (y
(1)
k , · · · , y

(n)
k ) are the time-k information and

code symbols, respectively. In the same way as forH(D), by
dividing the jth column ofG(D) by Dlj or by multiplying
the jth column ofG(D) by Dlj , reduction ofG(D) can be
realized. We see that the former corresponds to the backward-
shift y

(j)
k → y

(j)
k+lj

, whereas the latter corresponds to the

forward-shifty(j)k → y
(j)
k−lj

. Note that the shift directions are
reversed compared toH(D).

III. T RANSFORMATIONS GENERATING THE IDENTICAL

SHIFTS BOTH INy AND IN e

A. General case

Consider the transformations which generate the identical
shifts both in the components ofyk and in those ofek. Now,
assume that the relationG(D) ⇔ H(D) holds. Consider a
pair of transformations:

1) divide thejth column ofG(D) by D
l
(d)
j and multiply

the same column byDl
(m)
j ,

2) divide thejth column ofH(D) by D
l̃
(d)

j and multiply

the same column byDl̃
(m)

j .

Then

1) thejth component ofyk becomes

y
(j)
k → y

(j)

k+l
(d)
j

−l
(m)
j

, (8)

2) thejth component ofek becomes

e
(j)
k → e

(j)

k−l̃
(d)
j

+l̃
(m)
j

. (9)

After shifting e
(j)

k−l̃
(d)

j
+l̃

(m)

j

by l time units (l is independent

of j), compare the time-index ofe(j)
k+l−l̃

(d)
j

+l̃
(m)
j

and that of

y
(j)

k+l
(d)
j

−l
(m)
j

. If the two time-indices coincide, theny(j)k and

e
(j)
k have “relatively” the identical shift. This condition is

written as

l = (l
(d)
j + l̃

(d)
j )− (l

(m)
j + l̃

(m)
j ) (1 ≤ j ≤ n), (10)

where l is a constant independent ofj (1 ≤ j ≤ n). (In the
following, this condition is denoted as “CSR”.)

B. Special cases

Case 1: Only division is applied both to the columns of
G(D) and to those ofH(D).

From the assumption,l(m)
j = l̃

(m)
j = 0. Hence, we have

l = l
(d)
j + l̃

(d)
j . (11)



Here, assume that eitherl(d)j or l̃(d)j is 0. Define the setsLG

andLH as

LG
△
= {j : l

(d)
j = l} = {j : l̃

(d)
j = 0} (12)

LH
△
= {j : l̃

(d)
j = l} = {j : l

(d)
j = 0}. (13)

In words,LG is the set of columns ofG(D) from whichDl

is factoring out, whereasLH is the set of columns ofH(D)
from which Dl is factoring out. Note thatLG and LH are
disjoint and the relation

LG ∪ LH = {1, 2, · · · , n} (14)

holds. In the following, we call this kind of transformations
“type-1”.

Example 2: Consider the relation

G2(D) = (D +D2, D2, 1 +D)

⇔ H2(D) =

(

1 0 D

D 1 +D 0

)

. (15)

Choosingl = 1, LG = {1, 2}, andLH = {3}, we have

G′

2(D) = (1 +D,D, 1 +D)

⇔ H ′

2(D) =

(

1 0 1
D 1 +D 0

)

. (16)

Case 2: Division and multiplication are separately applied
either to the columns ofG(D) or to the columns ofH(D).

Without loss of generality, assume that division is applied
to the columns ofG(D), whereas multiplication is applied to
the columns ofH(D). From the assumption,l(m)

j = l̃
(d)
j = 0.

Hence, we have
l = l

(d)
j − l̃

(m)
j . (17)

In particular, setl = 0. Then we have

l
(d)
j = l̃

(m)
j (

△
= lj). (18)

This is equivalent to dividing thejth column ofG(D) by
Dlj and multiplying thejth column ofH(D) by Dlj . In the
following, we call this kind of transformations “type-2”.

Example 3: Consider the relation

G3(D) = (1 +D, 1, D +D2)

⇔ H3(D) =

(

D 0 1
1 1 +D 0

)

. (19)

Choosingl(d)3 = l̃
(m)
3 = 1, we have

G′

3(D) = (1 +D, 1, 1 +D)

⇔ H ′

3(D) =

(

D 0 D

1 1 +D 0

)

. (20)

Note thatH ′
3(D) can be reduced to

H ′′

3 (D) =

(

1 0 1
1 1 +D 0

)

. (21)

Type-1 and type-2 transformations form a subclass of gen-
eral transformations defined in Section III-A. However, these
transformations are quite effective.

C. Property of transformations

Observe that in Example 2 and Example 3, the GH Relation
is preserved after type-1 and type-2 transformations. It is
shown that this property holds in general. Assume that the
relationG(D) ⇔ H(D) holds. Also, assume that a pair of
transformations which satisfies the conditionCSR is applied
to G(D) andH(D). Let G′(D) andH ′(D) be the resulting
matrices, respectively. Then we have the following.

Proposition 1: The relationG′(D) ⇔ H ′(D) holds.
Proof: Fix p, q (1 ≤ p ≤ n−m, 1 ≤ q ≤ m) arbitrarily.

Let
(gp1(D), · · · , gpj(D), · · · , gpn(D)) (22)

be thepth row of G(D). Then the(p, j) element ofG′(D) is
given by

gpj(D)
D

l
(m)
j

D
l
(d)

j

. (23)

Similarly, defining theqth row of H(D) as

(hq1(D), · · · , hqj(D), · · · , hqn(D)), (24)

the (q, j) element ofH ′(D) is given by

hqj(D)
D

l̃
(m)
j

Dl̃
(d)
j

. (25)

Then the(p, q) elementh′
pq of G′(D)H ′T (D) is given by

h′

pq =
n
∑

j=1

gpj(D)
D

l
(m)
j

D
l
(d)

j

hqj(D)
D

l̃
(m)
j

D
l̃
(d)

j

=

n
∑

j=1

gpj(D)hqj(D)D(l
(m)
j

+l̃
(m)
j

)−(l
(d)
j

+l̃
(d)
j

)

=
1

Dl

n
∑

j=1

gpj(D)hqj(D). (26)

SinceG(D) ⇔ H(D),
∑n

j=1 gpj(D)hqj(D) = 0. Hence, we
haveh′

pq = 0.

IV. SIMULTANEOUS REDUCTION OFG(D) AND H(D)

The discussion in the previous section implies thatG(D)
and H(D) can be reduced simultaneously, if reduction is
possible. Assume that the relationG(D) ⇔ H(D) holds. Let
ν andν⊥ be the overall constraint lengths ofG(D) andH(D),
respectively. If bothG(D) andH(D) are canonical [4], [5],
then we haveν = ν⊥. Here, apply a pair of transformations
which satisfies the conditionCSR to G(D) andH(D). Denote
by ν′ and ν′⊥ the overall constraint lengths of the modified
matricesG′(D) andH ′(D), respectively. Note that the relation
G′(D) ⇔ H ′(D) still holds from Proposition 1. Hence, if
necessary, by modifying equivalently, we haveν′ = ν′⊥.
Therefore, if the strict inequalityν′ < ν (ν′⊥ < ν⊥) holds,
thenG(D) andH(D) are reduced simultaneously. That is, we
have the following.

Proposition 2: Assume that the relationG(D) ⇔ H(D)
holds. Also, assume that a pair of transformations which



satisfies the conditionCSR is applied toG(D) andH(D). In
this case, ifG(D) is reduced, thenH(D) is equally reduced,
and vice versa.

Example 4: Assume that

G4(D) = (1 +D +D2, D,D4 +D5)

⇔ H4(D) =

(

D3 D2 1
D 1 +D +D2 0

)

. (27)

Note that bothG4(D) and H4(D) are canonical and the
equality ν = ν⊥ = 5 holds. Choosingl = 1, LG = {2, 3},
andLH = {1}, let us apply a type-1 transformation. Then we
have

G′

4(D) = (1 +D +D2, 1, D3 +D4)

⇔ H ′

4(D) =

(

D2 D2 1
1 1 +D +D2 0

)

. (28)

Also, let us apply a type-2 transformation withl(d)3 = l̃
(m)
3 =

2. Then we have

G′′

4 (D) = (1 +D +D2, 1, D +D2)

⇔ H ′′

4 (D) =

(

D2 D2 D2

1 1 +D +D2 0

)

. (29)

SinceH ′′
4 (D) is reduced to

H ′′′

4 (D) =

(

1 1 1
1 1 +D +D2 0

)

, (30)

we finally have

G′′

4 (D) = (1 +D +D2, 1, D +D2)

⇔ H ′′′

4 (D) =

(

1 1 1
1 1 +D +D2 0

)

. (31)

In this example, the overall constraint lengths are reducedfrom
ν = ν⊥ = 5 to ν′ = ν′⊥ = 2.

Remark: The reduction process is not unique. In the above
example, if a type-2 transformation is applied toG4(D) and
H4(D) with l

(d)
3 = l̃

(m)
3 = 3, then we have

G∗

4(D) = (1 +D +D2, D,D +D2)

⇔ H∗

4 (D) =

(

D3 D2 D3

D 1 +D +D2 0

)

≃ H∗∗

4 (D) =

(

D 1 D

D 1 +D +D2 0

)

, (32)

where “≃” means equivalent. Here, choosingl = 1, LG =
{2}, andLH = {1, 3}, let us apply a type-1 transformation.
Then we haveG′′

4 (D) ⇔ H ′′′
4 (D).

V. SIMULTANEOUS CODE/ERROR-TRELLIS REDUCTION

Assume that the relationG(D) ⇔ H(D) holds. LetTc

be the code-trellis associated withG(D). It is assumed that
Tc is terminated in the all-zero state att = N . Denote by
Te the corresponding error-trellis. Note that each code-pathy

in Tc corresponds to the unique error-pathe in Te by way
of the received dataz. Here, apply a pair of transformations
which satisfies the conditionCSR to G(D) andH(D). (Let
G′(D) and H ′(D) be the resulting matrices.) Then from

000
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101
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000 000 000

001 001 001

101 101 101

100

110

100 100 100

110 110

011 011 011

010 010 010
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t=0 t=1 t=2 t=3 t=4
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Fig. 1. Example code-trellis associated withG2(D).

t=0

(00)

(01)

(10)

(11)

ζ(1)
1 ζ(2)

1 =00 ζ(1)
2 ζ(2)

2 =10 ζ(1)
3 ζ(2)

3 =01 ζ(1)
4 ζ(2)

4 =10 ζ(1)
5 ζ(2)

5 =01

000

001

010

011

100

101

110

111

100

 101

110

 111

000

001

011

111

100

 111

000

001

010010

011

 

111

100

000  110 000

 010 010

100

 110  110

t=1 t=2 t=3 t=4 t=5

101

001 001

011 101 011 101

Fig. 2. Example error-trellis based onHT

2
(D).

Proposition 2, it is reasonable to think thatTc and Te are
reduced simultaneously. In fact, we have the following.

Proposition 3: Assume that a pair of transformations which
satisfies the conditionCSR is applied toG(D) andH(D). In
this case, if the code-trellis associated withG(D) is reduced,
then the error-trellis based onHT (D) is equally reduced, and
vice versa.

Proof: Denote bye′ the shifted version ofe. Assume
that the set of shifted error-paths{e′} is represented using
the reduced error-trellisT ′

e based onH ′T (D). Note that there
exists a one-to-one correspondence between the code-paths
{y} and the error-paths{e}. Also, from the assumption of
the transformations, the identical shifts are generated both
in the subsequences of a code-pathy and in those of the
corresponding error-pathe. Hence, the set of shifted code-
paths{y′} is also represented using the reduced code-trellis
T ′
c associated withG′(D). That is, if one trellis is reduced,

then the other trellis is equally reduced.
Example 5: Consider the relationG2(D) ⇔ H2(D). Fig.1

shows the code-trellis associated withG2(D). Note that the
trellis is terminated in the all-zero state(00) at t = 4. The
corresponding error-trellis based onHT

2 (D) is shown in Fig.2.
A received dataz is assumed to be

z = z1 z2 z3 z4 z5 = 001 000 011 010 000, (33)
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Fig. 4. Reduced error-trellis based onH′T
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(D).

wherez5 = 000 is the “imaginary” received data att = 5.
The syndrome sequence is given as

ζ = ζ1 ζ2 ζ3 ζ4 ζ5 = 00 10 01 10 01. (34)

As we have already seen in Example 2, if the first and
second components ofyk are shifted left by the unit time
and if the third component ofek is shifted right by the unit
time, thenG2(D) and H2(D) are reduced simultaneously.
Denote byG′

2(D) and H ′
2(D) the modified generator and

parity-check matrices after transformation, respectively. The
corresponding code and error-trellises are shown in Fig.3 and
Fig.4, respectively.

First, consider the reduced error-trellis in Fig.4. In this

example, it is defined ase′(3)k

△
= e

(3)
<k−1>, where< t > denotes

t mod5. Sincee5 = 000, we havee′(3)1 = e
(3)
<0> = e

(3)
5 = 0

using the relatione′(3)k = e
(3)
<k−1>. That is, the third error-bit

of the branch fromt = 0 to t = 1 must be0. Similarly, the
first two error-bits of the branch fromt = 4 to t = 5 must be
00. Then we have four admissible error-paths:

e′p1
= 000 001 010 011 000

e′p2
= 000 001 111 100 000

e′p3
= 000 100 101 011 000

e′p4
= 000 100 000 100 000.

Here, noting the relatione′(3)k = e
(3)
<k−1>, we cyclically shift

the third bit of eachzk to the right by the unit time and make
the modified received dataz′ for H ′T

2 (D). z′ is given by

z′ = z′

1 z′

2 z′

3 z′

4 z′

5

= 000 001 010 011 000. (35)

Note that ifz′ is inputted toH ′T
2 (D), then the same syndrome

sequenceζ = 00 10 01 10 01 as forHT
2 (D) is obtained.

Next, consider the reduced code-trellis in Fig.3. Sincey0 =

000, we havey′(i)4 = y
(i)
<5> = y

(i)
0 = 0 (i = 1, 2). That is, the

first two code-bits of the branch fromt = 3 to t = 4 must be

00. Similarly, the third code-bit of the branch fromt = −1 to
t = 0 must be0. Here, to each of admissible error-paths in
Fig.4, we add the modified received dataz′. Then we have

y′

p1
= 000 000 000 000 000

y′

p2
= 000 000 101 111 000

y′

p3
= 000 101 111 000 000

y′

p4
= 000 101 010 111 000.

We observe that the obtained paths completely coincide with
those in Fig.3. That is, the two trellises associated withG2(D)
andHT

2 (D) have been reduced simultaneously.

VI. CONCLUSION

We have shown that the code-trellis and the error-trellis
for a convolutional code can be reduced simultaneously. The
proposed method is based on the fact that if the identical shifts
occur both in the components ofyk and in the components of
ek, then the two trellises are reduced simultaneously, if reduc-
tion is possible. We have obtained the general transformations
which generate the identical shifts both in the subsequences of
y and in those ofe. We have shown that these transformations
preserve the GH Relation. Using this property, we have shown
that reduction ofG(D) andH(D) is accomplished simulta-
neously, if it is possible. Moreover, we have shown that the
corresponding two trellises are also reduced simultaneously.
These results again imply that a code/error-trellis construction
using shifted code/error-subsequences is very effective.We
remark that a parity-check matrix with the form described in
the paper appears in [11] in connection with a class of LDPC
convolutional codes. We think [10] that the proposed method
is useful for reducing the state complexity of the code/error-
trellis for such an LDPC convolutional code.
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