
ar
X

iv
:1

30
8.

07
99

v1
  [

cs
.S

Y
]  

4 
A

ug
 2

01
3

COMPRESSIVE SAMPLING FOR REMOTE CONTROL

SYSTEMS

MASAAKI NAGAHARA, TAKAHIRO MATSUDA, AND KAZUNORI HAYASHI

Abstract. In remote control, efficient compression or representation of con-
trol signals is essential to send them through rate-limited channels. For this
purpose, we propose an approach of sparse control signal representation us-
ing the compressive sampling technique. The problem of obtaining sparse
representation is formulated by cardinality-constrained ℓ2 optimization of the
control performance, which is reducible to ℓ1-ℓ2 optimization. The low rate
random sampling employed in the proposed method based on the compressive
sampling, in addition to the fact that the ℓ1-ℓ2 optimization can be effectively
solved by a fast iteration method, enables us to generate the sparse control
signal with reduced computational complexity, which is preferable in remote
control systems where computation delays seriously degrade the performance.
We give a theoretical result for control performance analysis based on the no-
tion of restricted isometry property (RIP). An example is shown to illustrate
the effectiveness of the proposed approach via numerical experiments.

1. Introduction

Remote control systems are those in which the controlled objects are located
away from the control signal generators. They are widely used at the present day,
from video games [1] to spacecraft [2], see [3] for other examples. In remote con-
trol systems, control signals are to be transmitted through rate-limited channels
such as wireless channels [4] or the Internet [5]. In such systems, efficient signal
compression or representation is essential to send control signals through communi-
cation channels. For this purpose, we propose an approach of sparse control signal
representation using the compressive sampling technique [6, 7, 8] for remote control
systems.

Compressive sampling, also known as compressed sensing, is a technique for ac-
quiring and reconstructing signals in the sparse-land [9]. Signal acquisition and
reconstruction is one of the fundamental issues in signal processing. In many ap-
plications, signals are analog (or continuous-time) before they are acquired and
converted to digital (or discrete-time) signals. The problem is how to acquire and
convert analog signals to digital ones without much information distortion, such
as aliasing. A well-known and widely-used solution to this problem is Shannon’s
sampling theorem [10, 11]. This theorem gives an acquisition and reconstruction
method for perfect reconstruction; if the sampling rate is faster than twice the
Nyquist rate, the maximum frequency contained in the original analog signal, then
the original signal can be perfectly reconstructed via sinc series. On the other
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hand, in the sparse-land, signals are sparse or compressible under a certain signal
representation (e.g., Fourier or wavelet). This sparsity assumption on signals is
known to be valid for many real signals, e.g., see examples in [12]. Compressive
sampling is based on this fact, by which one can reconstruct the original signal
with very high fidelity from far fewer samples than what the conventional sampling
theorem requires. Hence signal acquisition and compression can be performed in
much more efficient manner, than the conventional scheme such as the image com-
pression JPEG [13], where one acquires the full signal, then transforms it into the
frequency domain, and finally discards most of them to obtain a compressed signal.

The purpose of this paper is to propose to use compressive sampling for remote
control systems. Our contributions in this paper are as follows:

• We propose a new feed-forward-based remote control system with compres-
sive sampling.

• The proposed system can efficiently compress the control signals with sparse
representation.

• The design problem is formulated by ℓ1-ℓ2 optimization which can be effi-
ciently solved.

The theory of compressive sampling has been applied to not only signal pro-
cessing but also statistics [14], information theory [15], machine learning [16], and
so on. For theory and application of compressive sampling, see books [17, 18, 12].
However, to the best of our knowledge, so far only a few studies have applied com-
pressive sampling to control: [19] proposes to use compressive sensing in feedback
control systems for perfect state reconstruction and [20] proposes sparse repre-
sentation of transmitted control packets for feedback control. For remote control
systems, [21] also proposes to use ℓ1-ℓ2 optimization as in this paper, but the com-
pressive sampling technique (Fourier expansion and random sampling) is not used.
As we mentioned above, it is desirable that signals in remote control systems are
effectively acquired and compactly compressed. Therefore, we propose to adopt
compressive sampling technique to remote control systems.

Compressive sampling in this paper can be considered as a kind of lossy com-
pression. In many lossy data compression problems, the objective is to find efficient
approximate representations of the original data [22], and the distortion is measured
by the signal reconstruction error. On the other hand, in this paper, we consider a
different aspect of the distortion, that is, we measure the efficiency of the lossy com-
pression with control performance. In other words, our method aims at optimizing
the control performance, e.g., minimizing the tracking error, while usual compres-
sive sampling minimizes the ℓ2 norm of the reconstruction error, with a sparsity
constraint. This is a natural notion in control; we do not care about how small the
compression error of the control signal is but how good the control performance is.
Thus we call the proposed approach control-oriented compressive sampling.

In remote control systems, control delays due to heavy computation seriously
degrade the performance. In compressive sampling, signal acquisition is realized
by a random non-uniform sampler [7] or a random demodulator [23], which takes
almost no computational time. In contrast, obtaining sparse representation of a
signal is achieved by solving ℓ1-ℓ2 optimization [24], also known as LASSO [25]
or basis pursuit de-noising [26]. The solution to the ℓ1-ℓ2 optimization cannot
be represented in an analytical form as in ℓ2 optimization, and hence we resort
to iteration method to achieve the optimal solution. There have been recently a
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number of researches on this type of optimization, and there are several efficient
algorithms for the solution [27, 28, 24]. Moreover, the low rate random sampling
leads to reduced computational complexity of optimization. That is, we can use
such computationally efficient algorithms with the low rate sampling in remote
control to reduce control delays.

The paper is organized as follows: In Section 2, we define our control problem. In
Section 3, we formulate and solve the problem via conventional sampling theorem.
In Section 4, we propose a new control method based on compressive sampling.
Section 5 gives a theoretical result for performance analysis of the proposed control.
We show a numerical example in Section 6 to illustrate the effectiveness of the
proposed method. Finally, we make a conclusion in Section 7.

Notation. In this paper, we use the following notation. Z, R and C denote the
sets of integral, real and complex numbers, respectively. R

n and R
m×n (Cn and

Cm×n) denote the sets of n-dimensional real (complex) vectors and m×n matrices,
respectively. We use j for the imaginary unit in C. For a complex number z ∈ C, z̄
and Re z represent the conjugate and the real part of z, respectively. For a matrix
(a vector) M , M⊤ and M∗ represent the transpose and the Hermitian conjugate
of M , respectively. For a vector v = [v1, . . . , vn]

⊤ ∈ Cn, we define ℓ0 “norm” ‖v‖0
of v as the number of the nonzero elements in v, and also define ℓ1 , ℓ2, and ℓ∞

norms as

‖v‖1 :=
n
∑

i=1

|vi|, ‖v‖2 :=
√
v∗v, ‖v‖∞ := max

i=1,...,n
|vi|,

respectively. For a finite set I = {I1, . . . , IK} ⊂ Z, we define |I| := K. We
denote by L2[0, T ] the Lebesgue space consisting of all square integrable functions
on [0, T ] ⊂ R, endowed with the inner product

〈x, y〉 :=
∫ T

0

x(t)y(t) dt, x, y ∈ L2[0, T ],

and the L2 norm ‖x‖ :=
√

〈x, x〉.

2. Control Problem

In this paper, we consider a control problem of a linear system P on a finite time
interval (or horizon) [0, T ], T > 0, given by

P :

{

ẋ(t) = Ax(t) + bu(t),

y(t) = c⊤x(t), x(0) = x0 ∈ R
ν , t ∈ [0, T ],

(1)

where A ∈ Rν×ν , b, c ∈ Rν×1. In this equation, x(t) ∈ Rν is the state, u(t) ∈ R is
the input, and y(t) ∈ R is the output of the system P . The initial state x0 ∈ R

ν

is assumed to be given. We also assume that the system is stable, that is, the
eigenvalues of A are in C− = {λ ∈ C : Re λ < 0}. Then the system P can be
considered as a bounded operator in L2[0, T ] for any T > 0. We use the notation
y = Pu for representing the input/output relation of the linear system P . Fig. 1
shows the block diagram of the system P with the input u, the output y = Pu,
and the initial state x0.

In order to show the significance of the proposed approach, we consider track-
ing problem in this paper as an example of the control problem. In the tracking
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u y = Pu

x0

{

ẋ = Ax+ bu

y = c⊤x

Figure 1. Linear system P to be controlled. The control signal u
is transmitted through a communication channel. The initial state
x0 is assumed to be measured.

problem, the controller attempts to reduce the tracking error between a given ref-
erence r and the output y = Pu over [0, T ]. In other words, we design a control
signal {u(t)}t∈[0,T ] for a reference signal {r(t)}t∈[0,T ] such that r ≈ Pu over [0, T ].
More precisely, the control object is described as follows: Find a control signal
{u(t)}t∈[0,T ] such that

(1) the tracking error E(u) := ‖Pu− r‖2 is small,
(2) the “size” Ω(u) of the control signal u is not too large,
(3) and the maximum frequency contained in u is bounded by a fixed frequency.

The first objective is for tracking performance; if E(u) is smaller, the performance
is said to be better. Theoretically, E(u) can be made arbitrarily small if the size
Ω(u) is not restricted.

Example 1. Let P̂ (s) denote the Laplace transform of the impulse response of the

linear system P . Suppose P̂ (s) is given by

P̂ (s) =
s− α

s+ α
,

where α > 0, and the reference r is given in the Laplace transform by r̂(s) = 1/s.
Then if we choose u with its Laplace transform

û(s) = P̂ (s)−1r̂(s) =
s+ α

s(s− α)
,

then the performance in terms of the tracking error will be perfect, that is, E(u) = 0
over [0, T ]. However, the inverse Laplace transform of û(s) is given by u(t) =
2 exp(αt) − 1, t ∈ [0,∞), and hence u(t) has the property limt→∞ u(t) = ∞ since
α > 0. That is, if T becomes large, then |u(T )| increases exponentially. �

This example is not a special case; we can generally say that a small tracking
error leads to a large control signal if P̂ (s) has an unstable zero, that is, there

exists z ∈ C+ = {z ∈ C : Re z ≥ 0} such that P̂ (z) = 0. For example, suppose
that the size of u is measured by Ω(u) = ‖u‖2, the energy of the control signal
u. As mentioned above, a smaller tracking error E(u) leads to a larger energy
Ω(u) = ‖u‖2. It follows that we have to transmit the information of a signal with a
very large energy through a communication channel. In many cases, a larger energy
results in a larger amplitude of a signal, and hence the variance becomes larger if
the mean of u(t) is 0. This implies that the entropy of the signal increases and so
does the amount of information. Moreover, large Ω(u) leads to high sensitivity to
noise in measurement of the initial value x0 or uncertainty in the model parameters
A, b, and c. We therefore add a constraint on Ω(u) as the second control objective.
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Table 1. Regularization term

Ω(u) Purpose
0 Least squared error (ideal)

‖u‖2 Energy-saving (conventional)
card(u) Sparsity-promoting (proposed)

The size Ω(u) is not restricted to the energy; one can take another function as will
be defined in Section 4.

The third objective is also needed in real control systems. The control signal
u is applied to the controlled object through an actuator (e.g., a motor), which
cannot act at a speed faster than a fixed frequency. To describe this constraint
mathematically, we define a subspace of L2[0, T ] by

VM := span{ψm : m = −M, . . . ,M} ⊂ L2[0, T ],

where M is a given positive integer and

ψm :=
1√
T

exp(jωmt), ωm :=
2πm

T
.

VM is the set of T -periodic band-limited signals up to the frequency ωM = 2πM/T
[rad/sec]. We restrict the control signal u and the reference r to this subspace.

The control problem considered in this paper is summarized as follows:

Problem 1 (Tracking control problem). Given a reference signal r ∈ VM , find a
control signal u ∈ VM which minimizes

J(u) = ‖Pu− r‖2 + µΩ(u) (2)

where µ is a positive parameter which controls the tradeoff between ‖Pu− r‖2 and
Ω(u).

If the regularization term Ω(u) in (2) is defined as Ω(u) ≡ 0, the optimization
problem becomes the least-square optimization. The solution is ideal in the sense
that this gives the least squared error, as the controller given in Example 1. As
mentioned above, this ideal control may have very large energy or amplitude, and
the energy-saving constraintΩ(u) = ‖u‖2 is conventionally used (see Section 3). On
the other hand, we propose to use another constraint, sparsity-promoting constraint,
Ω(u) = card(u), where card(u) is the cardinality (or sparsity) of the signal u, which
is mathematically defined in Section 4. We sum up these regularization terms in
Table 1.

3. Conventional Approach via Sampling Theorem

A conventional solution to the problem is obtained by the sampling theorem
[10, 11]. First, since the signals r and u are band-limited up to the frequency ωM ,
we may safely sample the signals r and y = Pu at a rate faster than the Nyquist rate
2ωM , based on the sampling theorem. Then, we define the sampled error functional

Ed(u) = h

N
∑

n=1

|y(tn)− r(tn)|2 = h

N
∑

n=1

|(Pu)(tn)− r(tn)|2,
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where N := 2M + 1 is the number of sampled data, h := T/(N − 1) the sampling
period, and tn := (n − 1)h the n-th sampling instant. Then we assume u ∈ VM ,
that is, u is represented by

u =

M
∑

m=−M

θmψm, (3)

where θm ∈ C, m = −M, . . . ,M . The following lemma gives the expression of the
output y in terms of the coefficients θm.

Lemma 1. For the control u given in (3), the output y of the plant P defined in
(1) is given by

y(τ) = c⊤ exp(τA)x0 +

M
∑

m=−M

θm〈κ(τ, ·), ψm〉, τ ∈ [0, T ], (4)

where κ(τ, t) is defined by

κ(τ, t) :=

{

c⊤ exp [(τ − t)A] b, if 0 ≤ t < τ ≤ T,

0, otherwise.

Proof: The proof is given in A. �

This lemma gives the sampled output y(tn), n = 1, 2, . . . , N , by

y(tn) = c⊤ exp(tnA)x0 +

M
∑

m=−M

θm〈φn, ψm〉, (5)

where φn = κ(tn, ·), n = 1, 2, . . . , N . Note that the function φn is known as
the control theoretic spline [29]. By this, the sampled error functional Ed(u) is
described in terms of θ := [θ−M , . . . , θM ]⊤ ∈ CN :

Ed

(

M
∑

m=−M

θmψm

)

= h ‖Gθ −Hx0 − r‖22 ,

where

G :=











〈φ1, ψ−M 〉 . . . 〈φ1, ψM 〉
〈φ2, ψ−M 〉 . . . 〈φ2, ψM 〉

...
. . .

...
〈φN , ψ−M 〉 . . . 〈φN , ψM 〉











∈ C
N×N , (6)

r :=











r(t1)
r(t2)
...

r(tN )











∈ R
N , H :=











c⊤ exp (t1A)
c⊤ exp (t2A)

...
c⊤ exp (tNA)











∈ R
N×ν .

The regularization term Ω(u) is in this case naturally taken by

Ω(u) = ‖u‖2 = ‖θ‖22,
where the second equality is due to Parseval’s identity [30]

Finally, the problem is described as follows:



COMPRESSIVE SAMPLING FOR REMOTE CONTROL SYSTEMS 7

r(t) θ u(t) y(t)

x0

E Ψ P

Figure 2. Remote control system

Problem 2 (ℓ2 optimization). Find a vector θ ∈ C
N which minimizes the following

cost functional:

J2(θ) := ‖Gθ − β‖22 + µ2‖θ‖22, (7)

where β := r −Hx0 and µ2 := µ/h.

The solution of the above problem is given by [31]

θ⋆
2 = (µ2I +G⊤G)−1G⊤β. (8)

Thus, in conventional approach, all the elements of θ⋆
2 (or N samples of the cor-

responding control signal u) will be sent through a rate-limited communication
channel. Fig. 2 shows the remote control system considered here. In this figure,
a continuous-time signal is drawn by a continuous arrow and a transmitted vector
by a dotted arrow. The function E maps the reference {r(t)}t∈[0,T ] and the initial
state x0 of the system P to the optimal vector θ = θ⋆

2 using (8), and the computed
θ is encoded and transmitted through the channel. Then the signal θ is received
at Ψ which converts θ to the control signal {u(t)}t∈[0,T ] via the Fourier expansion
as in (3). Finally, the control signal u is added to the system P .

4. Proposed Approach via Compressive Sampling

We here propose sparse representation of transmitted vector θ in Fig. 2 for data
compression via compressive sampling.

4.1. Proposed formulation using sparse representation. As we have seen in
Section 2, there is a trade-off between the performance and size of the control signal,
and in the conventional approach, the balance is taken by employing ℓ2 norm as
the definition of the size. In order to further reduce the size (or the amount of
information) of the control signal u, while keeping a certain degree of the distortion
‖Pu − r‖2, we impose a stronger but acceptable assumption on signals, that is,
sparsity.

We first assume that the reference r ∈ VM is sparse with respect to the basis
{ψm}, that is, a few of the Fourier coefficients of r are nonzero while the others are
zero. This is represented by

r =
∑

m∈I

rmψm, I ⊂ {−M, . . . ,M}, |I| = Sr,

where Sr ≪ N = 2M+1. The sparsity assumption on the reference signal is realistic
in actual control systems. For example, the step reference r̂(s) = 1/s in Example
1, or a sinusoidal reference with one frequency or a sum of several sinusoids, which
are typical reference signals, are all sparse in the Fourier expansion. In general, it
is difficult to find a proper basis with which reference signals are sparse. However,
we fix the Fourier basis and assume the reference signals are sparse in the Fourier



8 M. NAGAHARA, T. MATSUDA, AND K. HAYASHI

domain. Under this assumption, checking the sparsity Sr of a given reference signal
r can be performed by the following steps:

(1) sample the reference r(t) with sampling frequency 2ωM ,
(2) compute the Fourier coefficients via FFT from the sampled data,
(3) truncate small coefficients,
(4) count the number of the nonzero coefficients.

If the number is small enough relative to the size N = 2M+1, we can say the signal
is sparse. We have assumed that the reference r is in the signal subspace VM , that
is the reference is T -periodic and band-limited up to the frequency ωM , the above
procedure should work well. Under the above assumption, we then consider the
control signal u defined in (3). In general, the optimal control signal u may not be
sparse even if the reference r is sparse (see Example 1). Nevertheless, we propose to
assume the control signal u to be sparse by designing u to be sparse. The validity
of the approach could be justified as follows:

(1) The coefficient vector θ = [θ−M , . . . , θM ]⊤ of the control signal is transmit-
ted through a rate-limited communication channel (see Fig. 2). A sparse
vector is then more desirable than the full vector θ⋆

2 in (8) from a view
point of data compression.

(2) We will adopt the ℓ1 norm minimization for θ as a sparsity-promoting
criterion in Section 4. Then a small ℓ1 norm of θ leads to a small L1 norm
of u since

∫ T

0

|u(t)|dt ≤
M
∑

m=−M

|θm|
∫ T

0

|ψm(t)|dt = T ‖θ‖1.

Thus, the size of u measured by L1 norm can be made small. It follows
that it can gain robustness against noise and model uncertainty.

(3) If the control input u is sparse, then the output y = Pu is also sparse at
steady state. In fact, by the theory of linear systems [30], the steady state
response yss of P for the input u given in (3) becomes

yss =

m
∑

m=−M

P̂ (jωm)θmψm,

where P̂ (s) is the Laplace transform of the impulse response of P . There-

fore, if {θm} is sparse, so is {P̂ (jωm)θm}. This fact endorses the sparsity
constraint on the control signal u when the reference r is sparse.

Now we formulate our problem. We denote by card(u) the number of the nonzero
Fourier coefficients with respect to the basis {ψm}. If u is represented as in (3),
then card(u) = ‖θ‖0. For promoting sparsity of the control signal u, we set the
regularization term Ω(u) = card(u). In summary, our problem is formulated as
follows:

Problem 3 (Sparsity-promoting optimization). Given a reference signal r ∈ VM
with card(r) = S ≪ N , find a control signal u ∈ VM which minimizes

J0(u) := ‖Pu− r‖2 + µ card(u).
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t

Tti(4)ti(3)ti(2)ti(1)0

Figure 3. Random sampling

4.2. Random sampling and ℓ1-ℓ2 optimization. The control signal u can be
obtained by using the sampled error functional J0(u) with the Nyquist rate sampling
as in Section 3, and by solving the optimization problem. However, based on the
idea of compressive sampling [6, 7, 8], we can obtain the sparse control signal with
much reduced computational complexity. Specifically, we adopt low rate random
sampling of signals instead of the uniform Nyquist rate sampling.

Let U be a random “decimation” matrix of the form

U =











ei(1)
ei(2)
...

ei(K)











∈ {0, 1}K×N ,

where i(1) < i(2) < · · · < i(K) are the random variables of the uniform distribution
on {1, 2, . . . , N}, and

ei := [0, . . . , 0,

i
∨

1, 0, . . . , 0], i = 1, 2, . . . , N.

This is a model of low rate random sampling of a signal on [0, T ] as shown in Fig.
3, where the sampling instants are given by

ti(k) = i(k) · h = i(k) · T

N − 1
, k = 1, 2, . . . ,K < N.

Remark 1. The choice of the number K is a fundamental problem in compressive
sampling. Suppose that the sparsity of the vector θ is ‖θ‖0 = Sθ. Then, for large
N , one can choose K as K ≥ CSθ(logN)4, where C is some constant [32]. It is
believed that the bound may be reduced to CSθ(logN), but there is no theoretical
proof [6].

By using the matrix U , random sampling of y(t) on [0, T ] is given by:

y = UGθ + UHx0.

Then the cost functional is given by

J0(θ) = ‖Φθ −α‖22 + µ‖θ‖0,
where Φ := UG and α = U(r −Hx0).

It should be noted that, thanks to the low rate random sampling matrix U ,
the computational complexity of J0(θ) is reduced compared as the case with the
Nyquist rate uniform sampling. However, minimization of J0 may still be hard to
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Table 2. Cost functional

Cost Purpose Optimization
J2(θ) Energy-saving (conventional) Closed form solution
J0(θ) Sparsity-promoting (ideal) NP-hard
J1(θ) Sparsity-promoting (proposed) Iteration

solve, because the optimization problem is a combinatorial one. It is common to
employ convex relaxation by replacing the ℓ0 norm with the ℓ1 norm, thus we have

J1(θ) = ‖Φθ −α‖22 + µ1‖θ‖1. (9)

The cost functional J1(θ) in (9) is convex in θ and hence the optimal value θ⋆
1

uniquely exists. However, an analytical expression as in (8) for this optimal vector is
unknown except when the matrix Φ is unitary. To obtain the optimal vector θ⋆

1, one
can use an iteration method. Recently, several fast algorithms to obtain the optimal
ℓ1-ℓ2 solution has been proposed, which is called iterative shrinkage [28, 24]. In this
paper, we use the algorithm called FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) [28]. The algorithm converges to the optimal solution minimizing the
ℓ1-ℓ2 cost functional (9) for any initial guess of θ⋆

1 with a worst-case convergence
rate O(1/j2) [27, 28]. The algorithm is very simple and fast; it can be effectively
implemented in digital devices, which leads to a real-time computation of a sparse
vector θ⋆

1. For this algorithm, see C.
In summary, the proposed remote control system with the structure in Fig. 2

employs the process E which maps {r(t)}t∈[0,T ] and x0 to the ℓ1-ℓ2 optimal vector
θ⋆
1 using FISTA. Since the vector θ⋆

1 is sparse, one can encode the vector in a small
size. The transmitted signal θ⋆

1 is received at Ψ and the control signal {u(t)}t∈[0,T ]

is obtained by (3). Again since θ⋆
1 is sparse, this procedure can be efficiently done.

We have considered 3 cost functionals; J2(θ) in Section 3, and J0(θ) and J1(θ)
in this section. We sum up these cost functionals in Table. 2.

5. Performance Analysis

In this section, we consider the performance analysis of the proposed remote
control systems.

Let y⋆ the ideal output of the plant P under the control vector θ⋆ which mini-
mizes ‖Pu−r‖2, that is, Ω(u) = 0 (See Table 2). Let also y⋆1 be the output with the
proposed ℓ1-ℓ2-optimal vector θ⋆

1. Clearly, the tracking performance by the ℓ1-ℓ2

optimal vector θ⋆
1 is not better than that of the ideal θ⋆, that is,

‖y⋆ − r‖ ≤ ‖y⋆1 − r‖.
The problem here is to guarantee the boundedness of the tracking error ‖y⋆1 − r‖ of
the proposed ℓ1-ℓ2 control, and to estimate the difference between the two errors,
‖y⋆ − r‖ and ‖y⋆1 − r‖, when the errors are bounded.

Suppose that the ideal control vector θ⋆ is approximately S-sparse, that is, there
exist a positive integer S and a sufficiently small ǫ1 such that

‖θ⋆ − θ⋆
[S]‖1 ≤ ǫ1,

where θ⋆
[S] is the vector θ with all but the largest S components set to 0. Then, we

introduce the notion of restricted isometry property (RIP) [6].
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Definition 1. For each integer l = 1, 2, . . ., define the isometry constant δl of a
matrix Φ as the smallest number such that

(1− δl)‖θ‖22 ≤ ‖Φθ‖22 ≤ (1 + δl)‖θ‖22
holds for all vectors θ such that ‖θ‖0 = l.

By using the notion of RIP, we have the following lemma:

Lemma 2. Assume that the isometry constant of the matrix Φ satisfies δ2S <√
2− 1. Then, with sufficiently small µ1 > 0 in the cost functional J1(θ) defined in

(9), we have the following estimate:

‖θ⋆
1 − θ⋆‖2 ≤ C1

ǫ1√
S

+ C2ǫ2, (10)

where

C1 := 2 · 1 + (
√
2− 1)δ2S

1− (
√
2 + 1)δ2S

, C2 :=
4
√
1 + δ2S

1− (
√
2 + 1)δ2S

,

ǫ2 := ‖Φθ⋆
1 −α‖2.

Proof: The proof is given in D. �

By this lemma, we obtain the following bound for tracking error by the ℓ1-ℓ2

optimal control.

Theorem 1. Assume δ2S <
√
2− 1. Then we have

‖y⋆1 − r‖ ≤ ‖y⋆ − r‖+
(

C0
ǫ1√
S

+ C1ǫ2

)

η,

where

η :=

√

√

√

√

M
∑

m=−M

∫ T

0

|〈κ(τ, ·), ψm〉|2dτ .

Proof: By Lemma 1, for τ ∈ [0, T ], we have

y⋆1(τ) − y⋆1(τ) =

M
∑

m=−M

(

θ⋆1,m − θ⋆m
)

〈κ(τ, ·), ψm〉,

where θ⋆1,m and θ⋆m are respectively the m-th components of θ⋆
1 and θ⋆. Then, the

Cauchy-Schwartz inequality [33] gives

|y⋆1(τ) − y⋆(τ)|2 ≤ ‖θ⋆
1 − θ⋆‖22

M
∑

m=−M

|〈κ(τ, ·), ψm〉|2.

It follows that

‖y⋆1 − y⋆‖ =

√

∫ T

0

|y⋆1(τ)− y⋆(τ)|2dτ

≤

√

√

√

√

∫ T

0

‖θ⋆
1 − θ⋆‖22

M
∑

m=−M

|〈κ(τ, ·), ψm〉|2dτ

= ‖θ⋆
1 − θ⋆‖2 · η

≤
(

C0
ǫ1√
S

+ C1ǫ2

)

η.
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The last inequality is due to Lemma 2. Finally, we have

‖y⋆1 − r‖ = ‖y⋆1 − y⋆ + y⋆ − r‖
≤ ‖y⋆ − r‖+ ‖y⋆1 − y⋆‖

≤ ‖y⋆ − r‖+
(

C0
ǫ1√
S

+ C1ǫ2

)

η.

�

By this theorem, we conclude that the tracking error of the proposed ℓ1-ℓ2 op-
timal control is bounded if ‖y⋆ − r‖, the ideal control error, is bounded. We also
argue that the difference between the two performances, the ideal ‖y⋆ − r‖ and the
proposed ‖y⋆1 − r‖, is not so large if ǫ1 and ǫ2 are sufficiently small.

6. Numerical Results

We here give numerical examples to show the effectiveness of the proposed
method. The matrices of the system P defined in (1) to be controlled are given by

A =

[

0 1
−α −α− 1

]

, b =

[

0
1

]

, c =

[

−α
1

]

,

with α = 0.5. Note that the Laplace transform P̂ (s) is

P̂ (s) =
s− α

(s+ α)(s + 1)
.

and this system has an unstable zero at s = α = 0.5 as mentioned in Example 1.
We assume the initial state x0 = [0, 0]⊤. The period T is 2π. The number of basis
{ψm} is N = 2M + 1 = 201 (M = 100). The reference signal r(t) is given by

r(t) = sin(20t) + cos(50t),

and the sparsity (cardinality) of this reference is Sr = 4. For compressive sampling,
we take K = 201/3 = 67 random samples among N = 201 sampled data, that is
the compression ratio is 1/3.

We compute the ℓ2 optimal Fourier coefficient vector θ⋆
2 minimizing (7), given

by (8), as a conventional design. We also compute the ℓ1-ℓ2 optimal vector θ⋆
1

minimizing (9) as the proposed method. The regularization parameters µ1 and µ2

respectively for ℓ1-ℓ2 and ℓ2 optimization are set to µ1 = µ2 = 10−4. Fig. 4 shows
the elements of the vector θ⋆

2. We can see that 4 elements are much larger than the
other. This vector however is not sparse, that is, ‖θ⋆

2‖0 = 201 (full). On the other
hand, Fig. 5 shows the ℓ1-ℓ2 optimal θ⋆

1 which is very sparse. In fact, the sparsity
is ‖θ⋆

1‖0 = 44, about 21.9% of the full vector θ⋆
2.

Fig. 6 shows the output y(t) of the system P by the ℓ2 optimal control. The
response is optimal in the sense that the control uses the whole sampled data on
the sampling instants t1, . . . , t101. On the other hand, Fig. 7 shows the output y(t)
by the proposed ℓ1-ℓ2 optimal control. We also show the output y(t) by using
the 44 largest coefficients in the ℓ2 optimal vector θ⋆

2 (see Fig. 4). Note that this
truncated vector has the same cardinality as the ℓ1-ℓ2 optimal vector θ⋆

1. Although
the proposed control signal θ⋆

1 was computed by only K = 67 randomly sampled
data, the output tracks the reference with quite a good performance as the ℓ2

optimal control, and better than the truncation.
To see the difference more precisely, we run 1000 simulations with random sam-

pling and compute the average of the absolute value of the tracking error |r(t)−y(t)|.
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Figure 4. The absolute values of the elements of the Fourier
coefficient vector θ⋆

2 in the ℓ2 optimal control signal u ∈ VM . The
squared markers show the 44 largest coefficients which are used for
a truncated vector.

Fig. 9 shows the result. We can see that the control performance by the proposed
method is almost comparable with that by the ℓ2 method, and much better than
that by the truncated ℓ2 optimal vector. Note that the average of the cardinality
‖θ⋆

1‖0 is about 57.8, which is about 28.8% of that of θ⋆
2.

Then we simulate for another reference signal, the step function defined by

r(t) = 1, t ∈ [0, 2π].

The sparsity of this reference is Sr = 1. We here assume that K = N and run
1000 simulations with a random initial state x0 ∼ N (0, I). The other parameters
are the same as above. Fig. 10 shows the average of the absolute errors by the
ℓ2 optimal control and the ℓ1-ℓ2 optimal one. The performance is comparable but
the proposed control vector θ⋆

1 has the average sparsity ‖θ⋆
1‖0 = 152.512, which is

about 76% of the full vector θ⋆
2. That is, the proposed method can produce much

sparser control vectors without much deterioration of control performance.
In conclusion, the proposed method has successfully achieved an admissible level

of control performance with highly compressive sampling and sparse control signal
representation.

7. Conclusion

In this paper, we have proposed a new method for remote control systems based
on the compressive sampling technique. We have shown that, by assuming the
sparse reference signal, the Fourier coefficients of the optimal tracking control signal
can be much sparser with far fewer data than what conventional design requires.



14 M. NAGAHARA, T. MATSUDA, AND K. HAYASHI

−100 −80 −60 −40 −20 0 20 40 60 80 100

0.01

1

100

m

|θ
m

|

Figure 5. The absolute values of the elements of the Fourier
coefficient vector θ⋆

1 in the ℓ1-ℓ2 optimal control signal u ∈ VM .
The 0-valued elements are omitted. The sparsity is ‖θ⋆

1‖0 = 44.

The computational cost is relatively low due to the combined use of the low rate
random sampling and an efficient optimization algorithm. A theoretical result has
been given for control performance analysis based on the notion of RIP. Examples
have been shown that the proposed method provides a very sparse control signal
without much deterioration of control performance. The sparsity of the control
vector depends also on the signal subspace VM . We leave open the problem how to
select this space for a given plant P and a set of reference signals.
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Appendix A. Proof of Lemma 1

For an input u ∈ VM , the output y(τ), τ ∈ [0, T ] is given by

y(τ) = c⊤ exp(τA)x0 +

∫ τ

0

c⊤ exp [(τ − t)A] bu(t)dt

= c⊤ exp(τA)x0

+

M
∑

m=−M

θm

∫ τ

0

c⊤ exp [(τ − t)A] bψm(t)dt

= c⊤ exp(τA)x0 +

M
∑

m=−M

θm

∫ T

0

κ(τ, t)ψm(t)dt

= c⊤ exp(τA)x0 +

M
∑

m=−M

θm〈κ(τ, ·), ψm〉.
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Figure 9. The tracking error |r(t) − y(t)| by the ℓ1-ℓ2 optimal
control (averaged, solid), the ℓ2 optimal control(dash), and the
truncated ℓ2 optimal control (averaged, dash-dot) whose cardinal-
ity is the same as the ℓ1-ℓ2 optimal control.

Appendix B. Computing inner product

To compute the matrix G in (6), we have to compute the inner product 〈φn, ψm〉.
This value can be easily computed by matrix exponentials [34]:

〈φn, ψm〉 =
∫ T

0

φn(t)ψm(t) dt

=

∫ tn

0

c⊤ exp [(tn − t)A] b exp(−jωmt)dt

= [c⊤, 0] exp

(

tn

[

A b

0 −jωm

])[

0ν

1

]

,

where 0ν is the zero vector in Cν .

Appendix C. FISTA

We here give the algorithm of FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) by [28].
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Figure 10. The average of the absolute error |y(t) − r(t)| of the
ℓ2 optimal control (dash) and the proposed ℓ1-ℓ2 optimal control
(solid). The performance is comparable but the proposed control
vector is much sparser.

Give an initial value θ[0] ∈ CN , and let β[1] = 1, θ′[1] = θ[0]. Fix a constant c
such that c > ‖Φ‖2 := λmax(Φ

⊤Φ). Execute the following iteration:

θ[j] = S2µ1/c

(

1

c
Φ⊤(α− Φθ′[j]) + θ′[j]

)

,

β[j + 1] =
1 +

√

1 + 4β[j]2

2
,

θ′[j + 1] = θ[j] +
β[j]− 1

β[j + 1]
(θ[j]− θ[j − 1]),

j = 1, 2, . . . ,

where the function S2µ1/c is defined for θ = [θ1, . . . , θN ]⊤ by

S2µ1/c(θ) :=







sgn(θ1)(|θ1| − 2µ1/c)+
...

sgn(θN )(|θN | − 2µ1/c)+






,

where sgn(z) := exp(j∠z) for z ∈ C, and (x)+ := max{x, 0} for x ∈ R.

Appendix D. Proof of Lemma 2

Let θ⋆
1(µ1) be the minimizer of the ℓ1-ℓ2 cost function J1(θ) with the regu-

larization parameter µ1 > 0. We denote θ̃
⋆

1(µ1) the reduced dimensional vector

built upon the nonzero components of θ⋆
1(µ1). Similarly, Φ̃ denotes the associated
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columns in the matrix Φ. By the discussion in [35, Section IV], for sufficiently small

µ1 such that µ1 ∈ (0, µ0), the nonempty interval in which sgn(θ̃
⋆

1(µ1)) = sgn(Φ̃+α),
the ℓ1-ℓ2 optimal θ⋆

1(µ1) is also the solution of

min
θ

‖θ‖1 subject to ‖Φθ −α‖2 ≤ ǫ2,

where ǫ2 = ‖Φθ⋆
1(µ1)−α‖2. Then by the assumption δ2S <

√
2− 1, we have [36]

‖θ⋆
1 − θ⋆‖2 ≤ C0

‖θ⋆ − θ⋆
[S]‖1√
S

+ C1ǫ2

≤ C0
ǫ1√
S

+ C1ǫ2.
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