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Skew cyclic codes over Fq + vFq + v2Fq
∗
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Abstract: In this article, we study skew cyclic codes over ring R = Fq + vFq + v2Fq,

where q = pm, p is an odd prime and v3 = v. We describe generator polynomials of skew

cyclic codes over this ring and investigate the structural properties of skew cyclic codes over

R by a decomposition theorem. We also describe the generator polynomials of the duals of

skew cyclic codes. Moreover, the idempotent generators of skew cyclic codes over Fq and R

are considered.
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1 Introduction

Codes over finite rings have been studied since the early 1970s, because of their rich

structure, linear codes are the most frequent in coding theory. While different approaches

have been applied to produce certain types of codes with good parameters and properties.

In [8], Hammons et al. showed that some important binary nonlinear codes can be obtained

from cyclic codes over Z4 through the Gray map. Recently, in [2], D. Boucher et al. intro-

duced the class of θ-cyclic (skew cyclic) codes that generalizes the concept of cyclic codes

over non-commutative polynomial rings, called a skew polynomial ring, to construct these

types of codes.

In[2], D. Boucher et al. gave skew cyclic codes defined by using the skew polynomial ring
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with an automorphism θ over the finite field with q elements. The polynomial ring is denoted

by Fq[x, θ], where the addition is the usual polynomial addition and the multiplication is

defined by the rule xa = θ(a)x, (a ∈ Fq) in [9] which means the finite field elements are not

commutative with the indeterminate x. In [3], D. Boucher and F. Ulmer showed that the

dual of a θ-cyclic code is still a θ-cyclic code. I. Siap et al. [10] gave the structure of skew

cyclic codes of arbitrary length. J. Gao in [6] studied skew cyclic codes over Fp+vFp. In [7],

F. Gursoy et al. presented the construction of skew cyclic codes over Fq + vFq for different

automorphisms. Moreover, T. Abualrub et al. [1] and D. Boucher et al. [4] studied skew

quasi-cyclic codes and skew constacyclic codes, respectively.

In this paper, we study skew cyclic codes defined by the skew polynomial ring with

coefficients over ring R = Fq + vFq + v2Fq, where q = pm, p is an odd prime and v3 = v. In

our work, we consider the automorphisms

θi : Fq + vFq + v2Fq → Fq + vFq + v2Fq

a+ bv + cv2 7→ ap
i

+ vbp
i

+ v2cp
i

.

Denote the skew polynomial ring as R[x, θi], where the addition is the usual polynomial

addition and the multiplication is defined by the rule xa = θi(a)x, (a ∈ R).

The rest of the paper is organized as follows: Section 2 gives a Gray map from R to

F
3
q. In Section 3, we mainly describe the basic properties of linear codes over R and their

structures. In Section 4, we describe the generator polynomials of skew cyclic codes and

the duals of skew cyclic codes. We prove that every skew cyclic code over R is principally

generated and give the idempotent generators of Fq and Fq + vFq + v2Fq.

2 Preliminary

Let R = Fq + vFq + v2Fq, where q = pm, p is an odd prime and v3 = v. Clearly,

R ∼= Fq[v]/(v
3 − v). R is a commutative ring with identity and characteristic p. For any

element r of R , r can be expressed uniquely as r = a + bv + cv2, where a, b, c ∈ Fq. It is

easily checked that R is a Frobenius ring but not local. R is also principal and has three

maximal ideals 〈v〉, 〈v − 1〉 and 〈v + 1〉.

From [5], we have the following definition.

Definition 2.1 The definition of the Gray map on Rn as follows

Φ : Rn → F
3n
q

(r0, r1, . . . , rn−1) → (a0, a0+b0+c0, a0−b0+c0, . . . , an−1, an−1+bn−1+cn−1, an−1−bn−1+cn−1),

where ri = ai + biv + civ
2, i = 0, 1, . . . , n − 1.
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Definition 2.2 Let r = a + bv + cv2 be an element of R, then the Lee weight of r is

defined as

ωL(r) = ωH(a, a+ b+ c, a− b+ c),

where the symbol ωH(v) denotes the Hamming weight of v over Fq.

3 Linear codes over R

In this section, we generalize the structure and properties from [5] to codes over R.

Hence the proofs of many of the theorems will be omitted.

Lemma 3.1 ([5, Lemma 1]) The Gray map Φ is a distance-preserving map from

(Rn, Lee distance) to (F3n
q , Hamming distance) and it is also Fq-linear.

According to the definition of the Gray map Φ and Lemma 3.1, we have the following

lemma.

Lemma 3.2 Let C be a linear code of length n over R with rank k and minimum Lee

distance d, then Φ(C) is a [3n, k, d] linear code over Fq.

Proof From Lemma 3.1, we see that Φ(C) is a Fq-linear code. From the definition of

the Gray map. We can easily obtain that Φ(C) has dimension k and length 3n since Φ is a

bijective map from Rn to F
3n
q . Moreover, since Gray map Φ is a distance-preserving map,

so Φ(C) has the same minimum distance d.

Let C be a linear code over R. The dual of C consists of all vectors of Rn which are

orthogonal to every codeword in C. A code C is said to be self-dual (resp. self-orthogonal)

if C = C⊥ (resp. C ⊆ C⊥). Now, in light of Ref.[5], we give the following theorem.

Theorem 3.1 ([5, Theorem 1]) Let C be a linear code over R, then Φ(C)⊥ = Φ(C⊥).

Moreover, if C is self-dual, so is Φ(C) over Fq.

By the Chinese Remainder Theorem, we have

R = (1− v2)R⊕ (2−1v + 2−1v2)R ⊕ (−2−1v + 2−1v2)R

= (1− v2)Fq ⊕ (2−1v + 2−1v2)Fq ⊕ (−2−1v + 2−1v2)Fq.

For the sake of convenience, we denote by η1, η2, η3 respectively the following elements

of R.

η1 = 1− v2, η2 = 2−1v + 2−1v2, η3 = −2−1v + 2−1v2.

Note that η1, η2, and η3 are mutually orthogonal idempotents over R and η1 + η2 + η3 = 1.
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Let C be a linear code of length n over R. Define

C1 = {x ∈ F
n
q |∃y, z ∈ F

n
q , η1x+ η2y + η3z ∈ C},

C2 = {y ∈ F
n
q |∃x, z ∈ F

n
q , η1x+ η2y + η3z ∈ C},

C3 = {z ∈ F
n
q |∃x, y ∈ F

n
q , η1x+ η2y + η3z ∈ C}.

Then C1, C2, C3 are all linear codes of length n over Fq. Moreover, the code C of length n

over R can be uniquely expressed as

C = η1C1 ⊕ η2C2 ⊕ η3C3.

Let G1, G2 and G3 be the generator matrices of C1, C2 and C3, respectively, then

G =




η1G1

η2G2

η3G3




is the generator matrix of C.

According to Definition 2.1, we can easily obtain the following proposition.

Proposition 3.1 If C is a linear code of length n over R with generator matrice G,

then we have

Φ(G) =




Φ(η1G1)

Φ(η2G2)

Φ(η3G3)


 =




G1 0 0

0 G2 0

0 0 G3


 .

Moreover, dH(Φ(C)) = min{dH(C1), dH(C2), dH(C3)}.

Theorem 3.2 ([5, Theorem 3]) Let C be a linear code of length n over R, then

C⊥ = η1C
⊥

1 ⊕ η2C
⊥

2 ⊕ η3C
⊥

3 .

Moreover, C is self-dual if and only if C1, C2 and C3 are all self-dual over Fq.

4 Skew cyclic codes over R

In this section, we mainly study skew cyclic codes over R with automorphism θi and

give the generator polynomials of skew cyclic codes and their dual codes. Let us denote the

order of θi, which is ti =
m
i
for some positive integer. In the commutative case if (n, q) = 1,

then every cyclic code of length n over Fq has a unique idempotent generator. Note that in

the skew polynomial ring Fq[x, θi], if (n, ti) = 1, then the factorization of xn − 1 in Fq[x, θi]

is unique (see [7]). In this part, we also show that a formula for the number of skew cyclic

codes of length n over R when (n, ti) = 1.
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We first give the concept of skew cyclic codes over R.

Definition 4.1 Let R be a ring and θi be an automorphism of R. A linear code C of

length n over R is a skew cyclic code with the property that

c = (c0, c1, . . . , cn−1) ∈ C ⇒ σ(c) = (θi(cn−1), θi(c0), . . . , θi(cn−2)) ∈ C,

where σ(c) is a skew cyclic shift of c.

In polynomial representation, the codewords (c0, c1, . . . , cn−1) of a skew cyclic code are

coefficient tuples of elements cn−1x
n−1 + . . . + c1x + c0 ∈ R[x, θi]/(x

n − 1) which are left

multiple of one element G ∈ R[x, θi]/(x
n − 1)(the generator polynomial). The multipli-

cation is defined by the basic rule (axi)(bxj) = aθi(b)xi+j , but this multiplication is not

commutative.

Lemma 4.1 ([10]) A linear code of length n over Fq is a skew cyclic code if and only

if it is a left Fq[x, θ]-submodule of Fq[x, θ]/(x
n − 1). Moreover, if C is a left submodule of

Fq[x, θ]/(x
n − 1), then C is generated by a monic polynomial g(x) which is a right divisor

of xn − 1 in Fq[x, θ].

Theorem 4.1 Let C be a linear code over R of length n and C = η1C1 ⊕ η2C2 ⊕ η3C3,

where C1, C2 and C3 are codes over Fq of length n, then C is a skew cyclic code with

respect to the automorphism θi if and only if C1, C2 and C3 are skew cyclic codes over Fq

with respect to the automorphism θi.

Proof Let (a0, a1, . . . , an−1) ∈ C1, (b0, b1, . . . , bn−1) ∈ C2 and (c0, c1, . . . , cn−1) ∈ C3.

Assume that ri = η1ai+η2bi+η3ci for i = 0, 1, . . . , n−1, then the vector (r0, r1, . . . , rn−1) ∈

C. If C is a skew cyclic code then (θi(rn−1), θi(r0), . . . , θi(rn−2)) ∈ C, note that σ(r) =

(θi(rn−1), θi(r0), . . . , θi(rn−2)) = η1(a
pi

n−1, a
pi

0 , . . . , ap
i

n−2)+η2(b
pi

n−1, b
pi

0 , . . . , bp
i

n−2)+η3(c
pi

n−1, c
pi

0 ,

. . . , cp
i

n−2). Hence, (θi(an−1), θi(a0), . . . , θi(an−2)) = (ap
i

n−1, a
pi

0 , . . . , ap
i

n−2) ∈ C1, (θi(bn−1),

θi(b0), . . . , θi(bn−2)) ∈ C2, (θi(cn−1), θi(c0), . . . , θi(cn−2)) ∈ C3, which implies that C1, C2, C3

are skew cyclic codes over Fq.

On the other hand, suppose that C1, C2 and C3 are all skew cyclic codes over Fq and

(r0, r1, . . . , rn−1)

∈ C, where ri = η1ai + η2bi + η3ci for i = 0, 1, . . . , n − 1, then (a0, a1, . . . , an−1) ∈

C1, (b0, b1, . . . , bn−1) ∈ C2 and (c0, c1, . . . , cn−1) ∈ C3. Note that σ(r) = (θi(rn−1), θi(r0), . . . ,

θi(rn−2)) = η1(a
pi

n−1, a
pi

0 , . . . , ap
i

n−2) + η2(b
pi

n−1, b
pi

0 , . . . , bp
i

n−2) + η3(c
pi

n−1, c
pi

0 , . . . , cp
i

n−2) =

η1(θi(an−1), θi(a0), . . . , θi(an−2))+η2(θi(bn−1), θi(b0), . . . , θi(bn−2))+η3(θi(cn−1), θi(c0), . . . ,

θi(cn−2)) ∈ η1C1 ⊕ η2C2 ⊕ η3C3 = C, so C is a skew cyclic code over R.

From Theorem 4.1, we can easily prove the following corollary.

Corollary 4.1 If C be a skew cyclic code over R, then the dual code C⊥ is also skew

cyclic.
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Proof By Theorem 3.2, we have C⊥ = η1C
⊥
1 ⊕η2C

⊥
2 ⊕η3C

⊥
3 . According to [3, Corollary

18], we know that the dual code of every skew cyclic code over Fq is also skew cyclic. Hence

the dual code C⊥ is a skew cyclic code from Theorem 4.1.

Definition 4.2 Let C be a linear code of length n over Fq and c = (c0, c1, . . . , cn−1) =

(c1|c2| . . . |cl) be a codeword in C divided into l equal parts of length m where n = ml. If

ϕl = (σ(c1)|σ(c2)| . . . |σ(cl)) ∈ C , where ϕ is the usual cyclic shift of C, then the linear code

C which is permutation equivalent to C is called a skew quasi-cyclic code of index l.

The next corollary follows from the definition of quasi-cyclic codes.

Corollary 4.2 If C is a skew cyclic code of length n over R, then Φ(C) is a skew 3-quasi

cyclic code of length 3n over Fq.

Proof The result follows from the Definition 4.2 and Definition 2.1.

We are now ready to consider the generator polynomial of a skew cyclic code with length

n over R.

Theorem 4.2 Let C = η1C1⊕η2C2⊕η1C3 be a skew cyclic code of length n over R and

assume that g1(x), g2(x) and g3(x) are generator polynomials of C1, C2 and C3, respectively,

then C = 〈η1g1(x), η2g2(x), η3g3(x)〉 and |C| = q3n−
∑

3

i=1
deg(gi(x)).

Proof Since C1 = 〈g1(x)〉, C2 = 〈g2(x)〉, C3 = 〈g3(x)〉, |Ci| = qn−deg(gi(x)), i = 1, 2, 3,

and C = η1C1 ⊕ η2C2 ⊕ η3C3, then

C = {c(x) = η1k1(x)g1(x) + η2k2(x)g2(x) + η3k3(x)g3(x) |

k1(x), k2(x), k3(x) ∈ Fq[x, θi]},

so, C ⊆ 〈η1g1(x), η2g2(x), η3g3(x)〉.

Conversely, let us take η1l1(x)g1(x) + η2l2(x)g2(x) + η3l3(x)g3(x) ∈ 〈η1g1(x), η2g2(x),

η3g3(x)〉, where l1(x), l2(x), l3(x) ∈ R[x, θi]/(x
n − 1), then η1l1(x) = η1k1(x), η2l2(x) =

η2k2(x), η3l3(x) = η1k3(x) for some k1(x), k2(x), k3(x) ∈ Fq[x, θi]. Hence 〈η1g1(x), η2g2(x),

η3g3(x)〉 ⊆ C. Therefore, C = 〈η1g1(x), η2g2(x), η3g3(x)〉. Since |C| = |C1||C2||C3|, then we

have |C| = q3n−
∑

3

i=1
deg(gi(x)).

Theorem 4.3 Let C1, C2 and C3 be skew cyclic codes over Fq and g1, g2, g3 be the monic

generator polynomials of C1, C2 and C3, respectively. Suppose that C = η1C1⊕η2C2⊕η3C3,

then there exists a unique polynomial g(x) ∈ R[x, θi] such that C = 〈g(x)〉 and g(x) is a

right divisor of xn − 1, where g(x) = η1g1(x) + η2g2(x) + η3g3(x).

Proof Let g(x) = η1g1(x)+ η2g2(x)+ η3g3(x), then it is easy to verify that 〈g(x)〉 ⊆ C.

On the other hand η1g1(x) = η1g(x), η2g2(x) = η2g(x), η3g3(x) = η3g(x), which implies that

C ⊆ 〈g(x)〉. Thus C = 〈g(x)〉.

Since g1(x), g2(x), g3(x) are monic right divisors of xn − 1 in Fq[x, θi], then there are

h1(x), h2(x), h3(x) in Fq[x, θi]/(x
n − 1) such that xn − 1 = h1(x)g1(x) = h2(x)g2(x) =
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h3(x)g3(x). Thus

[η1h1(x) + η2h2(x) + η3h3(x)]g(x) = [η1h1(x) + η2h2(x) + η3h3(x)] ·

[η1g1(x) + η2g2(x) + η3g3(x)]

= [η1h1(x)g1(x) + η2h2(x)g2(x) + η3h3(x)g3(x)]

= [η1(x
n − 1) + η2(x

n − 1) + η3(x
n − 1)]

= xn − 1.

Hence g(x) is a right divisor of xn − 1.

The following corollary follows easily.

Corollary 4.3 Every left submodule of R[x, θi]/(x
n − 1) is principally generated.

Let g(x) =
∑r

i=0 gix
i and h(x) =

∑n−r
i=0 hix

i be polynomials in Fq[x, θi] such that xn −

1 = h(x)g(x) and C be the skew cyclic code generated by g(x) in Fq[x, θi]/(x
n − 1). Then

the dual code of C is a skew cyclic code generated by the polynomial h̃(x) = hn−r +

θi(hn−r−1)x+ . . .+ θn−r
i (h0)x

n−r([3] Corollary 18).

Corollary 4.4 Let C1, C2, C3 be skew cyclic codes over Fq and g1, g2, g3 be their gen-

erator polynomials such that xn − 1 = h1g1, x
n − 1 = h2g2, x

n − 1 = h3g3 in Fq[x, θi]. If

C = η1C1 ⊕ η2C2 ⊕ η3C3, then C⊥ = 〈h(x)〉 where h(x) = η1h̃1(x) + η2h̃2(x) + η3h̃3(x) and

|C⊥| = q
∑

3

i=1
deg(gi(x)).

Proof By Theorem 3.2, we have C⊥ = η1C
⊥
1 ⊕η2C

⊥
2 ⊕η3C

⊥
3 . Since C

⊥
1 = 〈h̃1(x)〉, C

⊥
2 =

〈h̃2(x)〉, and C⊥

3 = 〈h̃3(x)〉, we conclude by Theorem 4.3 that C⊥ = 〈h(x)〉.

In the following section, we denote the order of θi is ti =
m
i
for some positive integer

and (n, ti) = 1.

Lemma 4.2 ([7, Lemma 2]) Let g(x) ∈ Fq[x, θi] be a monic right divisor of xn − 1. If

(n, ti) = 1, then g(x) ∈ Fpi [x].

The proof of Theorem 4.4 is similar to that of [7, Theorem 6], so we omit the proof here.

Theorem 4.4 Let g(x) ∈ Fq[x, θi] be a monic right divisor of xn − 1 and C = 〈g(x)〉. If

(n, q) = 1 and (n, ti) = 1, then there exists an idempotent polynomial e(x) ∈ Fq[x, θi]/(x
n−

1) such C = 〈e(x)〉.

From Theorem 4.3 and Theorem 4.4, we have the following corollary.

Corollary 4.5 Let C = η1C1 ⊕ η2C2 ⊕ η3C3 be a skew cyclic code of length n over R

and (n, q) = 1, (n, ti) = 1, then Ci has the idempotent generator ei(x), i = 1, 2, 3. Moreover,

e(x) = η1e1(x)⊕ η2e2(x)⊕ η3e3(x) is an idempotent generator of C, i.e C = 〈e(x)〉.

Gao in [6] showed that a skew cyclic code is equivalent to a cyclic code of length n

over Fp + vFp with some condition, and gave the enumeration of distinct skew cyclic codes

of length n over Fp + vFp. From [6], we also give the number of the skew cyclic code of
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arbitrary length n over R.

Theorem 4.5 Let (n, ti) = 1 and xn − 1 =
∏r

i=1 p
si
i (x) where pi(x) ∈ Fq[x, θi] is

irreducible. Then the number of skew cyclic codes of length n over R is
∏r

i=1(si + 1)3.

Proof By Lemma 4.2, if (n, ti) = 1, then pi(x) ∈ Fq[x]. Hence the number of skew

cyclic codes of length n over Fq is
∏r

i=1(si + 1). By the decomposition theorem, then the

number of skew cyclic codes of length n over R is
∏r

i=1(si + 1)3.

5 Conclusion

In this article, we investigate skew cyclic codes over R = Fq+vFq+v2Fq, where q = pm,

p is a odd prim, and v3 = v. We give the number of skew cyclic codes of length n over Fq

and Fq + vFq + v2Fq under certain conditions. We also describe the generator polynomials

of skew cyclic codes over the field Fq and Fq + vFq + v2Fq and investigate the structural

properties of skew cyclic codes over R by a decomposition theorem and also show their

idempotent generators.
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