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PAPER Special Section on VLSI Design and CAD Algorithms

A Novel High-Performance Heuristic Algorithm with Application to
Physical Design Optimization

Yiqiang SHENG†a), Nonmember and Atsushi TAKAHASHI†b), Senior Member

SUMMARY In this paper, a novel high-performance heuristic algo-
rithm, named relay-race algorithm (RRA), which was proposed to ap-
proach a global optimal solution by exploring similar local optimal solu-
tions more efficiently within shorter runtime for NP-hard problem is inves-
tigated. RRA includes three basic parts: rough search, focusing search and
relay. The rough search is designed to get over small hills on the solution
space and to approach a local optimal solution as fast as possible. The fo-
cusing search is designed to reach the local optimal solution as close as
possible. The relay is to escape from the local optimal solution in only one
step and to maintain search continuity simultaneously. As one of typical ap-
plications, multi-objective placement problem in physical design optimiza-
tion is solved by the proposed RRA. In experiments, it is confirmed that
the computational performance is considerably improved. RRA achieves
overall Pareto improvement of two conflicting objectives: power consump-
tion and maximal delay. RRA has its potential applications to improve the
existing search methods for more hard problems.
key words: NP-hard problem, optimization, conflicting objectives, physical
design, placement

1. Introduction

Search methods such as [1]–[11] are widely used to get near-
optimal solution for NP-hard problem. In order to get a
better solution efficiently, various algorithms such as iter-
ative improvement method with random generation, simu-
lated annealing [6]–[9], genetic algorithm [10] and variable
neighborhood search [11] have been proposed so far. How-
ever, the efficiency of existing search algorithms is limited.

In order to improve search efficiency in search meth-
ods, we introduced relay-race algorithm (RRA) to explore
similar local optimal solutions efficiently in [5]. In this pa-
per, a detailed implementation of RRA is introduced, and
the validity and efficiency of the implementation are inves-
tigated by trial experiments.

RRA consists of three stages: rough search, focusing
search and relay. Rough search, focusing search, and relay
are executed in turn and are repeated in the predetermined
number.

Rough search is designed to get over small hills on the
solution space and to approach a local optimal solution as
fast as possible. Focusing search is designed to reach the
local optimal solution as close as possible. During rough
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search and focusing search, a solution is iteratively modi-
fied whenever it is improved, and no degradation is allowed.
A local optimal solution is obtained efficiently by a series of
rough search and focusing search. Relay is one-time mod-
ification which is designed to escape from a local optimal
solution. Even if a generated solution is worse than the cur-
rent solution, it is always accepted. Relay is controlled by a
global parameter to keep the search continuity. A generated
solution is expected to be far enough from the current local
optimal solution to escape from it and near enough to reach
another local optimal solution.

To confirm the efficiency of RRA empirically, the
placement optimization problem with multiple objectives is
solved by RRA as a typical application. Nowadays, multi-
objective problems have become common in practice. The
optimization with conflicting objectives is facing big chal-
lenges to get good solution with short runtime. Pareto im-
provement of one objective with no degradation of another
objective is one of the biggest challenges. It is important
and urgent to explore more effective heuristic algorithms for
multi-objective optimization. By using RRA, the Pareto im-
provement of placement with conflicting objectives is ob-
tained. For area minimization, the runtime is reduced con-
siderably for all tested benchmarks with better solution. For
interconnect optimization, we gets low-power design with
no degradation of delay in the best cases and in the worst
cases.

2. Preliminary

The adjacency between solutions is defined by moving
methods that modify a solution to another solution. A lo-
cal optimal solution is a solution whose cost is not worse
than any adjacent solutions. Whether a solution is a local
optimal solution or not depends on the adjacency defined by
moving methods. That is, a local optimal solution defined in
terms of a set of moving methods is not necessarily a local
optimal solution defined in terms of another set of moving
methods.

Let Λ be the set of solutions. Let C(S ) be the cost of
solution S in Λ. A moving method modifies a solution to
another solution. The solution obtained from solution S by
moving method M is denoted by M(S ). The composition
of moving methods ϕ = M|ϕ|(. . . M2(M1). . . ) is said to be a
series of modifications from one solution S i to another so-
lution S j. Let S j = ϕ(S i) = M|ϕ| (. . . M2(M1(S i)). . . ) denote
the solution obtained from a solution S i to S j by ϕ. The
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length of ϕ which is the number of moving methods in ϕ is
denoted by |ϕ|.

Let B be the set of moving methods which is used to
define a solution space. A moving method in B is said to
be basic hereinafter. In this paper, a local optimal solution
defined in terms of B is simply referred by local optimal
solution in the following unless otherwise specified. A se-
quence of moving methods is said to be basic if it consists
of basic moving methods. In this paper, the distance be-
tween solutions in solution space is defined by using basic
sequences. The distance dist(S i, S j) from S i to S j is de-
fined as the minimum length of basic sequences from S i to
S j. That is, dist(S i, S j) = min{ |ϕ||ϕ in P(S i, S j)} where
P(S i, S j) is the set of basic sequences from solution S i to
solution S j.

In most of search algorithms proposed so far, it is natu-
ral to consider that B consists of all moving method used in
each search algorithm. There is no restriction on a moving
method in B, but it is often assumed that a moving method
M in B modifies a solution S slightly, and the difference be-
tween C(S ) and C(M(S )) is small. Moving methods used in
SA are usually expected to satisfy this property.

3. Existing Search Algorithms

In typical search algorithms, an adjacent solution is ran-
domly generated by a moving method. If the adjacent so-
lution satisfies some condition, then the current solution is
replaced with it. Otherwise, it is rejected, and the current
solution is kept. In order to get a better solution efficiently,
various ideas have been introduced.

A search algorithm with iterative improvement rejects
an adjacent solution if it is worse than the current solution. It
finishes when it regards the current solution as a local opti-
mal solution. The final solution obtained by such algorithm
is often far worse than a global optimal solution. When local
optimum solutions are repeatedly obtained by iterative im-
provements from randomly generated initial solutions, the
probability of finding a better solution becomes larger when
the number of initial solutions is larger until a global opti-
mum solution is found. However, an obtained local optimal
solution is still independent of others. The efficiency is not
good enough since the search history is not utilized.

Simulated annealing (SA) [6]–[9] accepts a non-
improved adjacent solution with some probability according
to temperature scheduling to escape from a local optimal so-
lution. In order to obtain a better solution by SA, a solution
space that satisfies the following properties is usually de-
sired to be constructed. 1) The solution space is connected.
This guarantees the existence of a search path from any ini-
tial solution to an optimal solution by a finite number of
iterations. 2) The diameter of the solution space is small.
This gives a chance to reach an optimal solution by a small
number of iterations in best cases. 3) The difference of costs
between adjacent solutions is small. This improves the sta-
bility and convergence of a search algorithm.

If the number of adjacent solutions in a solution space

used in SA is large, then the connectivity and small diameter
would be realized, and the number of local optimal solutions
tends to be small. However, in the case of large number of
adjacent solutions, the difference of costs between adjacent
solutions tends to be large and the ratio of better solutions
among adjacent solutions tends to be small. The probability
that a generated adjacent solution is accepted becomes quite
low. A set of moving methods in SA is designed so that the
number of adjacent solutions is not so large and so that the
difference of costs between adjacent solutions is not large.
In general, a moving method that may cause a drastic change
of solution is not used. This feature limits the efficiency in a
global search of SA. Also, the number of required iterations
including rejection from a local optimal solution to another
local optimal solution tends to be large. Even if a solution
space is explored globally in earlier stage of SA, similar lo-
cal optimal solutions are not efficiently explored.

In order to improve the search ability of SA by using
diverse moving methods with big changes, adaptive simu-
lated annealing (ASA) was introduced in [6]. In ASA, a
guide that changes the selection probability of each mov-
ing method adaptively is introduced. The selection proba-
bility of a moving method is increased by the guide when
the frequency and amplitude of improvement achieved by
the moving method in recent trials is high. The moving
methods with big changes including group rotation, group
exchange and a special crossover between the current solu-
tion and the best solution found so far are used in [6]. These
moving methods are mainly selected in earlier stage of ASA
and search efficiency is improved. However, it is still not
efficient because the similar local optimal solutions are not
explored in later stage of ASA.

Genetic algorithm (GA) [10] is a directed random
search algorithm which is based on the evolution of a pop-
ulation of many individuals. As a population-based algo-
rithm, GA requires a group of initial solutions to form a
population. The crossover operator of GA is used to create
new individuals as children from two existing individuals as
parents. Since it is based on crossover of two different solu-
tions in global scope even if mutation improves local search
ability, the local search ability of GA is limited.

Variable neighborhood search (VNS) [11] utilizes
search history in series of local searches. In VNS, the next
local search starts from a k-th neighborhood of the local op-
timal solution obtained by the previous local search. Since
k is gradually increased from 1, it is not efficient to get over
small hills on the solution space.

Although various ideas have been used to improve the
search efficiency as we discussed here, the efficiency of ex-
isting search algorithms is still limited. It is expected that
a better local optimal solution exists near an obtained local
optimal solution. A local optimal solution which is similar
to an obtained local optimal solution is not effectively ex-
plored by existing algorithms.
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4. Relay Race Algorithm

4.1 Overview

Relay race algorithm (RRA) is designed to approach a
global optimal solution by exploring similar local optimal
solutions more efficiently. Each runner is assigned to find
one local optimal solution. A team is made up of a predeter-
mined number of runners.

RRA consists of three stages: rough search, focusing
search and relay. The detailed flow of RRA is as follows.

RRA starts with rough search, which is designed to ap-
proach one of local optimal solutions as fast as possible by
using moving methods with big changes. A solution gener-
ated by a moving method is accepted if it is better than the
current solution, and rejected otherwise. It finishes when
the number of rejected trials reaches a predetermined num-
ber (Nr).

After rough search, focusing search is used to reach a
local optimal solution as close as possible by using mov-
ing methods with small changes. A solution generated by a
moving method is also accepted if it is better than the current
solution, and rejected otherwise. It finishes if no solution is
accepted during consecutive trials of length predetermined
number (Nf ).

After focusing search, a moving method with big
changes, named relay, is used to escape from the current
local optimal solution if the number of relays so far is less
than the predetermined number (Nt). A solution generated
by relay is always accepted. The relay is designed to im-
prove global search ability while keeping search continuity.

After relay, RRA returns to rough and focusing
searches again. The output of RRA is the best of all searched
solutions.

In RRA, three types of moving methods, named focus-
ing, rough and relay, are defined. Let Φ f , Φr and Φe be
the set of focusing moving methods, rough moving methods
and relay, respectively. Φ f , Φr and Φe are used in focusing
search, rough search and relay, respectively.

In RRA, Φ f is supposed to consist of moving meth-
ods with small changes. While, Φr and Φe are supposed to
consist of moving methods with big changes, respectively.
Also, a moving method in Φ f is regarded as a basic moving
method. That is, dist(S ,M(S )) = 1 for any M in Φ f , while
dist(S ,M(S )) is large in general for any M in Φr and Φe

where S is a solution in Λ.
In Fig. 1, the behavior of RRA in solution space is il-

lustrated. A solution is always improved in rough search and
focusing search, while relay degrades a solution in general.
The differences between rough search and focusing search
are in moving methods and in terminal condition. The pur-
pose of relay is to escape from a local optimal solution and
to approach the next local optimal solution. In the following,
the detail of each stage is explained.

Fig. 1 Rough search, focusing search and relay.

4.2 Rough Search

For a given solution, rough search modifies the current so-
lution iteratively by using rough moving methods Φr in the
manner of greedy improvement. A candidate of the next so-
lution is generated by a rough moving method from the cur-
rent solution. If the cost of candidate is smaller than that of
the current solution, the candidate becomes the current so-
lution. Otherwise, the candidate is rejected and the current
solution is kept. The terminal condition of rough search is
that the number of rejected trials reaches the predetermined
number Nr.

The parameter Nr is used to control the maximum
scope of a single runner. In rough search, the goal is not a
local optimal solution defined in terms of Φr, but a solution
which is near to a local optimal solution defined in terms
of B = Φ f . Rough search cannot get over any hills of the
solution space defined in terms of Φr, but gets over small
hills of the solution space defined in terms of B. A better
solution would be obtained as trials are repeated. However
it is expected that if the number of trials increases, then the
probability of acceptance becomes quite low, and the effi-
ciency of search degrades. Also, search continuity would
be lost since the goal could be far from the given initial so-
lution. Therefore, the number of rejected solution is limited
by Nr to limit the search scope of a runner, but the number of
accepted solution is not limited to approach a local optimal
solution enough.

4.3 Focusing Search

For a given solution, focusing search modifies the current
solution iteratively by using focusing moving methods Φ f

in the manner of greedy improvement. A candidate is gen-
erated by focusing moving method from the current solu-
tion. If the cost of candidate is smaller than that of the cur-
rent solution, the candidate becomes the current solution.
Otherwise, the candidate is rejected and the current solu-
tion is kept. Focusing search terminates if no candidate is
accepted during consecutive trails of length predetermined
number Nf .

The purpose of focusing search is to get a local optimal
solution. However it is not easy to confirm that the cur-
rent solution is a local optimal solution even if the number
of adjacent solutions defined in terms of Φ f is far smaller
than that defined in terms of Φr. In order to keep the search
efficiency, a current solution is regarded as a local optimal
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solution if no solution is accepted in consecutive Nf trials.

4.4 Relay

A solution generated by relay consists of two parts. One
part is from a given solution and another part is randomly
generated, though the latter is also allowed to be given by
priori knowledge. The parameter Re is used to defined the
percentage of the randomly generated part of the solution.
The part of randomly generated part is selected randomly.

The purpose of relay is to generate a solution which is
far enough from a current solution to escape from a local
optimum solution, and near enough to reach another local
optimal solution.

5. Application

To confirm the computational performance of RRA, 2D rect-
angular placement problem in physical design is used.

5.1 Placement Problem

The placement is a typical NP-hard problem with conflicting
objectives. 2D rectangular placement is to position modules
or blocks into a fixed rectangular shape with interconnect
optimization and area minimization. Placement problem is
regarded as packing problem with interconnect optimiza-
tion.

Let M = {m1, m2, . . . ,mn} denote the modules or blocks
to be placed where n is the number of modules. Each mi,
where 1 ≤ i ≤ n, has height hi and width wi. Let (xi, yi, ri)
of module mi be the location and rotation on 2D orthogonal
coordinate system where (xi, yi) represents the coordinates
of the lower-left corner of module mi, and ri represents the
rotation of mi on xy-plane. ri = 1 is the normal state of a
module with vertical height and horizontal width, while ri

= 0 is rotated by 90 degree. See Fig. 2. The packing area
is defined by the minimum bounding rectangle including all
modules.

For the interconnect of placement, let N = {n1, n2, . . . ,
nl} be the set of nets between modules where l is the number
of nets. A net is a connection requirement between two or
more modules and to be connected by wires. Let Leni denote
the estimated wire length of each net ni, 1 ≤ i ≤ l. Let Pi

denote the estimated dynamic power, i.e. the interconnect

Fig. 2 Formulation of rectangular placement problem.

power of net ni.
In short, the input is the set of modules M =

{m1,m2, . . . ,mn} with height and width {(h1, w1), (h2,
w2), . . . , (hn, wn)} and the net list N = {n1, n2, . . . , nl}. The
constraint is no overlap between mi and mj, where i � j.
The output is a set of location and rotation of modules
{(x1, y1, r1), (x2, y2, r2), . . . , (xn, yn, rn)} such that:

1. Minimize the power consumption
∑

1≤i≤l P j.
2. Minimize the maximal delay Max

1≤i≤l
[Leni].

3. Minimize the bounding area.

5.2 Problem Representation

To search near-optimal solutions of 2D placement effi-
ciently, many researches explored representations for 2D
placement, such as sequence pair (SP) [12], BSG [13],
O-tree [14], B*-tree [15], CBL [16], FAST-SP [17], Q-
sequence [18], Selected SP [19] etc. In this paper, a typi-
cal representation, called sequence pair (SP) [12], is used to
represent 2D placement.

In SP, a pair of sequences (Γ+, Γ−) of modules repre-
sents the vertical and horizontal relations between modules.
Let Γi = (Γi[0], Γi[1], . . . , Γi[n−1]) be one of two sequences
where i is + or −. Let Fi(m) be the order of module m in se-
quence Γi. 2D topology is regarded as a set of the relations
of relative location between modules, i.e. “Above, Below,
Left and Right (ABLR)” relations.

Let (mi A mj), (mi B mj), (mi L mj), and (mi R mj)
denote the relation that “mi is above mj,” “mi is below mj,”
“mi is left of mj,” and “mi is right of mj,” respectively. SP
defines (mi L mj) and (mj R mi) when

F+(mi) < F+(mj) and F−(mi) < F−(mj).

It defines (mi A mj) and (mj B mi) when

F+(mi) < F+(mj) and F−(mi) > F−(mj).

For a given packing with n modules, the size of solu-
tion space by SP is (n!)2 if the rotation of the modules is
fixed. If the rotation of the modules is not fixed, then the
size of solution space is (n!)22n. Normally SP is decoded
in time complexity O(n2). The decoding time is improved
to O(n log n), further to O(n log log n) using FAST-SP [17],
and even to O(n) using Selected SP [19].

5.3 Moving Methods

To solve placement problem by RRA, three focusing mov-
ing methods, called rotation, exchange and insertion, are
used. Firstly, the rotation changes the orientation of a
module. When a rotation is applied to module mi, the
orientation ri is changed to 1 − ri. Secondly, the ex-
change moving method exchanges the order of two mod-
ules in all sequences, e.g. in sequence pair (Γ+, Γ−),
F+(mi), F−(mi), F+(mj), and F−(mj) are changed to F+(mj),
F−(mj), F+(mi), and F−(mi), respectively. Thirdly, the in-
sertion changes the order of a module in one sequence Γi.
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When a move is applied to module m in Γi, Fi(m) is changed
to another value, say j, and the orders of modules whose or-
der is between Fi(m) and j are shifted accordingly.

To improve the search efficiency of RRA, three rough
moving methods, named as group rotation, group exchange
and group insertion, are used. The group rotation is repeated
rotations of randomly selected modules with a given num-
ber. The group exchange is repeated exchanges of randomly
selected pairs of modules with a given number. The group
insertion is repeated insertions of randomly selected pairs
of modules in a selected sequence with a given number. The
given number is set to be ten in this paper to satisfy that the
roughing moves are much larger than the focusing moves.

For the relay operator used in the placement problem,
a part of layout is randomly generated to escape from the
local optimum and the remaining part is inherited from the
current layout to keep the search continuity. The percentage
of the random part depends on the parameter of relay Re.
The random part of representation is selected from Γ+, Γ−
and rotation. Although Re could be any value between 0 and
1, Re = 1/q is used to implement trial experiments this time,
where q is a positive integer. The selection of the random
part for Γ+, Γ− and rotation is set to be same. For example,
if q = 4 (i.e. Re = 0.25) for Γ+, one of four following parts
Γ+ [0, n/4 − 1], Γ+ [n/4, n/2 − 1], Γ+ [n/2, 3n/4 − 1] and Γ+

[3n/4, n − 1] is randomly selected, where n is the number
of modules. If Γ+ [n/4, n/2 − 1] is selected, then Γ− [n/4,
n/2 − 1] and the rotation of [n/4, n/2 − 1] are also selected.

6. Experiment

6.1 Parameter Setting

For the parameter setting of RRA, the best empirical values
of parameters Nf , Nr, and Re are investigated by trial ex-
periments of placement using ami49 benchmark. Although
the empirical values of parameters are not necessarily valid
for different problems with different sizes or different objec-
tives, the method below to get the values is still applicable.

In order to get the best value of Nf , the trial experi-
ments of focusing search stage is executed without rough
search and relay. All initial solutions are randomly gener-
ated. As shown in Table 1, the number of trails in focusing
search stage increases as Nf increases. The cost of place-
ment obtained by focusing search stage is decreasing con-
tinuously when Nf increases from 0 to 1000. However, the
cost is almost same when Nf is larger than 1000. This shows
that a local optimal solution is obtained when Nf is set larger
than 1000. So we set Nf = 1000 for ami49 benchmark.

To get the best value of Nr, the trial experiments of
rough search stage is executed without relay, but focusing
search stage where Nf = 1000 follows. The same initial so-
lution randomly generated is used. As shown in Table 2, the
cost of solution at the end of rough search stage decreases
as Nr increases, but the cost of a solution at the end of fo-
cusing search stage is almost same for all cases. Also, as
Nr increases, the number of trials in focusing search stage

Table 1 Trial experiments for N f .

Table 2 Trial experiments for Nr (N f = 1000).

decreases. This shows the usefulness of rough search stage
in order to approach local optimal solution as fast as pos-
sible. However, the number of trials in rough search stage
increases. The total number of trials is decreasing when Nr

increases from 0 to 100. When Nr is larger than 100, the
total number of trials starts to increase. So we set Nr = 100
for ami49 benchmark.

To get the best value of Re, the trial experiments of
RRA with Nf = 1000, Nr = 100, and Nt = 10 are executed.
All initial solutions are randomly generated.

In Table 3, the results of Re = 1.00 are shown. Each
row corresponds to a runner in RRA. A solution generated
by relay is random, and no search history is utilized. The
number of trials and the cost of a solution at each stage vary
among runners, but the deviation is not so large.

In Table 4, Table 5 and Table 6, the results of Re =

0.20, 0.10 and 0.05 are shown, respectively. Each row cor-
responds to a runner in RRA. A solution generated by relay
is generated by the solution obtained by the previous runner.
In each relay, each sequence of SP of the previous runner is
divided into 5, 10, and 20 parts, respectively, and one part
is randomly selected for random part. As relay is repeated,
the number of trials, the start cost, and the end cost of each
runner decrease. This shows that the RRA explores near lo-
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Table 3 Trial experiments when Re = 1.00 (Nr = 100, N f = 1000, Nt =

10).

Table 4 Trial experiments when Re = 0.20 (Nr = 100, N f = 1000, Nt =

10).

cal optimal solutions efficiently by utilizing search history.
Several trial experiments were executed by changing Re, and
we select Re = 0.10 for ami49 benchmark that achieves the
best final cost by 10 runners.

6.2 Cost Function and Comparison

The placement problem includes three objectives, including
area, power and delay. Since the power and the delay are
conflicting, we have to get Pareto improvement of multi-
objective optimization. Let us define the total cost function
as following equation.

Ct = α · Cp + β · Cd + γ ·Ca

Where α, β and γ are user-defined coefficients that satisfy
α + β + γ = 1. The total cost function (Ct) is made up of
the cost of power (Cp), the cost of delay (Cd) and the cost of
area (Ca).

For power estimation, the dynamic power of a net ni

Table 5 Trial experiments when Re = 0.10 (Nr = 100, N f = 1000, Nt =

10).

Table 6 Trial experiments when Re = 0.05 (Nr = 100, N f = 1000, Nt =

10).

is proportional to C(ni), Vdd(ni)2, f (ni) and S (ni), where
C(ni) is the capacitance of the net ni, Vdd(ni) is the voltage
of power supply, f (ni) is the clock frequency, and S (ni) is
switching probability of the net. The relative value, which
is the power divided by the limit of lowest power, is used
as the value of Cp because the relative values are scalable.
The C(ni) is proportional to the length of net, and we use
Leni to represent its value. We assume that Vdd(ni) and f (ni)
are same for each net and S (ni) is randomly defined be-
tween 0 and 1 in case of no specific information. The power
is simplified as the function of Leni and S (ni). The wire
length estimation (Leni) of each net (ni) is gotten by the half
perimeter wire length (HPWL) which is defined by the half
length of the perimeter of the smallest bounding box among
all modules that the given net connects.

For delay estimation, the maximal delay among all nets
is used. The relative value, which is the maximal delay
divided by the limit of the shortest wire length estimation
(Leni) of nets, is used as the value of Cd. The area estima-
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Fig. 3 Representation of rectangular placement problem.

tion is given by the minimum bounding rectangle including
all modules. The relative value, which is the bounding area
divided by the area of total modules, is used as the value of
Ca.

For a fair comparison, all algorithms are implemented
in Python environment on 2.16 GHz PC with 3.00 GB mem-
ory. With regard to ami49 X and MCNC benchmarks, a set
of experiments was implemented. The ami49 X is generated
by duplicating ami49 with X times. It has the scalable num-
ber of blocks (49*X) and nets (408*X). To compare with
the published results fairly, MCNC benchmarks are used for
area minimization. The parameters of RRA used in this ex-
periments are Re = 0.1, Nf = 1000, Nr = 100. Nt is set
to 1000/X for ami49 X, and is set to 10 for MCNC bench-
marks. The parameters of SA are set as follows. The starting
temperature T0 = 10000, the ending temperature Te = 1. The
number of trials p in each temperature and the temperature
coefficient a are set to p = 1000/X and a = 0.98 for ami49 X,
and p = 500 and a = 0.99 for MCNC benchmarks. Results
are normalized by using a lower bound of the cost function.

In the case of interconnect optimization, γ is set to 0
and α + β is set to 1. We are using ami49 4 benchmark
for comparison this time. To get the Pareto frontiers of two
conflicting objectives, α is randomly set from 0.1 to 0.9,
and 240 solutions are picked up for comparison. The re-
sult of SA and the result of RRA are shown in Fig. 4 and
Fig. 5, respectively. In this experiment, the time limit is set
to 30 minutes, and the runtime of RRA is less than or equal
to the runtime of SA. We get more than 30% improvement
of interconnect power consumption with no degradation of
performance. It obtains overall Pareto improvement. The
“overall” means that Pareto improvement is achieved in all
tested range of objectives, such as power consumptions from
100% to 350%, by multiple runs of RRA with various dif-
ferent choices of weighting coefficients.

In Fig. 6 and Fig. 7, comparisons of best-case and worst
case of SA and RRA are shown, respectively. As shown in
Fig. 6, RRA obtains at least 29% Pareto improvement with
the constraint of less than 107.5% maximal delay. To check
the worst cases more precisely, 120 solutions are further ob-
tained by setting α to 0.1, 0.3, 0.5, 0.7, and 0.9. As a result,
we confirm that RRA got near 24% worst-case mitigation
on average for power consumption with no degradation of
maximal delay as shown in Fig. 7. Similar results are gotten
for all tested ami49 X, where X is from 1 to 12.

Fig. 4 The best and worst cases of experimental data using SA.

Fig. 5 The best and worst cases of experimental data using RRA.

Fig. 6 Best-case improvement from SA to RRA.

Fig. 7 Worst-case improvement from SA to RRA.

In case of area optimization, γ is set to 1 and α+β is set
to 0. As shown in Table 7, the best, average and worst cases
among 50 trials are gotten within 12 minutes. As shown in
Table 8, the specific improvement of RRA is from 0.19% to
2.70%. RRA reduced at least 40% runtime with better so-
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Table 7 Area minimization using SA and RRA (within 12 min).

Table 8 Average area improvement from SA to RRA.

Table 9 Comparison between RRA and the latest ASA [6].

lution by comparison to SA with same representation. As
shown in Table 9, the comparison between RRA and the lat-
est proposed ASA [6] shows the considerable improvement
of both solution and runtime.

In this paper, the single-objective function problem is
solved multiple times independently with fixed values of co-
efficients to obtain the Pareto frontiers of conflicting objec-
tives. Based on the experimental data, the proposed RRA
is more efficient to get Pareto optimal solutions comparing
with SA under the same conditions. However, the local op-
timal solutions obtained by iterative improvements might be
improved when coefficients are dynamically changed during
search as mentioned in [7]. Changing the coefficient during
search in RRA to improve the search efficiency is one of our
future works.

7. Conclusion

In this paper, relay-race algorithm (RRA) is investigated. In
RRA, rough search is designed to approach a local optimum
solution as fast as possible and focusing search is designed
to approach the local optimum solution as close as possible.
Relay escapes from a local optimal solution efficiently while
keeping search continuities. The efficiency of RRA is con-
firmed by applying it to placement problem in physical de-
sign optimization problems. Based on the experimental data
using MCNC and ami49 X benchmarks, the big improve-
ment of area, power and delay is achieved by using RRA.
The overall Pareto improvement between power and maxi-
mal delay is obtained. In the worst cases, the big average
improvement of power is obtained without any degradation
of maximal delay. With regard to its impact, the proposed
RRA has potential to improve more NP-hard problems.
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