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PAPER

Ensemble and Multiple Kernel Regressors: Which Is Better?

Akira TANAKA†a), Member, Hirofumi TAKEBAYASHI†, Ichigaku TAKIGAWA†, Nonmembers, Hideyuki IMAI†,
and Mineichi KUDO†, Members

SUMMARY For the last few decades, learning with multiple kernels,
represented by the ensemble kernel regressor and the multiple kernel re-
gressor, has attracted much attention in the field of kernel-based machine
learning. Although their efficacy was investigated numerically in many
works, their theoretical ground is not investigated sufficiently, since we do
not have a theoretical framework to evaluate them. In this paper, we in-
troduce a unified framework for evaluating kernel regressors with multiple
kernels. On the basis of the framework, we analyze the generalization er-
rors of the ensemble kernel regressor and the multiple kernel regressor, and
give a sufficient condition for the ensemble kernel regressor to outperform
the multiple kernel regressor in terms of the generalization error in noise-
free case. We also show that each kernel regressor can be better than the
other without the sufficient condition by giving examples, which supports
the importance of the sufficient condition.
key words: kernel regression, ensemble kernel regressor, multiple kernel
regressor, generalization error, reproducing kernel Hilbert spaces

1. Introduction

Kernel-based learning machines [1], represented by the sup-
port vector machine [2] and the kernel ridge regressor [3],
are widely recognized as powerful tools for various fields
of information science such as pattern recognition, regres-
sion estimation, and density estimation. In general, an ap-
propriate model selection is required in order to obtain a
desirable learning result by kernel machines. Although the
model selection in a fixed model space (fixed kernel), such
as selection of a regularization parameter, is sufficiently dis-
cussed in terms of both theoretical and practical senses (see
[4], [5] for instance), the selection of a model space, speci-
fied by a kernel and training input vectors, is not sufficiently
discussed in terms of theoretical sense, while practical algo-
rithms for selection of a kernel (or its parameters), such as
cross-validation, are widely used. The difficulty of the the-
oretical analyses on the selection of a kernel (or its param-
eters) is due to the fact that the metrics of two reproducing
kernel Hilbert spaces corresponding to two different kernels
may differ in general, which means that we do not have a
unified framework to evaluate learning results obtained by
different kernels. Recently, a novel framework for evaluat-
ing the generalization errors of model spaces specified by
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different kernels was introduced, in which the so-called in-
variant metric condition was imposed on the corresponding
reproducing kernel Hilbert spaces; and some theoretical re-
sults for the selection of a kernel were obtained on the basis
of the condition [6]–[9].

For the last few decades, learning based on multiple
kernels has attracted much attention in the field of kernel-
based machine learning, which can be regarded as one of
model selection schemes. There exist two representative
learning machines with multiple kernels. One is the en-
semble kernel learning (see [2] for instance) that is a con-
vex combination of kernel-based learning machines; and the
other is the multiple kernel learning (see [10] for instance)
that is a learning machine based on a convex combination of
kernels. Although their efficacy was revealed numerically
in many works, their theoretical grounds were not discussed
sufficiently. Its difficulty is similar to that of the selection
of a kernel mentioned above. In this paper, we introduced
a unified framework for evaluating the generalization errors
of kernel regressors with multiple kernels, and analyzed the
generalization errors of the ensemble kernel regressor and
the multiple kernel regressor. As a result, we obtained a suf-
ficient condition for the ensemble kernel regressor to out-
perform the multiple kernel regressor in terms of the theo-
retical limit of the generalization error, that is, the attainable
minimum generalization error achieved by the orthogonal
projection of the unknown true function onto the solution
subspace in the noise-free case. The sufficient condition is
deeply related to the invariant metric condition given in [6]
and the superiority of the ensemble kernel regressor against
the multiple kernel regressor is deeply related to the relation-
ship between the arithmetic mean and the harmonic mean.
We also showed that each kernel regressor can be better than
the other without the sufficient condition, depending on an
unknown true function, which is the theoretical knowledge
that has not been revealed in the past literatures and supports
the importance of our sufficient condition.

Note that we discussed a similar problem in our pre-
vious work [11] in which the unweighted sum of kernels
and the unweighted sum of kernel machines are discussed
only. This paper is an extension of the result obtained in
[11] to an arbitrary convex combination. Also note that this
paper includes detailed descriptions of our previous works
[12], [13], which gave an overview of some parts of this pa-
per.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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2. Mathematical Preliminaries for the Theory of Re-
producing Kernel Hilbert Spaces

In this section, we give mathematical preliminaries con-
cerned with the theory of reproducing kernel Hilbert spaces
[14], [15].

Definition 1: [14] Let Rd be a d-dimensional real vector
space and let H be a class of functions defined on D ⊂
Rd, forming a Hilbert space of real-valued functions. The
function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel
ofH , if the following two conditions hold.

1. For every x̃ ∈ D, K(·, x̃) ∈ H .
2. For every x̃ ∈ D and every f (·) ∈ H ,

f (x̃) = 〈 f (·),K(·, x̃)〉H , (1)

where 〈·, ·〉H denotes the inner product ofH .

The Hilbert space H that has a reproducing kernel is
called a reproducing kernel Hilbert space (RKHS). The re-
producing property Eq. (1) enables us to treat a value of a
function at a point inD in contrast to ordinary Hilbert spaces
such as L2(D), the Hilbert space consisting of all square in-
tegrable functions defined onD. Note that reproducing ker-
nels are positive definite [14]:

N∑

i, j=1

cic jK(xi, x j) ≥ 0, (2)

for any N ∈ N, c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D,
where N stands for the set of natural numbers. In addition,
K(x, x̃) = K(x̃, x) holds for any x, x̃ ∈ D [14]. If a repro-
ducing kernel K(x, x̃) exists, it is unique [14]. Conversely,
every positive definite function K(x, x̃) has the unique corre-
sponding RKHS [14]. Hereafter, the RKHS corresponding
to a reproducing kernel K(x, x̃) is denoted by HK . In the
following contents, we simply use the symbol K for a ker-
nel by omitting (x, x̃) except the cases where it is needed. In
this paper, we assume that the RKHS is separable [16] since
popular RKHS’s are separable [17].

Next, we introduce the Schatten product [18] that is
a convenient tool to represent an inner product of two ele-
ments in Hilbert spaces as an operator for one of them.

Definition 2: [18] Let H1 and H2 be Hilbert spaces. The
Schatten product of g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h) f = 〈 f , h〉H1g, f ∈ H1. (3)

Note that (g⊗h) is a linear operator fromH1 ontoH2. It
is easy to show that the following relations hold for h ∈ H1,
g, u ∈ H2. v ∈ H3,

(h ⊗ g)∗= (g ⊗ h), (h ⊗ g)(u ⊗ v)= 〈u, g〉H2 (h ⊗ v), (4)

where the superscript ∗ denotes the adjoint operator.
We give some theorems concerned with the sum and

the difference of reproducing kernels used in the following

contents.

Theorem 1: [14] If Ki is the reproducing kernel of the
class Fi with the norm ||·||i, then K = K1+K2 is the reproduc-
ing kernel of the class F of all functions f (·) = f1(·) + f2(·)
with fi(·) ∈ Fi, and with the norm defined by

|| f (·)||2 = min
[
|| f1(·)||21 + || f2(·)||22

]
, (5)

the minimum taken for all the decompositions f (·) = f1(·)+
f2(·) with fi(·) ∈ Fi.

Theorem 2: [14] If K is the reproducing kernel of the class
F with the norm || · ||, and if the linear class F1 ⊂ F forms a
Hilbert space with the norm || · ||1, such that || f (·)||1 ≥ || f (·)||
for any f (·) ∈ F1, then the class F1 possesses a reproducing
kernel K1 such that Kc = K−K1 is also a reproducing kernel.

Theorem 3: [14] If K and K1 are the reproducing kernels
of the classes of F and F1 with the norms || · ||, || · ||1, and if
K − K1 is a reproducing kernel, then F1 ⊂ F and || f1(·)||1 ≥
|| f1(·)|| for every f1(·) ∈ F1.

Theorem 4: [19] Let K1 and K2 be kernels, then

HK1 ⊂ HK2 (6)

holds, if and only if there exists a positive constant γ such
that

γ2K2 − K1 (7)

is a kernel.

Theorem 1 guarantees that the RKHS corresponding
to K = K1 + K2 includes all functions in HK1 and those
in HK2 ; and Theorems 2, 3 and 4 reveal the relationship
between the difference of two kernels and the corresponding
RKHS’s (and their norms). Note that Theorem 1 can be
easily extended to more than two kernels.

3. Formulation of Regression Problems

Let {(yi, xi) | i ∈ {1, . . . , �}} be a given training data set with
yi ∈ R, xi ∈ Rd, satisfying

yi = f (xi) + ni, (8)

where f (·) denotes an unknown true function and ni denotes
an observation noise. The aim of the regression problem
considered in this paper is to estimate the unknown true
function f (·) by using the given training data set and sta-
tistical properties of the noise.

In this paper, we assume that the unknown true function
f (·) belongs to the RKHS HK corresponding to a certain
kernel K. If f (·) ∈ HK , then Eq. (8) is rewritten as

yi = 〈 f (·),K(·, xi)〉HK + ni, (9)

on the basis of the reproducing property of a kernel. Let
y = [y1, . . . , y�]′ and n = [n1, . . . , n�]′ with the superscript ′
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denoting the transposition operator, then applying the Schat-
ten product to Eq. (9) yields

y =

⎛⎜⎜⎜⎜⎜⎜⎝
�∑

k=1

[e(�)
k ⊗ K(·, xk)]

⎞⎟⎟⎟⎟⎟⎟⎠ f (·) + n, (10)

where e(�)
k denotes the �-dimensional unit vector whose k-th

element is unity. For a convenience of description, we write

AK,X =

⎛⎜⎜⎜⎜⎜⎜⎝
�∑

k=1

[e(�)
k ⊗ K(·, xk)]

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)

where X = {x1, . . . , x�} is the set of the training input vec-
tors. Note that AK,X is a linear operator from HK onto R�

and Eq. (10) can be written by

y = AK,X f (·) + n, (12)

which represents the relationship between the unknown true
function f (·) and the output vector y. Therefore, the regres-
sion problem can be interpreted as the inversion problem of
the linear equation Eq. (12) [20].

4. Generalization Error of Kernel Regressor and Some
Known Results

In general, a learning result by a kernel machine is repre-
sented by a linear combination of K(·, xi), (i ∈ {1, . . . , �}),
which implies that the learning result is an element in the
range space of the linear operator A∗K,X , written as R(A∗K,X),
since

f̂ (·) = A∗K,Xα =

⎛⎜⎜⎜⎜⎜⎜⎝
�∑

i=1

[K(·, xi) ⊗ e(�)
i ]

⎞⎟⎟⎟⎟⎟⎟⎠α

=

�∑

i=1

αiK(·, xi) (13)

holds, where α = [α1, . . . , α�]′ denotes an arbitrary vector
in R�. The point at issue in this paper is to discuss goodness
of a model space, that is, the generalization error of R(A∗K,X)
which is independent from learning criteria. Roughly speak-
ing, the generalization error is the difference between the
unknown true function and an estimated one at any point
x ∈ D, which may not be in X. Therefore, we define the
generalization error of kernel machines specified by a ker-
nel K and a set of input vectors X as the distance between
the unknown true function f (·) and R(A∗K,X) [6], [21], [22]
written as

J( f (·); K, X) = || f (·) − PK,X f (·)||2HK
, (14)

where PK,X denotes the orthogonal projector onto R(A∗K,X)
and || · ||HK denotes the induced norm ofHK . The validity of
J( f (·); K, X) as the generalization error is supported by the
fact that

| f (x) − PK,X f (x)|
= |〈 f (·) − PK,X f (·),K(·, x)〉HK |

≤ || f (·) − PK,X f (·)||HK ||K(·, x)||HK

= || f (·) − PK,X f (·)||HK K(x, x)1/2

holds for any x ∈ D, which is a trivial consequence of the
reproducing property of a kernel and the Schwarz’s inequal-
ity. Selection of an element in R(A∗K,X) as a learning result is
out of the scope of this paper since the selection depends on
learning criteria. We also ignore the observation noise in the
following contents since the noise does not affect Eq. (14).
Note that ignoring the noise and adopting the orthogonal
projection imply the analyses on the theoretical limit of the
generalization error. Here, we give some propositions in or-
der to evaluate Eq. (14).

Lemma 1: [6]

PK,X =

�∑

i, j=1

(G+K,X)i j

[
K(·, xi) ⊗ K(·, x j)

]
, (15)

where GK,X denotes the Gram matrix of K with X, defined by
GK,X = (K(xi, x j)), and the superscript + denotes the Moore-
Penrose generalized inverse [23].

From Lemma 1, the orthogonal projection of f (·) ∈ HK

onto R(A∗K,X) is given as

PK,X f (·) =
�∑

i, j=1

f (xi)(G
+
K,X)i jK(·, x j), (16)

and this formula immediately yields the following lemma.

Lemma 2: [6] For any f (·) ∈ HK ,

||PK,X f (·)||2HK
= f ′G+K,X f (17)

holds, where f = [ f (x1), . . . , f (x�)]′.

Note that f ∈ R(GK,X) holds, since f ∈ R(AK,X) =
R(AK,XA∗K,X) = R(GK,X) trivially holds from Eq. (4).

Let K1 and Kc be kernels, then K2 = K1 + Kc is also a
kernel whose corresponding RKHS includesHK1 from The-
orem 1. Since K1 = K2 − Kc holds, we have

|| f (·)||2HK1
≥ || f (·)||2HK2

(18)

for any f (·) ∈ HK1 from Theorem 3. In [7], the following
theorem, concerned with the equality in Eq. (18), was intro-
duced, which plays a crucial role in the following contents.

Theorem 5: [7] Let K1 and Kc be kernels and let K2 =

K1 +Kc. The following three statements are equivalent each
other.

1) For any f (·) ∈ HK1 , || f (·)||2HK1
= || f (·)||2HK2

,

2) HK1 ∩HKc = {0},
3) For any f1(·) ∈ HK1 and for any f2(·) ∈ HKc ,
〈 f1(·), f2(·)〉HK2

= 0.

In the following contents, we omit the symbol X from
Gram matrices and projectors except the cases where it is
needed.
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5. Analyses on Ensemble and Multiple Kernel Regres-
sors

We consider a class of kernels K = {K1, . . . ,Kn} and cor-
responding RKHS written as HKp , (p ∈ {1, . . . , n}). We
consider the linear class

L = ∩n
p=1HKp , (19)

and discuss the regression problem for f (·) ∈ L in order for
PKp f (·), (p ∈ {1, . . . , n}) to be consistent in terms of the
orthogonal projection†. Note that L always exists for any K
since at least f (x) = 0 ∈ L holds††. Under these settings,
we discuss two kernel-based regression schemes using all
kernels in K . One is the multiple kernel regressor, which is
a kernel regressor based on a convex combination of given
kernels. The other is the ensemble kernel regressor, which
is a convex combination of kernel regressors by each kernel.
Note that we analyze the optimal results of both schemes
in noise free case, that is, the orthogonal projection of the
unknown true function onto the model space, since our main
interest is in the theoretical limit of the generalization error.

We define the multiple kernel regressor as the regressor
based on a convex combinations of the kernels inK , written
as

Ku =

n∑

p=1

αpKp,

⎛⎜⎜⎜⎜⎜⎜⎝αp > 0,
n∑

p=1

αp = 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (20)

Note that Ku is trivially a kernel from Theorem 1. The learn-
ing result by the multiple kernel regressor is written as

f̂m(·) = PKu f (·)

=

�∑

i, j=1

f (xi)(G
+
Ku

)i jKu(·, x j), (21)

from Eq. (16).
We define the ensemble kernel regressor as the con-

vex combination of the kernel regressors by each kernel
Kp, (p ∈ {1, . . . , n}). The learning result by the ensemble
kernel regressor is written as

f̂e(·) =
n∑

p=1

αpPKp f (·)

=

n∑

p=1

αp

�∑

i, j=1

f (xi)(G
+
Kp

)i jKp(·, x j). (22)

In general, the optimal coefficients αp may differ in the both
regressors. However, we adopt the same coefficients in the
following analyses since if one regressor outperforms the
other with the same coefficients, the former always outper-
forms the latter with their optimal coefficients.

†If f (·) � L, there may exist Kp by which the orthogonal pro-
jection PKp f (·) can not be constructed from the training data set.
††However, L = {0} is a meaningless case. Thus, we are inter-

ested in the case of dimL ≥ 1.

The generalization error, defined by Eq. (14), of the
multiple kernel regressor Eq. (21) is straightforwardly ob-
tained by

Em = J( f (·); Ku, X) = || f (·) − PKu f (·)||2HKu

= || f ||2HKu
− f ′G+Ku

f (23)

from Lemma 2 and the Pythagorean theorem. Note that the
evaluation by the norm || · ||HKu

is the best choice for the
multiple kernel regressor since the orthogonality of PKu is
specified by the metric ofHKu .

Next, we evaluate the generalization error of the en-
semble kernel regressor Eq. (22) with the same norm as
Eq. (23), which is written as

Ee =

∥∥∥∥∥∥∥∥
f (·) −

n∑

p=1

αpPKp f (·)
∥∥∥∥∥∥∥∥

2

HKu

. (24)

We give the following Lemmas to evaluate Eq. (24).

Lemma 3: [11] Let K be a kernel whose corresponding
RKHS is separable, and let α be a positive real number, then

HK = HαK (25)

holds as the class of functions†††. Moreover

α|| f (·)||2HαK
= || f (·)||2HK

(26)

holds for any f (·) ∈ HK .

Proof Let α1 and α2 be real positive numbers satisfying
α2 < α < α1, then,

α1K − (αK),
1
α2

(αK) − K

are also kernels. Therefore, Eq. (25) immediately holds
from Theorem 4.

Since HK is separable, there exists a countable set
{(βk, zk) | k ∈ N, βk ∈ R, zk ∈ D} for any f (·) ∈ HK such
that

f (·) =
∑

k∈N
βkK(·, zk).

Then, we have

|| f (·)||2HK
=
∑

i, j∈N
βiβ jK(zi, z j).

On the other hand, we have

|| f (·)||2HαK
=

∥∥∥∥∥∥∥
1
α

∑

k∈N
βkαK(·, zk)

∥∥∥∥∥∥∥

2

HαK

=
1
α2

∑

i, j∈N
βiβ jαK(zi, z j) =

1
α

∑

i, j∈N
βiβ jK(zi, z j)

=
1
α
|| f (·)||2HK

,

which concludes the proof. �
†††The metrics of the two RKHS’s are necessarily different ex-

cept the case of α = 1.
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Lemma 4: [11] Let Kp, (p ∈ {1, . . . , n}) be kernels and
let Ku =

∑n
p=1 Kp. For any function f (·) = ∑n

p=1 fp(·) with
fp(·) ∈ HKp ,

∥∥∥∥∥∥∥∥

n∑

p=1

fp(·)
∥∥∥∥∥∥∥∥

2

HKu

≤
n∑

p=1

∥∥∥ fp(·)∥∥∥2HKp
(27)

holds.

Proof From Theorem 1, we have
∥∥∥∥∥∥∥∥

n∑

p=1

fp(·)
∥∥∥∥∥∥∥∥

2

HKu

= min∑n
p=1 f̃p=

∑n
p=1 fp, f̃p∈KKp

n∑

p=1

∥∥∥ f̃p(·)
∥∥∥2HKp

≤
n∑

i=p

∥∥∥ fp(·)∥∥∥2HKp
,

which concludes the proof. �

Lemma 5: For any f (·) ∈ L,

Ee ≤
n∑

p=1

αp(|| f (·)||2HKp
− f ′G+Kp

f ) (28)

holds.

Proof From Theorem 1, Lemmas 2, 3 and 4, and the fact
that f (·) = ∑n

p=1 αp f (·), we have

Ee =

∥∥∥∥∥∥∥∥

n∑

p=1

αp( f (·) − PKp f (·))
∥∥∥∥∥∥∥∥

2

HKu

≤
n∑

p=1

||αp( f (·) − PKp f (·))||2Hαp Kp

=

n∑

p=1

α2
p|| f (·) − PKp f (·)||2Hαp Kp

=

n∑

p=1

αp|| f (·) − PKp f (·)||2HKp

=

n∑

p=1

αp(|| f (·)||2HKp
− f ′G+Kp

f ),

which concludes the proof. �
Accordingly, we have

Em − Ee

≥ (|| f ||2HKu
− f ′G+Ku

f )

−
n∑

p=1

αp(|| f (·)||2HKp
− f ′G+Kp

f )

=

⎛⎜⎜⎜⎜⎜⎜⎝|| f ||2HKu
−

n∑

p=1

αp|| f (·)||2HKp

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

p=1

αp f ′G+Kp
f − f ′G+Ku

f

⎞⎟⎟⎟⎟⎟⎟⎠ . (29)

Let T1 and T2 be the first and the second terms in Eq. (29),
and we analyze them in the following.

Here, we consider the linear class S ⊂ L such that

|| f (·)||S = || f (·)||HKp
, (p ∈ {1, . . . , n}) (30)

for any f (·) ∈ S . Note that such a linear class always exists
since the norm of f (x) = 0 ∈ L is identical to zero in any
Hilbert space†. For S , there exists a kernel KS such that

Kc
p = Kp − KS , (p ∈ {1, . . . , n}) (31)

is also a kernel from Theorem 2. Hereafter, we use HKS

instead of S since KS is guaranteed to be a kernel. Note that

HKS ∩HKc
p
= {0} (32)

holds from Theorem 5, which immediately yields

HKS ∩HKc = {0}, (33)

where Kc =
∑n

p=1 αpKc
p. Therefore, we have

n∑

p=1

αp|| f (·)||2HKp

=

n∑

p=1

αp|| f (·)||2HKS
=

n∑

p=1

αp|| f (·)||2HKu
= || f (·)||2HKu

(34)

for any f (·) ∈ HKS from Theorem 5, and T1 = 0 is obtained.

Lemma 6: Let Gp ∈ Rm×m, (p ∈ {1, . . . , n}) be non-
negative definite symmetric matrices and u ∈ ∩n

p=1R(Gp)
and let αp, (p ∈ {1, . . . , n}) be positive constants satisfying∑n

p=1 αp = 1. Then,

u′
⎛⎜⎜⎜⎜⎜⎜⎝

n∑

p=1

αpG+p −
⎛⎜⎜⎜⎜⎜⎜⎝

n∑

p=1

αpGp

⎞⎟⎟⎟⎟⎟⎟⎠
+⎞⎟⎟⎟⎟⎟⎟⎠ u ≥ 0 (35)

holds.

Proof Let S =
∑n

p=1 αpGp and T =
∑n

p=1 αpG+p , then
R(S ) = R(S +) = R(T ) trivially holds. Thus, we have

u′(T − S +)u

= u′S +S (T − S +)S S +u = u′S +(S TS − S )S +u,

since u ∈ ∩n
p=1R(Gp) ⊂ R(S +) = R(T ). Here, the matrix

S TS − S can be represented as

S TS − S

=

n∑

p=1

αp(S −Gp +Gp)G+p(S −Gp +Gp) − S

=

n∑

p=1

αp(S −Gp)G+p(S −Gp)

+

n∑

p=1

αp(S −Gp)G+pGp +

n∑

p=1

αpGpG+p(S −Gp)

†As the same with L, S = {0} is a meaningless linear class.
Thus, we are interested in the case of dimS ≥ 1.
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=

n∑

p=1

αp(S −Gp)G+p(S −Gp)

+

n∑

p=1

αpS G+pGp +

n∑

p=1

αpGpG+pS − 2S .

Let

U1 =

n∑

p=1

αp(S −Gp)G+p(S −Gp),

U2 =

n∑

p=1

αpS G+pGp +

n∑

p=1

αpGpG+pS − 2S .

Since u ∈ R(Gp) ⊂ R(S ) yields

u′S +
⎛⎜⎜⎜⎜⎜⎜⎝

n∑

p=1

αpS G+pGp

⎞⎟⎟⎟⎟⎟⎟⎠ S +u

=

n∑

p=1

αpu
′S +S G+pGpS +u =

n∑

p=1

αpu
′S +u = u′S +u,

u′S +
⎛⎜⎜⎜⎜⎜⎜⎝

n∑

p=1

αpGpG+pS

⎞⎟⎟⎟⎟⎟⎟⎠ S +u

=

n∑

p=1

αpu
′S +GpG+pS S +u =

n∑

p=1

αpu
′S +u = u′S +u,

we have

u′S +U2S +u = 2u′S +u − 2u′S +S S +u = 0. (36)

Since U1 is non-negative definite, it is concluded that

u′(T − S +)u = u′S +U1S +u ≥ 0 (37)

holds, which concludes the proof. �
Note that Lemma 6 is an extension of the relationship

between the reciprocals of the arithmetic mean and the har-
monic mean [24] to quadratic forms with non-negative defi-
nite symmetric matrices.

The next theorem is the main result of this paper.

Theorem 6: If f (·) ∈ HKS ,

Em − Ee ≥ 0 (38)

holds.

Proof As mentioned above, T1 = 0 holds for any f (·) ∈
HKS . Since GKu =

∑m
p=1 αpGKp , and f ∈ R(GKp ) holds

for any p ∈ {1, . . . , n}, we have T2 ≥ 0 from Lemma 6.
Therefore,

Em − Ee ≥ T1 + T2 = T2 ≥ 0

is immediately obtained for any f (·) ∈ HKS , which con-
cludes the proof. �

According to Theorem 6, it is concluded that the en-
semble kernel regressor yields a better result than the mul-
tiple kernel regressor for any f (·) ∈ HKS in terms of the

theoretical limit of the generalization error.
Note that the condition Eq. (30) may be too strong ex-

cept for trivial (and meaningless) cases, such as S = {0}.
Thus, we analyze the lower bound of Em−Ee for f (·) � HKS

next.
Since we assume that RKHS’s are separable, there ex-

ists a countable set Zp = {z(p)
k | k ∈ N, zk ∈ D} for each

Kp, (p ∈ {1, . . . , n}) by which the set {Kp(·, z(p)
k ) | k ∈ N}

is dense in HKp ; and there also exists a countable set Zu =

{z(u)
k | k ∈ N, zk ∈ D} by which the set {Ku(·, z(u)

k ) | k ∈ N}
is dense in HKu . Let Z = (∪n

p=1Zp) ∪ Zu = {zk | k ∈ N},
then the set {Kp(·, zk) | k ∈ N} is dense in HKp and the set
{Ku(·, zk) | k ∈ N} is dense inHKu . Since we assume f (·) ∈ L,
there exists a countable set {β(p)

k | k ∈ N, β(p)
k ∈ R} such that

f (·) =
∑

k∈N
β

(p)
k Kp(·, zk) (39)

for each p ∈ {1, . . . , n} and there exists a countable set
{βk | k ∈ N, βk ∈ R} such that

f (·) =
∑

k∈N
βkKu(·, zk). (40)

The coefficient vectors β(p) = [β(p)
1 , . . . , β

(p)
k , . . .]

′ and β =
[β1, . . . , βk, . . .]′ are connected by

GKu,Zβ = GKp,Zβ
(p), (41)

where GKu,Z and GKp,Z denote the Gram matrices of Ku and
Kp with Z. On the basis of these preparations, we have

T1 = || f (·)||2HKu
−

n∑

p=1

αp|| f (·)||2HKp

= β′GKu,Zβ −
n∑

p=1

αp(β(p))′GKp,Zβ
(p)

= β′GKu,ZG+Ku,ZGKu,Zβ

−
n∑

p=1

αp(β(p))′GKp,ZG+Kp,ZGKp,Zβ
(p)

= β′GKu,ZG+Ku,ZGKu,Zβ −
n∑

p=1

αpβ
′GKu,ZG+Kp,ZGKu,Zβ

= β′GKu,Z

⎛⎜⎜⎜⎜⎜⎜⎝G+Ku,Z −
n∑

p=1

αpG+Kp,Z

⎞⎟⎟⎟⎟⎟⎟⎠GKu,Zβ,

which implies that T1 ≤ 0 for f (·) � HKS from Lemma 6.
Also, we have

f = GKu,(X,Z)β (42)

from Eq. (40), where GKu,(X,Z) = (Ku(xi, z j)). Let

M1 = G+Ku,Z −
n∑

p=1

αpG+Kp,Z ,

M2 =

m∑

p=1

αpG+Kp
−G+Ku

,
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and

M =
(
GKu,Z M1GKu,Z +GKu,(Z,X)M2GKu,(X,Z)

)
,

where GKu,(Z,X) = G′Ku,(Z,X). Then, we have a lower bound of
Em − Ee for f (·) � HKS written as

Em − Ee ≥ β′Mβ. (43)

Since T1 ≤ 0 and T2 ≥ 0, the lower bound of Em − Ee

with a fixed M (specified by X and the kernels) in Eq. (43)
could be both positive and negative in general, depending
on β that specifies the unknown true function f (·). Accord-
ingly, when f (·) � HKS , Em − Ee ≥ 0 is guaranteed only
for the unknown true function specified by β that makes the
quadratic form Eq. (43) non-negative†. These analyses re-
veals the importance of the condition Eq. (30) and it implies
that Eq. (30) is not too strong condition to obtain Eq. (38) in
terms of the lower bound. However, we can not eliminate
the possibility of Em − Ee ≥ 0 for all f (·) � HKS even if
the obtained lower bound β′Mβ is negative with a certain β
since our lower bound may be too loose. Thus, we give an
example of f (·) � HKS that makes actual value of Em − Ee

negative in the next section.
Note that when tr(M) > 0, Em > Ee is expected for

many functions in L together with the fact that β′Mβ is a
lower bound of Em − Ee. Thus, tr(M) can be used as a
measure for deciding whether or not the ensemble kernel
regressor is better (in some sense) than the multiple kernel
regressor.

6. Numerical Examples

In this section, we give some numerical examples confirm-
ing our theoretical results obtained in the previous section
with a simple polynomial kernel defined by

Kp(x, y) = (1 + xy)p, x, y ∈ R, (44)

where p denote a positive integer. We consider K =

{K1,K2} as a class of kernels. Note that dimHK1 = 2 and
HK1 is spanned by the functions b1(x) = 1 and b2(x) = x.
Similarly, dimHK2 = 3 andHK2 is spanned by the functions
b1(x), b2(x), and b3(x) = x2. Therefore, the linear class L is
spanned by b1(x) and b2(x), that is, L = span{1, x} = {a +
bx | a, b ∈ R}. Note that since dimHK1 = 2 and dimHK2 =

dimHKu = 3, we can adopt Z = {−1, 0, 1} that yields a dense
set for each RKHS, such as {Ku(x,−1),Ku(x, 0),Ku(x, 1)} for
HKu . Since

f (x) = a + bx = (a − b)K1(x, 0) + bK1(x, 1), (45)

we have

|| f (x)||2HK1
= a2 + b2. (46)

Similarly, since
†Since f (·) is unknown, β is also unknown, which implies that

we can not identify the better regressor only from the training data
set when f (·) � HKS .

f (x) = a + bx

= −b
4

K2(x,−1) + aK2(x, 0) +
b
4

K2(x, 1), (47)

we have

|| f (x)||2HK2
= a2 +

b2

2
. (48)

Therefore, Eq. (30) holds if and only if b = 0, which implies
thatHKS = span{1} = {a | a ∈ R}.

We adopt α1 = 2/3 and α2 = 1/3 as the coefficients for
convex combinations. Then, we have

Ku(x, y) =
2
3

K1(x, y) +
1
3

K2(x, y) = 1 +
4
3

xy +
1
3

x2y2.

We investigate the generalization errors Em and Ee for f (·) =
ax + b ∈ L which is or is not included in HKS . We adopt
X = {1} as the input training data set.

Since f (1) = a + b, learning results by K1 and K2 are
reduced to

f̂1(x) = PK1 f (x) =
a + b

2
(1 + x),

f̂2(x) = PK2 f (x) =
a + b

4
(1 + 2x + x2),

from Eq. (16). Therefore, the learning result by ensemble
kernel regressor is given as

f̂e(x) =
2
3

f̂1(x) +
1
3

f̂2(x) =
a + b

12
(5 + 6x + x2). (49)

Similarly, the learning result by the multiple kernel regressor
is reduced to

f̂m(x) =
a + b

8
(3 + 4x + x2). (50)

Note that

de(x) = f̂e(x) − f (x) =
a + b

12
(5 + 6x + x2) − (a + bx)

=
1

12
((−7a + 5b) + 6(a − b)x + (a + b)x2)

=
−a + 5b

16
Ku(x,−1) +

−5a + b
6

Ku(x, 0)

+
5a − b

16
Ku(x, 1),

dm(x) = f̂m(x) − f (x) =
a + b

8
(3 + 4x + x2) − (a + bx)

=
1
8

((−5a + 3b) + 4(a − b)x + (a + b)x2)

=
3b
8

Ku(x,−1) − aKu(x, 0) +
3a
8

Ku(x, 1)

hold. Therefore, we have

Ee = ||de(x)||2HKu
=

79a2 − 118ab + 55b2

144
(51)

Em = ||dm(x)||2HKu
=

5a2 − 6ab + 3b2

8
, (52)

and the actual value of Em − Ee is reduced to
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Fig. 1 The region of positive Em − Ee (gray) and the region of negative
Em − Ee (white).

Em − Ee =
11a2 + 10ab − b2

144
=

(11a − b)(a + b)
144

. (53)

6.1 Example for f (·) ∈ HKS

As mentioned above, Eq. (30) holds if and only if b = 0 and
thenHKS = span{1} hold. Therefore, we have

Em − Ee =
11
144

a2 > 0

for any f (x) = a ∈ HKS . Accordingly, it is confirmed that
the inequality Eq. (38) surely holds for any function in HKS

in these settings.

6.2 Example for f (·) � HKS

From Eq. (53), Em − Ee ≥ 0 is satisfied only when (11a −
b)(a + b) ≥ 0. Figure 1 shows the regions in the a-b plane,
where the actual value of Em − Ee is positive (gray region)
or negative (white region).

According to this result, it is concluded that there exists
f (·) � HKS , say f (x) = 1 + x, satisfying Em − Ee ≥ 0
(corresponding to gray region in Fig. 1), which implies that
f (·) ∈ HKS is not a necessary condition for Em − Ee ≥ 0.
Also, the existence of f (·) � HKS , say f (x) = x, that makes
Em−Ee negative is confirmed (white region in Fig. 1), which
numerically supports the importance of Eq. (30) to obtain
Eq. (38), while it is only supported in terms of a lower bound
by the analyses given in the previous section. Therefore, it
is concluded that the ensemble (or multiple) kernel regressor
can be better than the other in terms of the theoretical limit
of the generalization error when f (·) � HKS .

Finally, we investigate the tightness of the lower bound
obtained in Eq. (43). Since

f (x) = β1Ku(x,−1) + β2Ku(x, 0) + β3Ku(x, 1)

Fig. 2 The region of positive lower bound given in Eq. (43) (dark gray)
superimposed on Fig. 1.

=

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

i=1

βi

⎞⎟⎟⎟⎟⎟⎟⎠ +
3x
4

(−β1 + β3) +
x2

3
(β1 + β3),

and f (·) ∈ L, β1+β3 = 0 is required, Therefore, the unknown
true function can be rewritten as

f (x) = β2 − 3β1

2
x, (54)

which implies
⎡⎢⎢⎢⎢⎢⎢⎢⎣
β1

β2

β3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
− 2

3 b
a
2
3 b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (55)

Substituting Eq. (55) to the lower bound β′Mβ in Eq. (43)
yields

β′Mβ =
a2

24
+

4ab
27
− 32b2

243
. (56)

Figure 2 shows the region in the a-b plane, where the lower
bound given in Eq. (43) is positive (dark gray region), which
is superimposed on Fig. 1.

According to this result, it is confirmed that the lower
bound obtained in Eq. (43) is not so tight, and there exist
a function, say f (x) = 1 + 2x, whose actual Em − Ee is
positive while the corresponding lower bound is negative.
This is caused by the inequality given in Lemma 4. Thus,
improvement of Lemma 4 is one of future works that should
be undertaken in order to make tr(M) to be more accurate
as the measure for ensuring the advantage of the ensemble
kernel regressor.

7. Conclusion

In this paper, we introduced a unified framework for evalu-
ating the generalization errors of the kernel regressors with
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multiple kernels, and analyzed the ensemble kernel regres-
sor and the multiple kernel regressor, which are the rep-
resentative kernel regressors using multiple kernels. As a
result, we obtained a sufficient condition for the ensemble
kernel regressor to outperform the multiple kernel regressor
in terms of the theoretical limit of the generalization errors.
We also clarified that the superiority of the ensemble kernel
regressor was deeply related to the relationship between the
arithmetic mean and the harmonic mean. Moreover, we fur-
ther analyzed their generalization errors in the cases where
the sufficient condition was not satisfied, and clarified that
each regressor could be better than the other in such cases,
depending on the unknown true function.
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