
ar
X

iv
:1

30
5.

20
04

v1
 [

cs
.L

O
]

 9
 M

ay
 2

01
3

Expressing Algorithms As Concise As

Possible via Computability Logic

Keehang Kwon

Faculty of Computer Engineering, DongA University

840 Hadan Saha, 604-714 Busan, Korea

khkwon@dau.ac.kr

Abstract

This paper proposes a new approach to defining and expressing algo-
rithms: the notion of task logical algorithms. This notion allows the user
to define an algorithm for a task T as a set of agents who can collectively
perform T . This notion considerably simplifies the algorithm development
process and can be seen as an integration of the sequential pseudocode
and logical algorithms.

This observation requires some changes to algorithm development pro-
cess. We propose a two-step approach: the first step is to define an algo-
rithm for a task T via a set of agents that can collectively perform T . The
second step is to translate these agents into (higher-order) computability
logic.

Keywords : tasks, algorithm, agents, computability logic.

1 Introduction

Traditional acquaintance with algorithm languages relates to the pseudocodes,
also known as imperative algorithms. Within this setting, algorithms are ex-
pressed as a sequence of instructions. Many algorithms in algorithm textbooks
[11] have been written in pseudocodes. However, pseudocode is, in a sense, a
low-level language because the user must specify the execution order. In par-
ticular, pseudocode is very awkward to use in expressing nondeterministic al-
gorithms such as graph problems where execution orders are typically unknown
beforehand.

Logical algorithm language is a high-level language in which the execution
order can be omitted. Consequently, logical languages can express most deter-
ministic/nondeterministic algorithms in a concise way. Traditional logical lan-
guages, however, suffer from weak expressibility because they are built around
the notion of boolean logic (true/false) [3, 4]. It is possible to increase the
expressibility of logical languages by employing a task/game logic called com-
putability logic (CL) [6, 7], a powerful logic which is built around the notion
of success/failure. The task logic offers many new, essential logical operators
including parallel conjunction/disjunction, sequential conjunction/disjunction,
choice conjunction/disjunction, etc.

1

http://arxiv.org/abs/1305.2004v1

This paper proposes to use CL as an algorithm language. The distinguish-
ing feature of CL is that now each clause/agent is allowed to perform new,
sophisticated tasks that have not been supported by previous logical languages.
While CL is an excellent algorithm language, it is based on the first-order logic.
We also consider its higher-order extension where first-order terms are replaced
by higher-order terms. It is well-known that higher-order terms can describe
objects of function types including programs and formulas. Higher-order terms
have proven useful in many metalanguage applications such as theorem proving.

The remainder of this paper is structured as follows. We discuss a new
way of defining algorithms in the next section. In Section 3, we present some
examples. Section 4 concludes the paper.

2 Task Logical Algorithms

A task logical algorithm for a task T is of the form

c1 : T1, . . . , cn : Tn −→ d : T

where ci : Ti represents an agent ci who can do task Ti. In the traditional devel-
opments of declarative algorithms, those Tis are limited to simple tasks such as
computing recursive functions, relations or resources. Most complex tasks such
as interactive ones are not permitted. In algorithm design, however, complex
tasks are desirable quite often. Such examples include many OS processes, Web
agents, etc.

To define the class of computable tasks, we need a specification language.
An ideal language would support an optimal translation of the tasks. We argue
that a reasonable, high-level translation of the tasks can be achieved via com-
putability logic(CL)[5, 6]. An advantage of CL over other formalisms such as
sequential pseudocode, linear logic[3], etc, is that it can optimally encode a num-
ber of essential tasks: nondeterminism, updates, etc. Hence the main advantage
of CL over other formalisms is the minimum (linear) size of the encoding.

We consider here a higher-order version of CL. The logical language we
consider in this paper is built based on a typed lambda calculus. Although
types are strictly necessary, we will omit these here because their identity is not
relevant in this paper. An atomic formula is (p t1 . . . tn) where p is a (predicate)
variable or non-logical constant and each ti is a lambda term.

The basic operator in CL is the reduction of the form c : A → B. This
expression means that the task B can be reduced to another task B. The
expression c : A ∧ B means that the agent c can perform two tasks A and B

in parallel. The expression !A means that the agent can perform the task A

repeatedly. The expression c : A⊓B means that the agent c can perform either
task A or B, regardless of what the machine chooses. The expression c :⊓xA(x)
means that the agent c can perform the task A, regardless of what the machine
chooses for x. The expression c : A ⊔B means that the agent c can choose and
perform a true disjunct between A and B.

The expression c : ⊔xA(x) means that the agent can choose a right value
for x so that it can perform the task A. We point the reader to [6, 7] to find
out more about the whole calculus of CL.

2

3 Examples

The notion of task logical algorithms makes algorithms simpler and versatile
compared to traditional approach. As an example, we present the factorial
algorithm to help understand this notion. The factorial algorithm can be defined
using an agent c whose tasks are described below in English:

(1) c can either claim that fact(0, 1) holds, or

(2) can replace fact(X,Y) by fact(X + 1, XY + Y).

It is shown below that the above description can be translated into CL formulas.
The following is a CL translation of the above algorithm, where the reusable
action is preceded with !.

c : (fact 0 1) ⊓ ! ⊓x⊓y ((fact x y) → (fact x+ 1 xy + y)).

A task is typically given by a user in the form of a query relative to agents.
Computation tries to solve the query with respect to the agent c. As an exam-
ple, executing agent c −→ ⊓y⊔zfact(y, z) would involve the user choosing a
value, say 5, for y. This results in the initial resource fact(0, 1) being trans-
formed to fact(1, 1), then to fact(2, 2), and so on. It will finally produce the
desired result z = 120 using the second conjucnt five times.

An example of interactive tasks is provided by the following agent t which
has a lottery ticket. The ticket is represented as 0 ⊔ 1M which indicates that
it has two possible values, nothing or one million dollars.

The following is a CL translation of the above algorithm.

t : 0 ⊔ 1M .

Now we want to execute t to obtain a final value. This interactive task is
represented by the query t. Now executing the program agent t −→ agent t

would produce the following question asked by the agent in the task of 0⊔ 1M
in the program: “how much is the final value?”. The user’s response would
be zero dollars. This move brings the task down to 0 −→ agent t. Executing
0 −→ agent t would require the machine to choose zero dollars in 0⊔ 1M for
a success.

An example of parallel tasks is provided by the following two agents c and
d working at a fastfood restaurant. The agent c waits for a customer to pay
money(at least three dollars), and then generates a hamburger set consisting of
a hamburger, a coke and a change. The agent d waits for a customer to pay
money(at least four dollars), and then generates a fishburger set consisting of a
fishburger, a coke and a change.

The following is a CL translation of the above algorithm.

c :!⊓x(≥ (x, 3) → m(ham) ∧m(coke) ∧m(x− 3)).
d :!⊓x(≥ (x, 4) → m(fi) ∧m(coke) ∧m(x− 4)).

3

Now we want to execute c and d in parallel to obtain a hamburger set and
then a fishburger set by interactively paying money to c and d. This inter-
active task is represented by the query c ∧ d. Now executing the program
agent c, agent d −→ agent c ∧ agent d would produce the following question
asked by the agent in the task of c: “how much do you want to pay me?”.
The user’s response would be five dollars. This move brings the task down to
m(ham) ∧ m(coke) ∧ m($2) which would be a success. The task of d would
proceed similarly.

As an example of higher-order algorithms, consider the interpreter for Horn
clauses. It is described by G- and D-formulas given by the syntax rules below:

G ::= A | G and G | some x G

D ::= A | G imp A | all x D | D and D

In the rules above, A represents an atomic formula. AD-formula is called a Horn
clause. The expression some x G involves bindings. We represent such objects
using lambda terms. For example, all x p(x) is represented as all λx(p x).

In the algorithm to be considered, G-formulas will function as queries and
D-formulas will constitute a program.

We will present an operational semantics for this language based on [10].
Note that execution alternates between two phases: the goal-reduction phase
and the backchaining phase. Following Prolog’s syntax, we assume that names
beginning with uppercase letters are quantified by ⊓.

Definition 1. Let G be a goal and let D be a program. Then the notion of
executing 〈D,G〉 – pv D G – is defined as follows:

(1) bc D A A. % This is a success.

(2) pv D G1 → bc D (G1 imp A) A).

(3) bc D (D X) A → bc D (all D) A.

(4) bc D D1 A ∨ bc D D2 A → bc D (D1 and D2) A.

(5) atom A ∧ bc D D A → pv D A. % change to backchaining phase.

(6) pv D G1 ∧ pv D G2 → pv D (G1 and G2).

(7) pv D (G X) → pv D (some G).

In the rules (3) and (7), the symbol X will be instantiated by a term. In this
context, consider the query pv (p a) (some λx(p x)). In solving this query,
pv (p a) (p a) will be formed and eventually solved.

The examples presented here have been of a simple nature. They are, how-
ever, sufficient for appreciating the attractiveness of the algorithm development
process proposed here. We point the reader to [8, 9, 10] for more examples.

4

4 Conclusion

A proposal for designing algorithms is given. It is based on the view that an
algorithm for a task T is a set of agents who can collectively perform the task.
The advantage of our approach is that it simplifies the process of designing and
writing algorithms for most problems.

Our ultimate interest is in a procedure for carrying out computations of the
kind described above. Hence it is important to realize this CL interpreter in an
efficient way, taking advantages of some techniques discussed in [1, 2, 4].

5 Acknowledgements

This paper was supported by Dong-A University Research Fund.

References

[1] M. Banbara. Design and implementation of linear logic programming lan-

guages. Ph.D. Dissertation, Kobe University, 2002.

[2] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource
management for linear logic proof search. In Proceedings of the 1996 Work-

shop on Extensions of Logic Programming, LNAI 1050, pages 67 – 81.

[3] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[4] Joshus Hodas and Dale Miller. Logic programming in a fragment of intuition-
istic linear logic. Journal of Information and Computation, 1994. Invited to
a special issue of submission to the 1991 LICS conference.

[5] G. Japaridze. The logic of tasks. Annals of Pure and Applied Logic, 117:263–
295, 2002.

[6] G. Japaridze. Introduction to computability logic. Annals of Pure and

Applied Logic, 123:1–99, 2003.

[7] G. Japaridze. Sequential operators in computability logic. Information and

Computation, vol.206, No.12, pp.1443-1475, 2008.

[8] D. Miller and G. Nadathur. 1987. A logic programming approach to manip-
ulating formulas and programs. In IEEE Symposium on Logic Programming,
S. Haridi, Ed. IEEE Computer Society Press, 379–388.

[9] D. Miller and G. Nadathur. 1988. λProlog version 2.7. Distributed in C-
Prolog and Quintus Prolog source code.

[10] D. Miller and G. Nadathur. 2012. Programming with higher-order logic.
Cambridge University Press.

[11] R. Neapolitan and K. Naimipour. Foundations of Algorithms. Heath, Am-
sterdam, 1997.

5

	1 Introduction
	2 Task Logical Algorithms
	3 Examples
	4 Conclusion
	5 Acknowledgements

