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SUMMARY The modeling of random telegraph noise (RTN) of MOS
transistors is becoming increasingly important. In this paper, a novel
method is proposed for realizing automated estimation of two important
RTN-model parameters: the number of interface-states and corresponding
threshold voltage shift. The proposed method utilizes a Gaussian mixture
model (GMM) to represent the voltage distributions, and estimates their
parameters using the expectation-maximization (EM) algorithm. Using in-
formation criteria, the optimal estimation is automatically obtained while
avoiding overfitting. In addition, we use a shared variance for all the Gaus-
sian components in the GMM to deal with the noise in RTN signals. The
proposed method improved estimation accuracy when the large measure-
ment noise is observed.
key words: random telegraph noise (RTN), Gaussian mixture model
(GMM), expectation-maximization (EM) algorithm, information criteria,
model estimation

1. Introduction

Random telegraph noise (RTN) is an increasing concern
for LSI circuits designed using metal-oxide-semiconductor
(MOS) transistors in an advanced technology node. Fig-
ure 1 shows a cross sectional view of a MOS transistor, il-
lustrating a principle of RTN. RTN is observed as a temporal
fluctuation of the threshold voltage (Vth) of a transistor. A
capture and an emission of a carrier at the trap in the gate in-
sulator film cause a change in surface potential, which leads
to the fluctuation of threshold voltage. When two or more
number of traps exist in a transistor, the effects of the indi-
vidual RTNs are superimposed.

The impact of RTN is fast growing as transistor dimen-
sions become smaller because the impact of a charge carrier
becomes bigger in small area devices. It is predicted that
an RTN-induced fluctuation of the threshold voltage is ex-
pected to be more influential than random dopant fluctua-
tion in the near future [1], [2]. The modeling of RTN thus
becomes important for accurate prediction of the circuit per-
formance and for studying stability of a circuit under the
influence of RTN.

A lot of studies exist for the modeling of RTN [2]–[5].
In these studies, the number of traps in a device, threshold
voltage shift ΔVth that corresponds to a trap, and the time
constants of capture and emission, are the common param-
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Fig. 1 Principle of RTN.

Fig. 2 An example of measured time-change of threshold voltage.

eters. Characterization of these parameters from the mea-
surement is necessary. Basically, the parameters have to be
obtained based on the measurements over a large number
of devices because RTN is a stochastic process. For that
purpose, device arrays that are suitable to capture RTN are
proposed, e.g., in [6], [7].

In this paper, we focus on estimating two important
model parameters — the number of interface-states and cor-
responding threshold voltage shift of each interface-state.

When a trap captures or emits a carrier, the threshold
voltage of a transistor changes accordingly. The number of
interface-states, M, is simply related to the number of traps,
K, with the following equation,

M = 2K . (1)

Here, K is a non-negative integer.
In practice, estimation of the number of traps or the

number of interface states is a difficult task because the volt-
age level is ambiguous in the measurement data. Let us take
an example shown in Fig. 2. In this example, we notice three
major voltage levels, which are traced by a solid line. Small
measurement noise is superposed on the major voltage lev-
els. Note that these noise-like threshold voltage shifts may
also be the results of RTN having very small amplitudes.
Furthermore, when noise becomes large as compared with
the actual threshold voltage change due to RTN, it becomes
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more difficult to accurately extract the number of states.
In this example, information on the number of inter-

nally existing states is lost in the measurement data. What
we can observe is the threshold voltage fluctuation at each
moment, which is a result of superposition of the activity
of the traps. An accurate estimation of the number of states
is thus an ill-conditioned, and hence inherently a difficult
problem.

For the purpose of the model parameter characteriza-
tion, we can obtain a large volume of RTN data measured
over many devices, by using an array-like circuit [6]. We
would like to estimate the model parameters from the mea-
surements, hence the estimation has to be conducted auto-
matically.

In this paper, we establish an automated method to es-
timate the number of interface-states in a device. In the pro-
posed method, the threshold voltage levels are approximated
using a Gaussian mixture model (GMM). By using the ex-
pectation maximization (EM) algorithm [8], [9], large volt-
age steps in the data are captured by the GMM. Considering
that the small and constant noise is superposed on each volt-
age level, we limit the form of the GMM to share a single
variance. Then, information criteria [10], [11] are used to
avoid the problem of over-fitting that is caused by using too
many Gaussian distributions. With the proposed method,
human-subject estimation can be eliminated, and hence an
objective and automated extraction of the RTN model pa-
rameters is achieved. The proposed method enhances the
accuracy of the RTN model and will eventually improve the
design quality of LSI circuits.

This paper is organized as follows. In Sect. 2, we re-
view related work. In Sect. 3, a method for an interface-state
and threshold-voltage level estimations are proposed. Then
in Sect. 4, the proposed method is evaluated by artificial data
having two or four interface-states. Finally, Sect. 5 summa-
rizes this paper.

2. Related Works

For estimating the number of interface-states of MOS tran-
sistors, time lag plot (TLP) [12] and time dependent defect
spectroscopy (TDDS) [13] are two well-known methods.

The TLP records the transitions of the time-series sig-
nal in a two-dimensional plane so that the x- and y-axes
become the threshold voltages of consecutive measurement
time. When the value of the current threshold voltage equals
to the previous time, the symbol in the TLP is located on
a diagonal. When the values of two consecutive times are
different, then the symbol will be plotted on off-diagonal
areas. By repeating this process for entire measurement pe-
riod, threshold voltage changes, caused by a single trap and
thus having a constant amplitude, will form a square in the
plot. By counting the number of squares, we can find the
number of traps in the RTN waveform.

In the TDDS, interface-states of a MOS transistor
are observed through repetitive bias-temperature instability
(BTI) measurements. More specifically, it focuses on the

recovery period of the device after being kept in stress con-
ditions. The change in threshold voltage is plotted as y-axis
being the x-axis an elapsed time since the recovery period
has started. By repetitively applying the stress and recovery
periods, interface-states and their emission-time constants
will be represented as a spectrum-like figure.

The above two methods are useful for visualizing the
existence of the interface-states. However, if we want to
estimate the number of interface-states, these methods re-
quire human effort to find specific features that represent
interface-states. This process has not yet been automated.
Also, when signal-to-noise (S/N) ratio becomes worse, it
becomes difficult to find the features even for a human.

More recently, a new approach that uses Bayesian in-
ference to obtain RTN model parameters has been proposed
in [14]. This method simultaneously and automatically esti-
mates the number of traps and hidden activity of each trap.
However, estimation takes very long time since the method
is based on Monte Carlo estimation of probabilistic model.
Proposed method can also be used for the preprocessing of
[12], [13] or [14], by quickly selecting the important sam-
ples that has many traps or that suffers a large threshold
voltage shift.

3. Automated Estimation of the Number of Interface-
States

3.1 Algorithm Overview

In this section, we propose a new method to estimate the
number of MOS transistor’s interface-states from the time
domain RTN waveform. In our method, the GMM is used
to fit the threshold voltage histogram. The GMM is selected
so that it best describes the voltage histogram with the min-
imum number of model components.

An example of the time dependent threshold voltage
shift and the corresponding threshold voltage histogram is
presented in Fig. 3. On the right axis of the time domain
graph, the threshold voltages are projected and the voltage
histogram is plotted. In the time domain graph, there are two
distinctive voltage levels that look like two bands because of
the heavy noise. We assume that the noise is caused by the
sources that have constant variance, such as measurement
noise or inseparably small RTN. Hence, we consider that
the voltage histogram is represented by the sum of Gaussian
distributions. Under the above assumption, it is appropriate
to approximate the voltage histogram using a Gaussian mix-
ture model (GMM) [15], [16]. Once the GMM is obtained,
then the mean of each Gaussian distribution gives the thresh-
old voltage level, and the variance represents the spread of
the voltage level due to either noise or smaller RTN compo-
nents. Also, the mixing coefficient, i.e., the contribution of
a Gaussian component is related to the duration in which a
trap is in a particular state.

Trying to automate the estimation process, we have
proposed a method that uses the EM algorithm [17]. In this
method, starting from a relatively large number of Gaus-
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Fig. 3 Example of generating a voltage histogram from the time-domain
threshold voltage. The threshold voltages are projected to form the voltage
histogram.

sian distributions, the number of models is being reduced
until the number of models converges. The reduction of the
model uses the following rule. The two Gaussian models
are considered to be equal and thus forced to merge into one
when the mean values of the distributions are very close. A
closeness parameter is used to control the threshold to judge
whether the distributions are close or not. The estimation of
the number of interface-states heavily depends on the close-
ness parameter. The value of closeness parameter should be
set adaptively to obtain a good accuracy, depending on the
noise in the measurement.

Therefore, the following procedures are additionally
introduced in the proposed method in order to achieve better
adaptability of the model.

• We propose to use a single variance for all Gaussian
models in a GMM.

• We propose to use information criteria to obtain the
best model instead of using the closeness parameter.

The first procedure is based on the assumption that the mea-
surement variation comes from a single source or the sum of
sources, which should yield a constant variance. In this pa-
per, to simulate this situation, variances of the Gaussian dis-
tribution in the GMM will be constrained to be the same. We
call this bounded variance model as GMM with single vari-
ance or that with shared variance, or that with constrained
variance. The second procedure is introduced to alleviate
the difficulty to determine the closeness parameter.

The proposed flow for estimating the optimal GMM
is presented in Algorithm 1, which can be summarized as
follows.

1. Initialize M, number of interface-states, to be 1.
2. Fit GMM to the voltage histogram.
3. Fit GMM to the voltage histogram with shared vari-

ance.
4. Calculate information criteria (IC) to evaluate the

Algorithm 1 Two step algorithm: obtain the best GMM with
shared variance, which approximates a voltage histogram.

input: X = (x1, . . . , xN )
output: Micmin

M ← 1
IC[0]← ∞
while (Micmin != Null) do
μinit

m , σ
init
m ← Clustering by k-means++

Calculate πinit
m

Calculate (ln L)init using Eq. (12)
(ln L)new ← (ln L)init

while rerr >= rthresh do
(ln L)old ← (ln L)new

E step
M step
Calculate (ln L)new using Eq. (12)
Calculate rerr using Eq. (13)

end while
while rerr >= rthresh do

(ln L)old ← (ln L)new

E step
M step
Equalize σnew

m using Eqs. (10) and (11)
Calculate (ln L)new using Eq. (12)
Calculate rerr using Eq. (13)

end while
IC[M]← Calculate IC
if (Micmin == Null) and (M >= 2) then

if (IC[M] >= IC[M − 1]) and (IC[M − 1] >= IC[M − 2]) then
Micmin = M − 2

end if
end if
M ← M + 1

end while
return Micmin

goodness of fit of the GMM at the number of interface-
states M.

5. If (M ≥ 2 and IC[M] ≥ IC[M − 1] ≥ IC[M − 2]) is
satisfied, then return (M − 2) as the best estimation of
the number of interface-states. Otherwise, increment
M by one and return to Step 2.

In Steps 2 and 3, two EM algorithms are successively con-
ducted. We here call the proposed algorithm as the two step
algorithm. In the first step, a normal EM algorithm that does
not use shared variance is used, and in the second step, an
EM algorithm that uses GMM with shared variance is ap-
plied. When the variance of the GMM is equalized, the EM
algorithm tends to be trapped by local minima because of
the reduced degree of freedom due to variance constraint.
Hence we first apply the normal EM algorithm to roughly
fit the model, and then conduct the second EM algorithm by
using GMM to equalize variance.

Each step of the proposed algorithm will be described
in the following subsections.

3.2 Obtaining the Optimal Gaussian Mixture Model

In the proposed flow, estimation of GMM is repeated by in-
crementing the number of interface-states M. Starting from
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M = 1, we fit GMM to the given threshold voltage data by
using the EM algorithm. The EM algorithm is a method
that estimates the parameters of a probabilistic model with
a maximum likelihood, i.e., it finds the most reasonable pa-
rameters of GMM. The parameters of GMM are mean, vari-
ance and contribution of each Gaussian component. The
k-means++ [18] is used to determine the initial parameter
values for the EM algorithm.

We have to find the optimal number of Gaussian mod-
els that best approximates the voltage histogram. Special
attention has to be paid when evaluating the goodness of
the model. If we increase the complexity of the model,
which can be realized by using larger M, we can always
achieve smaller error. However, the smaller error does not
always mean the model is good. Too complex model having
too many Gaussian components may suffer from overfitting
problem. The model may adapt to the measurement noise
that should not be included in the model. We have to eval-
uate the fitness while avoiding this overfitting problem. For
this purpose, we utilize the idea of information criteria.

In the following subsections, we review GMM and EM
algorithms.

3.2.1 Gaussian Mixture Model

Let an observed data sequence and its length be X =

(x1, . . . , xN) and N, respectively. The GMM has the fol-
lowing form:

p (xn) =
M∑

m=1

πmN
(
xn|μm, σ

2
m

)
, (2)

where N
(
xn|μm, σ

2
m

)
is m-th independent normal distribu-

tion, and M is the number of the normal distributions. μm,
σ2

m, and πm are also the mean, variance, and mixing coeffi-
cient of the m-th normal distribution. The m-th independent
normal distribution is

N
(
xn|μm, σ

2
m

)
=

1√
2πσ2

m

exp

{
− 1

2σ2
m

(xn−μm)2

}
. (3)

The mixing coefficients satisfy Eq. (4),

M∑
m=1

πm = 1, and 0 ≤ πm ≤ 1. (4)

3.2.2 EM Algorithm

The EM algorithm is a method that estimates a maxi-
mum likelihood solution of the parameters of a probabilistic
model. We apply the EM algorithm to estimate the GMM
that most likely explains measurement data. The EM algo-
rithm is conducted through the following steps.

1. Initialization: initializes the mixture of Gaussian dis-
tributions (the number of Gaussian distributions: M)
and calculates the log-likelihood for the initial distri-
bution. In order to automatically set initial values for

the parameters of the GMM (μm, σ2
m, and πm), we apply

k-means++ algorithm for the observed threshold volt-
ages to form M clusters.

2. E step: given the current parameters, calculate respon-
sibility γ (znm), which is the contribution of a Gaussian
model in the GMM to a voltage sample xn using

γ (znm) =
πmN

(
xn|μm, σ

2
m

)
∑M

j=1 π jN
(
xn|μ j, σ

2
j

) . (5)

3. M step: update the parameters for the GMM using the
present responsibility,

μnew
m =

1
Nm

N∑
n=1

γ (znm) xn, (6)

(σnew
m )2 =

1
Nm

N∑
n=1

γ (znm)
(
xn − μnew

m
)2 , (7)

and

πnew
m =

Nm

N
, (8)

where Nm is

Nm =

N∑
n=1

γ (znm) . (9)

When it is directed to use the GMM with shared vari-
ance, σnew

m will be equalized through the following av-
eraging procedure after calculation of σnew

m in Eq. (7).

a. Obtain σnew
m using Eq. (7)

b. Calculate the common variance σnew by

σnew =

√√√
1
M

M∑
m=1

(σnew
m )2. (10)

c. Update variance of each GMM by

σnew
m = σnew. (11)

4. Convergence test: calculate the log-likelihood using

ln L = ln p (X|μ,σ, π)

=

N∑
n=1

ln

⎧⎪⎪⎨⎪⎪⎩
M∑

m=1

πmN
(
xn|μm, σ

2
m

)⎫⎪⎪⎬⎪⎪⎭ ,
(12)

and evaluate its change by

rerr =

∣∣∣(ln L)new − (ln L)old
∣∣∣

(ln L)old
. (13)

Here, (ln L)old and (ln L)new are the log likelihood be-
fore and after the M step, respectively. The conver-
gence criterion is
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rerr < rthresh. (14)

rthresh is the threshold to judge convergence. The
threshold can be determined to be a smaller value than
the penalty terms in information criteria described in
the subsequent subsection. The E and M steps are re-
peated until the convergence criterion is satisfied.

3.3 GMM with Shared Variance

Reflecting the physical assumption that the variance of noise
is constant, the variances of the GMM components are con-
strained to be equal by using Eq. (10). The effectiveness
of the shared variance is better understood through exam-
ples. Figures 4(a) and 4(b) show the distributions of the
GMM with and without shared variance, respectively. This
example is taken from the case when there are two voltage
levels. The correct voltage levels for the two distributions,
p1(x) and p2(x), are about 0 and 1, respectively. The dis-
tributions of p̂1(x) and p̂2(x) are the Gaussian components
of the optimized GMM after the application of the EM al-
gorithm. The means of the distributions are indicated by
markers. In Fig. 4(a), when the variance is not constrained,
there are large discrepancies between the true and estimated
distributions. Variance of p̂2(x) is larger than that of p̂1(x)
at the end of the EM algorithm.

Although the estimated components in the GMM are
different from the true distributions, the sum of the two es-
timated distributions may become very similar to the true
distribution as seen in Fig. 4(c). The two different GMMs
and the true distribution are almost indistinguishable. The
GMM in Fig. 4(a) happens to be a good approximation of
the entire distribution. We know from this example that it is
extremely important to match each Gaussian component to
the true distribution that is unknown. This example suggests
that the approximation of histogram using GMM can have
several local optimums. With the aid of physical assump-
tion, the local optimums can be avoided.

Figure 4(b) shows a result when a single variance is
used. In this case, not just the entire distribution but each
Gaussian distribution matches to the true distribution very
well, giving us the correct estimation results of the voltage
levels. By the shared variance, the number of local optimum
may be reduced and there are increased chances to achieve
successful estimation. The shared variance is very effective
to improve the accuracy of estimations.

3.4 Information Criteria

To select the optimal GMM, we use the idea of information
criteria. There exist many information criteria that can be
used for the model selection. In this work, we apply Akaike
information criterion (AIC) [10] and Bayesian information
criterion (BIC) [11]. AIC and BIC are given by the follow-
ing equations:

AIC = −2 ln L + 2k (15)

Fig. 4 Approximation example showing the effectiveness of shared vari-
ance in the GMM. p1 and p2 are the correct distributions. p̂1 and p̂2 are
the estimated distributions.

and

BIC = −2 ln L + k ln N, (16)

where L, k, and N are the maximum likelihood, the number
of free parameters, and the length of the measurement se-
quence. In our case, the free parameters are: μ, σ, and π of
each state. Hence, the number of free parameters k becomes
(3M − 1) when different variance is used for each Gaussian
model. In the case that a shared variance is used for each
model, then the number of free parameters k becomes 2M.

In general, the value of M that minimizes information
criteria gives the optimal model. The information criteria
usually have a single minimum point as in Fig. 6. As we
increase M, the criteria first decreases sharply because of
the decrease in the first term of Eq. (15) or (16). This is
because the more complex model matches better than the
simpler one and thus increases log-likelihood. Then, beyond
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the minimum point, the criteria start to increase due to the
second term that gives penalty for using a complex model.

With this observation, we can basically increase M to
find the first kink point at which the information criteria
start to increase. This will enable us to automatically deter-
mine the optimal GMM. However, we sometimes observe
the local minimum point at a smaller M value. The rea-
son of having the local minimum has not yet been clearly
understood, but the use of single shared variance described
in the previous subsection, insufficient number of iterations
in the EM algorithm, etc. are the possible reasons. To
avoid this local minimum point, we judge the minimum
point by two consecutive increases in information criteria
(IC[M] ≥ IC[M − 1] ≥ IC[M − 2]).

4. Numerical Evaluations

In this section, we demonstrate that the parameters of the
GMM, i.e., the number of interface-states and threshold
voltage levels are estimated correctly and automatically us-
ing the proposed method. The effectiveness of using the
GMM with shared variance is also verified.

Throughout the evaluation, we use artificial RTN data
because the ground truth is unable to know when we use the
measured RTN data. The artificial RTNs are generated us-
ing the parameters listed in Table 1. Time-changing thresh-
old voltage without noise is first generated as the superposi-
tion of two-state Markov models. The duration of each state
is determined randomly following the states of the Markov
model that is characterized by time-constants τe and τc for
each trap [5]. Then, Gaussian noise of zero mean and the
variance of σ2

d are added for each time step. Because the
noise variance will be swept, the differences of threshold
voltage levels are normalized to be 1.0 without losing the
generality.

4.1 Examples of the Proposed Estimation Method

Examples of the generated RTNs are shown in Fig. 5 for
Ms = 2, σd = 0.3 and Fig. 7 for Ms = 4, σd = 0.4, re-
spectively. Here, Ms represents the true number of states
used in the data generation step, which is equal to 2K . The
generated RTN waveforms are very similar to the measure-
ments found in literatures, e.g., in [7]. Large measurement
noise makes it difficult to estimate the exact voltage levels
for each state.

The proposed method is applied for the generated
RTNs. The GMMs with different number of Gaussian com-
ponents M are approximated through the EM algorithm.
The values of information criteria for the optimized GMMs
are plotted in Figs. 6 and 8. The log-likelihood decreases
rapidly as M is increased. It saturates at about M = 2 in
Fig. 6 and M = 4 in Fig. 8. Because of the second terms
in Eqs. (15) and (16), both AIC and BIC start to increase
at these values. According to the proposed method shown
in Algorithm 1, M that gives the minimum value of in-
formation criteria is the best estimation for the number of

Table 1 Parameters for generating two-state RTN data (K = 1 is used
for the experiments of Figs. 5, 6 and 9. K = 2 is used for Figs. 7, 8 and 10.

Parameter Value
Number of traps K 1 or 2

Data length N 100,000
ΔVth amplitude 1.0

Time constants τc, τe Log-normal random numbers
(mean, sigma)= (9, 1)

Standard deviation of 0.0 to 0.9
measurement noise σd

Fig. 5 Example data of artificial RTN (Ms=2, σd=0.3). Samples in be-
tween 34 k to 40 k are plotted for clarity out of 100 k samples in total.

Fig. 6 Changes of AIC and BIC when estimating the number of
interface-states for the data in Fig. 5.

interface-states. In these examples, we see that the proposed
method estimates the number of states correctly.

In order to check the robustness of the estimation, we
here confirm the stability of the estimation. After initializ-
ing the model parameters using k-means++, means of the
Gaussian models in the GMM are modified by adding a ran-
dom number drawn from a Gaussian distribution that have
zero mean and the variance of σ2

d. Then the parameter esti-
mations are conducted. This process has been repeated for
100 times and evaluated the log likelihood. If, depending
on the change of initial values for the EM algorithm, log
likelihood largely fluctuates in the order of or larger than
the second terms in Eqs. (15) and (16), then the evaluations
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Fig. 7 Example data of artificial RTN (Ms=4, σd=0.4). Samples be-
tween 34 k to 38 k out of 100 k samples are plotted.

Fig. 8 Changes of information criteria for the data of Fig. 7.

using AIC and BIC can be considered unreliable. We calcu-
lated the maximum fluctuation of AIC and BIC is as high as
0.714, which is smaller than the smallest possible value that
the penalty terms in Eqs. (15) and (16) can take. Hence, we
can consider the convergence criteria are sufficiently good,
and the use of information criteria is effective.

Since both AIC and BIC give very close estimations in
almost all examples, we hereafter use BIC as an information
criterion to evaluate the number of states.

4.2 State Number and Voltage Level Estimation

In order to validate the proposed method, 1000 artificial
RTNs are generated for Ms = 2, and 100 artificial RTNs
are generated for Ms = 4. The artificial RTNs are gener-
ated by using the parameters listed in Table 1. Then, the
interface-state numbers are estimated. The condition for the
successful threshold voltage level estimation is to satisfy

|v̂m − vm| < 0.05 (17)

for all voltage levels. Here, v̂m is the estimated threshold
voltage level, or the mean of the m-th Gaussian component
in the GMM, and vm is the true threshold voltage levels. Be-
cause voltage levels are normalized to have 1 V intervals,

Fig. 9 Success rate of estimations (Ms=2). The estimation accuracy has
been improved by the proposed two step algorithm.

this condition corresponds to a 5% of the voltage level dif-
ference.

Figure 9 compares the ratio of successful estimations
for the case of Ms = 2. Four procedures are compared: 1) k-
means++ algorithm only (kmeans), 2) after the k-means++,
the normal EM algorithm which does not equalize variance
of GMM is conducted (EM), 3) after the k-means++, the
EM algorithm which equalize variance of GMM is con-
ducted (sharedvar), and 4) the proposed two-step algorithm
in which the normal EM algorithm and the EM algorithm
that uses GMM with shared variance are successively con-
ducted. Note that an identical RTN is used as the inputs
for fair comparison. In the experiment, signal-to-noise ra-
tio is swept by changing the standard deviation of the mea-
surement noise. When the noise is small, just applying k-
means++ gives the correct estimations for the number of
interface-states and for voltage levels. As the noise be-
comes larger, it becomes difficult for k-means++ to yield
correct estimation. The use of the normal EM algorithm
after the initialization of k-means++ greatly improves esti-
mation accuracy. When GMM with shared variance is used
in the EM algorithm, estimation rate becomes worse for the
smaller noise σd ≤ 0.46 but becomes better for the larger
noise σd > 0.46. The proposed two-step algorithm can in-
corporate the benefits of the two. For example, when σd is
0.6, the ratio of the correct estimations for both the number
of states and the threshold voltage levels is improved from
35% to 70%.

Figure 10 shows the ratio of the successful estimation
for the case of Ms = 4. Very similar trend to the case of
Ms = 2 can be observed. The estimation performance has
been improved by the shared variance in the GMM. For ex-
ample, when σd is 0.5, the ratio of the correct estimations
for both the number of states and the threshold voltage lev-
els is improved from 5% to 29%

Here, the validity of using two consecutive increases
in information criteria as the stop-condition is evaluated.
Figure 11 shows the ratio of the successful estimation for
Ms = 4 when different number of consecutive increases is
used. The RTN signals used in this evaluation are similar to
those of Fig. 10. The number of RTN signals used is 100.
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Fig. 10 Success rate of estimations (Ms=4).

Fig. 11 Success rate of estimations for Ms = 4 for different number of
consecutive increases. The consecutive increase means how many consecu-
tive increases in information criteria are required to terminate the proposed
two step algorithm. “look1,” “look2,” and “look3” requires one, two, and
three consecutive increases, respectively.

“look1,” in which one increasing step is necessary, is in-
ferior to “look2” which requires two consecutive increases
to stop. Only a slight difference could be found between
“look2” and “look3” which requires three consecutive in-
creases. Therefore, it is reasonable to use two consecutive
increases.

Computational time required for these methods are also
evaluated. Figure 12 compares median estimation time for
Ms = 2. Circles represent the conventional method, which
uses the EM algorithm without shared variance. Triangles
represent the method which uses the EM algorithm with
shared variance and squares represent the proposed two step
algorithm in which two EM algorithms are successively con-
ducted. Note that the estimation time is defined by the sum
of the processing times for k-means++ and the EM algo-
rithm. Also note that the estimation time is calculated only
for the samples in which successful estimation was made.
Because the processing time for k-means++ is much shorter
than that of the EM algorithm, the estimation time is mostly
determined by the EM algorithm. Because the proposed al-
gorithm consists of two EM algorithms runs, the proposed
algorithm is always slower than the one that uses the nor-
mal EM algorithm after k-means++. Considering that the

Fig. 12 Median estimation time for successful estimations (Ms=2). Al-
though the conventional EM algorithm is faster than the proposed method,
its estimations are very unreliable as seen in Fig. 9.

Fig. 13 Median estimation time for successful estimations (Ms=4).
There are no correct estimations beyond σd = 0.6 for the conventional
and the proposed methods.

proposed algorithm yields better accuracy than the normal
EM algorithm, the time required for the proposed algorithm,
which is approximately equal to or less than twice of the
normal EM algorithm, can be acceptable. Reduction of the
computational time is one of our future works.

In a general trend, it takes more time to estimate the
interface-states without shared variance than to estimate the
interface-states with shared variance because of large noise.
Figure 13 compares the median of estimation time for Ms =

4. As we have seen in Fig. 10, because of the difficulties to
obtain correct estimation results, there is no valid timing in
the cases of σd > 0.6.

5. Conclusion

A novel method that realizes automated estimation of the
number of interface-states from RTN waveform is proposed.
The proposed method utilizes a Gaussian mixture model to
represent voltage distributions of the threshold voltage lev-
els. The threshold voltage shift associated with the change
of the states is also accurately estimated as the means of the
Gaussian distributions. By using information criteria with
the EM algorithm, the appropriate number of the Gaussian
models to fit the voltage distribution is also determined al-
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gorithmically, while avoiding over-fitting. In addition, by
adding the constraint to share a variance among the Gaus-
sian models in the GMM, the proposed method has success-
fully estimated the number of interface-states even under the
severe conditions where the large measurement noise is ob-
served.

Through numerical evaluations, it has been proven
that the proposed method provides accurate and fast auto-
estimation of the model parameters. By the proposed two
step algorithm, successful estimation ratio has been im-
proved from 35% to 70% for two-state case when large noise
(σd = 0.6) is observed with the RTN waveform. The
proposed method is considered useful for improving design
quality of LSI circuits.
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