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Abstract. We aim at constructing adaptive oblivious transfer protocols, enjoying fully simulatable
security, from various well-known assumptions such as DDH, d-Linear, QR, and DCR. To this end, we
present two generic constructions of adaptive OT, one of which utilizes verifiable shuffles together with
threshold decryption schemes, while the other uses permutation networks together with what we call
loosely-homomorphic key encapsulation schemes. The constructions follow a novel designing approach
called “blind permutation”, which completely differs from existing ones. We then show that specific
choices of the building blocks lead to concrete adaptive OT protocols with fully simulatable security
in the standard model under the targeted assumptions. Our generic methods can be extended to build
universally composable (UC) secure, and leakage-resilient OT protocols.

Keywords: adaptive OT, fully-simulatable, verifiable shuffles, permutation networks, loose homomor-
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1 Introduction

1.1 Background

Oblivious transfer (OT) with adaptive queries, or adaptive OT for short, was first examined by
Naor and Pinkas in [27], in which there are a sender and a receiver. The sender holds n messages,
and the receiver would like to retrieve k of them, one after the other, so that: (1) the sender does
not know what the receiver obtains, and (2) the receiver gets nothing more beside the k messages.
The key applications of this type of OT are in patent searches, oblivious search, medical databases
etc.

The security notion capturing the above requirements has evolved in the literature. The notion
of full simulatability was introduced by Camenisch, Neven, and Shelat in [3], following the real-
world, ideal-world paradigm. In the ideal world, there exists a trusted third party (TTP), to which
the sender gives all of his messages. When a receiver wants to obtain a message, he simply sends
the corresponding index to the TTP. On the other hand, in the real world, there is no TTP at
all, and the protocol of adaptive OT is run by the sender and the receiver. The intuition of full
simulatability is that the real world is indistinguishable from the ideal world, with respect to any
poly-time adversary.

There are a few approaches in building fully simulatable adaptive OT protocols. Let us have a
look at them below.

The “assisted decryption” approach: Beginning with the work of Ogata and Kurosawa [30], at
the core of this approach is a blind signature scheme. The blind property helps hiding the indexes of

? A preliminary version of this paper was presented at the 9th International Conference on Applied Cryptography
and Network Security (ACNS ’11) [23], improving and generating upon papers by the same authors at Asiacrypt
’09 [21] and SCN ’10 [22].



the receiver. The signatures assist the decryption at the receiver side, so that the desired message is
obtained. The unforgeability of the blind signature scheme ensures that the receiver cannot obtain
more signatures (and hence messages) than requested.

Ogata and Kurosawa [30] used the RSA blind signature scheme in the random oracle model, so
their corresponding OT scheme was in that model. Also in ROM, Chu and Tzeng [4] presented an
OT scheme using the Boldyreva’s blind signature scheme [2].

Camenisch et al. [3] generalized and refined the schemes given in [4,30]. They furthermore gave
a construction in the standard model, using q-based assumptions (in which q depends on n) in
pairing groups.

Efforts have been devoted to further extending the approach. In ROM, Green and Hohenberger
[11] showed a protocol under the decisional bilinear Diffie-Hellman assumption. In [12], Green and
Hohenberger constructed a universally-composable, so fully-simulatable, scheme under the q-hidden
LRSW assumption in the standard model. The same authors in [13] gave a construction under the
decision 3-party DDH (3DDH) assumption in pairing groups.

The “oblivious PRF” approach: Jarecki and Liu [19] joined the research line with a scheme
based on the q-DHI assumption yet in RSA groups. The scheme is based on an oblivious pseudo-
random function, in which the receiver with index σ can obtain, without revealing σ, the output
PRFK(σ) where PRF’s key K is held by the sender.

The above approaches, up to now, yield adaptive OT schemes based on dynamic, or q-based
assumptions in the standard model, with only an exception in [13] under the 3DDH assumption.

Our “blind permutation” approach: With respect to assumptions which are not q-based, we
in [21] showed a simple scheme fully simulatable under the DDH assumption. However, the scheme
suffered from a large communication cost of O(n) in each transfer, as pointed out by Green and
Hohenberger in [13]. Soon afterwards, we in [22], using a verifiable shuffle protocol, overcome the
demerit in [21] by reducing the cost to O(1), while still maintaining the DDH assumption for
security. Specifically, the work [22] used the verifiable shuffle protocol of Neff [29] which is a 7-
move honest verifier zero-knowledge protocol for proving the relation between (g,X1, . . . , Xn) and
(gc, Xc

π(1), . . . , X
c
π(n)), where π is a random permutation and c is random. Note that Neff’s shuffle

protocol is computationally zero-knowledge under the DDH assumption, so that it seems impossible
to utilize the shuffle beyond the DDH case.

This paper continues and refines the blind permutation approach. This approach is unique since,
so far, it is the only one effectively yielding adaptive OT schemes fully simulatable under standard,
well-known assumptions.

1.2 Our contribution

We present two generic methods for constructing fully simulatable adaptive OT in the standard
model. They yield numerous protocols from various assumptions, including the DDH, d-linear
(d ≥ 2), quadratic residuosity (QR), and decisional composite residuosity (DCR) assumptions. A
comparison with previous works is given in Table 1, in which our DDH-based OT protocol has less
number of moves in the initialization phase than that of [22]. Note that our schemes based on the
QR and DCR assumptions induce a bit higher communication cost for initialization.

Our first method can be applied to any public-key encryption scheme E which satisfies two
conditions: (1) It must be a homomorphic encryption scheme such that the message space is a
group of prime public order; and (2) It can be used as a 2-out-of-2 threshold decryption scheme.



Table 1. Fully simulatable adaptive OT schemes without random oracles. The O also hides the message length in
the QR case, which is assumed small compared to n.

Scheme Assumption Communication Cost Initialization Cost
(each transfer)

CNS [3] q-strong DH and q-PDDH O(1) O(n)

GH [12] q-hidden LRSW (UC secure) O(1) O(n)

JL [19] q-DHI (RSA group) O(1) O(n)

KN [21] DDH O(n) O(n)

GH [13] decision 3-party DH (3DDH) O(1) O(n)

KNP [22] DDH O(1) O(n)
(more moves)

This work
DDH

O(1)

O(n)
(less moves)

d-Linear O(n)
DCR O(n logn)
QR O(n logn)

The first condition allows us to use the verifiable shuffle protocol of Groth and Lu [14] which is
a statistical zero-knowledge shuffle protocol for proving the relation between

(
E(m1), . . . , E(mn)

)
and

(
E(mπ(1)), . . . , E(mπ(n))

)
, where π is a random permutation. However, we cannot obtain

any adaptive OT even if we directly replace Neff’s shuffle protocol by Groth-Lu’s shuffle protocol
into [22]. This is because the sender can compute π from

(
E(mπ(1)), . . . , E(mπ(n))

)
. To overcome

this problem, we use 2-out-of-2 threshold decryption. From this method, new adaptive OTs are
obtained under the DDH assumption and the d-linear (d ≥ 2) assumption, respectively.

Our second method can be applied to any key encapsulation mechanisms (KEM) satisfying
what we call loosely-homomorphic property. We use permutation networks for this case while we
do not use threshold decryption. From this method, new adaptive OTs are respectively obtained
from the QR and DCR assumptions.

Theoretically, the generic constructions show that encryption, with some homomorphic property,
implies adaptive OT.

Technically, we will later assume that the receiver never repeats its requests, which is not quite
a strict restriction. For applications sensitive to this, by adding dummy messages as elaborated
in [31], one can easily overcome the restriction.

Our generic methods enjoy further extensions. In Sect.5.1, we show how to obtain UC-secure
adaptive OT protocols, with a little loss in efficiency. Specifically, we use a transformation of Σ-
protocols to UC-secure ones [17, 26], with the help of a recent UC-secure commitment scheme [25]
by Lindell. The communication cost becomes O(L) for soundness error 2−L.

Furthermore, in Sect.5.2, we show an adaptive (and hence 1-out-of-2) OT protocol which is
resilient to the randomness leakage of the sender’s first step. As an independent work, Damgard,
Hazay and Patra [9] recently considered a framework for leakage resilient two party protocols.
However, they were unable to construct such a 1-out-of-2 OT (see Sect.6 of [9]).

1.3 Intuition behind our protocols

For the illustration, let us consider ElGamal encryption, over cyclic group G with generator g of
prime order q. The secret key is x = xS+xR ∈ Zq in which the sender S holds xS, and the receiver R



gets xR. This will prevent full decryption of a ciphertext without the cooperation from either party.
Let hS = gxS , hR = gxR , and h = hShR be public. The sender with private inputs (xS,M1, . . . ,Mn),
and the receiver R with private inputs (σ, xR) acts as follows for R to obtain Mσ.

1. S sends ElGamal ciphertexts (Ai, Bi) = (gri ,Mih
ri) to R for all 1 ≤ i ≤ n.

2. R with index σ sends back (C1, C2) = Rand(Aσ, Bσ) = (grσ+r
′
,Mσh

rσ+r′) where r′
$← Zq is

chosen by R.
3. S sends the partial decryption µS = CxS1 to R, who computes µR = CxR1 and µ = µSµR to obtain
Mσ = C2/µ.

If both parties are honest-but-curious, S cannot know σ due to the re-randomization at the second
step. Also, R cannot obtain other messages due to the encryption at the first step.

To attain full simulability, we add zero-knowledge proofs to each step. For the first and third
steps, the proofs are Schnorr-type ones, and are efficient. The second one is difficult, in which we
need to ensure that the re-randomized ciphetext (C1, C2) is either

Rand(A1, B1) ∨ · · · ∨Rand(An, Bn)

which can be implemented by an OR zero-knowledge proof. Naive and direct implementation of this
zero-knowledge proof requires O(n) communication cost for each receiver’s index. Quite surprisingly,
in Sect.3, we are able to reduce the cost to O(1) by utilizing shuffle protocols.

The above ideas work well with the DDH and its weaker variants. For the DCR case, it is hard
to share the secret key between the parties. For the QR case, we are unable to find a proper shuffle
protocol to work with since the message space is of order 2 (or 2`). We overcome these difficulties in
Sect.4, employing permutation networks for shuffling. The communication cost for each receiver’s
index is still O(1), but the initialization cost is slightly increased as shown in Table 1.

2 Preliminaries

2.1 Notations

Throughout the paper, OTn
k×1 denote the adaptive OT with n messages of the sender and k

choices of the receiver. ZKPK stands for zero-knowledge proof of knowledge, while ZKPM for
zero-knowledge proof of membership. WIPK means witness-indistinguishable proof of knowledge.
Furthermore, ZKPK{(x) : X = gx} means a ZKPK protocol showing the knowledge of secret x
satisfying the equation; and similar notations for more complex ZKPK, ZKPM, WIPK protocols
will be used.

Taking an element a randomly from a set A is denoted by a
$←A. We use a[i] to indicate the

i-th component of a. For example, when a is a bit string, a[i] is the i-th bit; when a is a tuple of
elements, a[i] becomes the i-th element.

2.2 Fully-simulatable OTn
k×1

We use almost the same presentation as [21], and consider a weak model of universally composable
(UC) framework as follows.

– At the beginning of the game, an adversary A can corrupt either a sender S or a receiver R,
but not both of them.



– A can send a message, denoted by Aout, to an environment Z after the end of the protocol.
However, A cannot communicate with Z during the protocol execution. (This property makes
the definitions weaker than standard UC security.)

The ideal functionality of OTn
k×1 will be shown below. For a protocol Π = (S,R), define the

advantage of Z as

Adv(Z)
def
=
∣∣∣Pr(Z = 1 in the real world)− Pr(Z = 1 in the ideal world)

∣∣∣
where the real and ideal worlds are defined below.

The ideal world: there are a few parties consisting of the ideal functionality Fadapt, an ideal world
adversary A′, and the environment Z. Also we have dummy sender S′ and receiver R′. The parties
behave as follows.

Initialization phase

1. The environment Z sends (M1, . . . ,Mn) to the dummy sender S′.

2. S′ sends (M∗1 , . . . ,M
∗
n) to Fadapt, where (M∗1 , . . . ,M

∗
n) = (M1, . . . ,Mn) if S′ is not corrupted.

Transfer phase i = 1, . . . , k

1. Z sends σi to the dummy receiver R′, where 1 ≤ σi ≤ n.

2. R′ sends σ∗i to Fadapt, where σ∗i = σi if R′ is not corrupted.

3. Fadapt sends received to A′.
4. A′ sends b = 1 or 0 to Fadapt, where b = 1 if S′ is not corrupted.

5. Fadapt sends Ei to R′, where

Ei =

{
M∗σ∗i

if b = 1

⊥ if b = 0

6. R′ sends Ei to Z.

After the end of the protocol, A′ sends a message A′out to Z. Finally Z outputs 1 or 0.

The real world: Simply in this world, the protocol Π = (S,R) is executed as specified by its
construction (thus without Fadapt). The environment Z and the real world adversary A behave in
the same way as above.

Definition 1. Protocol Π = (S,R) is secure against the sender (resp, receiver) corruption if for
any real world adversary A who corrupts the sender S (resp, receiver R), there exists an ideal
world adversary A′ who corrupts the dummy sender S′ (resp, dummy receiver R′) such that for any
poly-time environment Z, the advantage Adv(Z) is negligible.

Definition 2. Protocol Π = (S,R) is a fully simulatable OTn
k×1 if it is secure against the sender

corruption and the receiver corruption.



3 Generic adaptive OT from verifiable shuffles

3.1 Building blocks

Threshold PKE We need an 2-out-of-2 threshold PKE scheme TPKE, which consists of the
following algorithms.

– TGen: Two parties S and R run a protocol so that they respectively obtain (pk, skS) and (pk, skR)
where pk = (pkS, pkR) is the agreed public key and skS, skR are the shares of secret key. (The
public key is needed for all algorithms below, and we omit writing it for clarity.)

– TEnc(M ; r): output a ciphertext C for a plaintext M and a random coin r.
– TDec(skP, C): for P ∈ {S,R}, output µP which is the decryption share of the ciphertext C under

secret key skP.
– TComb(C, µS, µR): output a plaintext M by combining the input C, µS, µR.

We require the following properties on the TPKE scheme.

Homomorphism: Namely,

TEnc(M ; r)⊗ TEnc(M ′; r′) = TEnc(M ⊕M ′; r � r′),

where ⊗,⊕,� are the operators on the corresponding spaces.
Semantic security: Assuming either S or R is honest, we require that for all M , the ciphertext

Enc(M ; r) for random r is computationally indistinguishable from random elements over some
group.

Verifiable shuffles Consider a set of ciphertexts Ci = TEnc(Mi; ri) for 1 ≤ i ≤ n of the TPKE
scheme forming by S. Let I be the identity element of the message space. It is easy enough for R to
choose a permutation π on {1, . . . , n}, and random si to form the set of C ′i = Cπ(i)⊗TEnc(I; si) for
1 ≤ i ≤ n, so that both sets of ciphertexts contain the same plaintexts. The set of C ′i(1 ≤ i ≤ n) is
called a shuffle of the original one. If the scheme TPKE is semantically secure, publishing the shuffle
C ′i(1 ≤ i ≤ n) reveals nothing on the permutation π to S. Correctness of the shuffle is verified via
the following protocol

ZKPK
{

(π, si) : C ′i = Cπ(i) ⊗ TEnc(I; si)∀1 ≤ i ≤ n
}
,

which has efficient implementations for homomorphic encryption schemes such as ElGamal or Pail-
lier3 as shown in the work of Groth and Lu [14]. More generally, the results of Groth and Lu apply
for homomorphic encryption schemes with the following properties:

Proper message space: the order of the message space does not have any small prime factor
(say less than 280).

Root extraction: from Ce = TEnc(M ;R), it is possible to efficiently extract (m, r) such that
C = TEnc(m; r) for every e co-prime with the order of the message space.

The protocols for verifiable shuffles given in [14] are statistical strong HVZK arguments of three
rounds, and can be turned into fully zero-knowledge by standard techniques.

The additional property below will be needed in proving sender security.

3 However, the Paillier encryption scheme with threshold decryption needs a setup assumption for the secret keys.



Computing µS without skS: Let µS = TDec(skS, C
′) where C ′ = C ′π−1(σ) as above for some

1 ≤ σ ≤ n. Note that C ′ = Cσ ⊗ TEnc(I; sπ−1(σ)) for Cσ = TEnc(Mσ; rσ). We require that µS
can be alternatively expressed as a function of pk, Cσ,Mσ, sπ−1(σ), and skR. Namely there exists
an efficiently-computable function f such that we have µS = f(pk,Cσ,Mσ, sπ−1(σ), skR).

3.2 The OT protocol

Initialization:

1. The sender S and the receiver R run the protocol TGen so that they obtain a common public
key pk = (pkS, pkR); and S gets secret key skS, R gets secret key skR.The receiver R proves in
ZKPK that he knows skR corresponding to pkR.

2. For 1 ≤ i ≤ n, S computes and sends

Ci = TEnc(Mi; ri)

to R where ri are randomness used by TEnc.
3. The sender S then proves to R by ZKPK that he knows Mi for all i. (This is equivalent to

proving the knowledge of ri in our below instantiations.)
4. (Shuffling) The receiver R chooses a permutation π on {1, . . . , n} and randomness si for 1 ≤
i ≤ n, and computes then sends to S for all i

C ′i = Cπ(i) ⊗ TEnc(I; si),

where I is the unit element of the message space.
5. The receiver R proves to S in ZKPK that he knows π and si(1 ≤ i ≤ n) satisfying the equation

at Step 4.

The j-th transfer:

6. The receiver R obtains an index σ as input, and sends π−1(σ) to S.
7. The sender S checks π−1(σ) ∈ {1, . . . , n}, then computes and sends µS = TDec(skS, C

′
π−1(σ)) to

R.
8. The sender S then proves in ZKPM that he did the right (partial) decryption, with skS corre-

sponding to pkS, in the above step.
9. The receiver R himself computes µR = TDec(skR, C

′
π−1(σ)), and then obtaining

Mσ = TComb(pk, C ′π−1(σ), µS, µR).

To prove correctness of the OT, note that

C ′ = C ′π−1(σ) = Cσ ⊗ TEnc(I; sπ−1(σ)) = TEnc(Mσ, rσ)⊗ TEnc(I; sπ−1(σ))

which means C ′ encrypts the plaintext Mσ thanks to the homomorphic property of the threshold
PKE scheme. Now, by the correctness of the threshold PKE scheme, TComb(pk,C ′, µS, µR) is
exactly Mσ as required.

Theorem 1 The generic OTn
k×1 from verifiable shuffles above is fully simulatable, if the TPKE

scheme has semantic security.

The proof is postponed in Appendix A.



Common input: G = (G, g, q)

Sender(skS = x0, M1, . . . ,Mn) Receiver(skR = x1)

Initialization

h0 ← gx0
h0−−−→
h1←−−−−−−−−−−−−−−−−

ZKPK{(x1):h1=g
x1}

h1 ← gx1

Set h = h0h1; for 1 ≤ i ≤ n,
Ci ← TEnch(Mi; ri)(

= (gri ,Mi · hri)
) C1,...,Cn−−−−−−−−−→

ZKPK
{
(ri):Ci[1]=g

ri∀1≤i≤n
}

−−−−−−−−−−−−−−−−−−−−→
Choose permutation π

Choose si
$← Zq∀1 ≤ i ≤ n

C′i ← Cπ(i) · TEnc(1; si)
C′1,...,C

′
n←−−−−−−−−−

ZKPK
{
(π,si):C

′
i=Cπ(i)·TEnc(1;si)∀1≤i≤n

}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The j-th transfer

Choose index σ
Set C′ = C′π−1(σ)

C′←−−−−−−−−−
Check C′ ∈ {C′1, . . . , C′n}
µS ← TDec(x0, C

′)

(µS = C′[1]x0)
µS−−−−−−−−−→

ZKPM
{
(x0):µS=C

′[1]x0∧h0=g
x0

}
−−−−−−−−−−−−−−−−−−−−−−→

µR ← TDec(x1, C
′)

M ← TComb(C′, µS, µR)

Fig. 1. The OTnk×1 secure under the DDH assumption.

3.3 Instantiations from DDH and linear assumptions

OTn
k×1 from the DDH assumption We will use the threshold ElGamal encryption scheme. The

scheme works on a cyclic group G = (G, g, q) where g is the generator of prime order q, and has
semantic security under the DDH assumption on G.

– TGen: S chooses skS = x0
$← Zq, computes and sends h0 ← gx0 to R. Similarly, R chooses

skR = x1
$← Zq and sends h1 ← gx1 to S. The agreed public key is then h = h0h1.

– TEnc(M ; r): Output C = (C[1], C[2]) = (gr,M · hr) for r
$← Zq and M ∈ G.

– TDec(skP, C): Output µP = C[1]skP for P is either S or R.

– TComb(C, µS, µR): Output C[2]/(µSµR).

The TPKE scheme satisfies all requirements described in Sect.3.1. Our OTn
k×1 instantiation from the

threshold ElGamal encryption scheme is depicted in Fig.1. In the figure, the element µS = C ′[1]x0



can be alternatively expressed as4

µS = f(pk, Cσ,Mσ, sπ−1(σ), skR)
def
= Cσ[2]M−1σ Cσ[1]−x1h

sπ−1(σ)

0 ,

which is the formula needed when proving sender security.
Since the threshold ElGamal encryption scheme has semantic security under the DDH assump-

tion, thanks to Theorem 1, the OTn
k×1 in Fig.1 is fully-simulatable under the same assumption.

OTn
k×1 from the d-linear assumptions We also works on G = (G, g, q), and let us introduce

some more notations. For two vectors v = (v[1], . . . , v[l]) ∈ G1×l, u = (u[1], . . . , u[l]) ∈ Z1×l
q define

v · uᵀ = u · vᵀ =

l∏
i=1

v[i]u[i] ∈ G.

Matrix-matrix and matrix-vector multiplications are defined in the same manner. Sometimes, the
· operators are implicitly understood. Also recall that for u, u′ ∈ Z1×l

q , we have u + u′ = (u[1] +
u′[1], . . . , u[l] + u′[l]) as normal. It is easy to check that (u + u′) · vᵀ = (u · vᵀ)(u′ · vᵀ) ∈ G, and
v · (u+ u′)ᵀ = (v · uᵀ)(v · u′ᵀ) ∈ G.

For d ≥ 2, the following PKE scheme, introduced by Naor and Segev [28], has semantic security
under the d-linear assumption.

– Gen: sk
$← Z

(d+1)×1
q , φ

$←Gd×(d+1). The secret key is sk, and the public key is pk = (φ, ψ) for
ψ = φ · sk ∈ Gd×1.

– Enc(M ;R): On message M ∈ G and random R ∈ Z1×d
q as input, output the ciphertext C =

(Rφ, (Rψ)M) ∈ G1×(d+1) ×G.
– Dec(sk, C): On input C and sk, output C[2]/(C[1] · sk).

The correctness of the PKE scheme comes from the equation (R · φ) · sk = R · (φ · sk).
The semantic security of the PKE scheme implies that, given φ, ψ, the pair Enc(1;R) = (Rφ,Rψ)

is indistinguishable from random over G1×(d+1) ×G.
We now present the 2-out-of-2 threshold variant of the above PKE, whose necessary properties

are checked in Appendix B. The resulting OT scheme is given in Fig.2.

–TGen: The parties S and R, using G, agree on the matrix φ ∈ Gd×(d+1). They then choose secrets

skS and skR respectively in Z
(d+1)×1
q ; S publishes ψS = φ · skS ∈ Gd×1 while R does the same

with ψR = φ · skR ∈ Gd×1. The agreed common public key is φ, ψS, ψR in which ψ = ψSψR =
(ψS[1]ψR[1], . . . , ψS[d]ψR[d])ᵀ ∈ Gd×1 will be used in encryption. Note that ψ = φ · (skS + skR).

–TEnc(M ;R): Output C = Enc(M ;R) = (Rφ, (Rψ)M) ∈ G1×(d+1) ×G as above.
–TDec(skP, C): Output µP = C[1] · skP ∈ G for P ∈ {S,R}.
–TComb(C, µS, µR): Output C[2]/(µSµR).

4 Generic adaptive OT from permutation networks

We present OTn
k×1 with O(1) communication cost for the transfer phase, while with O(n log n) for

the initialization phase. The assumptions used for security will be DCR or QR.

4 Let us elaborate a bit on the formula. We have Cσ[2]M−1
σ Cσ[1]−x1h

s
π−1(σ)

0 = (Mσh
rσ )M−1

σ Cσ[1]−x1h
s
π−1(σ)

0 =

hrσ (grσ )−x1h
s
π−1(σ)

0 = (h0h1)rσ (h−rσ1 )h
s
π−1(σ)

0 = h
rσ+sπ−1(σ)

0 = g
(rσ+sπ−1(σ)

)x0 = C′[1]x0 = µS, as required.



Common input: G = (G, g, q)
Sender(skS, M1, . . . ,Mn) Receiver(skR)

Initialization

Agree on φ∈RG
d×(d+1)(see below)

←−−−−−−−−−−−−−−−−−−−−−−−−−−→
ψS ← φ · skS ∈ Gd×1 ψS−−−→

ψR←−−−−−−−−−−−−−−−−−−
ZKPK{(skR):ψR=φ·skR}

ψR ← φ · skR ∈ Gd×1

Set ψ = ψSψR; for 1 ≤ i ≤ n,
Ci ← TEnc(Mi;Ri)(

= (Riφ, (Riψ)Mi)
) C1,...,Cn−−−−−−−−−→

ZKPK
{
(Ri):Ci[1]=Ri·φ ∀1≤i≤n

}
−−−−−−−−−−−−−−−−−−−−−−→

Choose permutation π

Choose Si
$← Z1×d

q

C′1,...,C
′
n←−−−−−−−−− C′i ← Cπ(i) · TEnc(1;Si)

ZKPK
{
(π,Si):C

′
i=Cπ(i)·TEnc(1;Si)∀1≤i≤n

}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The j-th transfer

Choose index σ
C′←−−−−−−−−− Set C′ = C′π−1(σ)

Check C′ ∈ {C′1, . . . , C′n}
µS ← TDec(skS, C

′)

(µS = C′[1] · skS)
µS−−−−−−−−−→

ZKPM
{
(skS):µS=C

′[1]·skS ∧ ψS=φ·skS
}

−−−−−−−−−−−−−−−−−−−−−−−−−−→
µR ← TDec(skR, C

′)
M ← TComb(C′, µS, µR)

Fig. 2. The OTnk×1 secure under the d-linear assumption. The matrix φ ∈ Gd×(d+1) can be agreed by S and R as

follows. S chooses and sends φS = (gti,j )(i,j)
$←Gd×(d+1) to R, and then proves in ZK the knowledge of all ti,j . R does

the same with φR = (gt
′
i,j ). The matrix φ is set as (φS[i, j]φR[i, j])(i,j), which remains uniformly distributed even if

either S or R is corrupted.

4.1 Loosely homomorphic KEM

A key encapsulation mechanism KEM consists of algorithms Gen, Encap, Decap as follows: Gen
produces keys (pk, sk); Encap(pk) outputs (ψ,K) where ψ is the encapsulation of the key K;
Decapsk(ψ) returns K as the decapsulation of ψ. We write Encap(pk; r) to emphasize the random
coin r. We need the following conditions on KEM.

Semantic security: Suppose Encap(pk) = (ψ,K). Given pk, ψ, the key K is indistinguishable
from random.

Uniformity of encapsulation: Let Encap(pk; r) = (ψ(r),K) for uniformly distributed random-
ness r. Then, ψ(r) is also uniformly distributed over some group.

Loose homomorphism: Given (ψ,K) and (ψ′,K ′), there are efficiently computable functions
f1, f2 such that

Decapsk(ψ · ψ′) = f1(ψ,ψ
′,K,K ′) and K ′ = f2

(
ψ,ψ′,K,Decapsk

(
ψ · ψ′

))
.



The former equation is used in proving sender security, while the latter is for the OT’s correct-
ness. It is clear that a KEM is loosely homomorphic if it is homomorphic (namely, satisfying
Decapsk(ψ · ψ′) = K ⊕K ′).

Let us now show some concrete examples of loosely homomorphic KEM.

First example KEMDCR: Gen generates primes p, q, setting pk = N = pq, and sk = (p, q). Encap

takes r
$← ZN and computes (ψ,K) ∈ Z2

N satisfying rN = ψ + K · N mod N2. Note that ψ =
[rN mod N ] ∈ ZN . Using sk, Decapsk(ψ) first computes r satisfying rN = ψ mod N , an then
outputs K = (rN − ψ mod N2)/N . The computation ψ · ψ′ is normally defined over ZN .

The semantic security of KEMDCR comes from the DCR assumption. To show that it is loosely
homomorphic, consider (ψ,K) and (ψ′,K ′) satisfying rN = ψ+K ·N mod N2, and r′N = ψ′+K ′ ·
N mod N2. Writing ψψ′ = S + TN mod N2, we have

(rr′)N = [(ψ +KN)(ψ′ +K ′N) mod N2] = [S + (T +Kψ′ +K ′ψ)N mod N2],

so that K̂ = Decapsk(ψψ
′ ∈ ZN ) = T + Kψ′ + K ′ψ mod N , which is the function f1. Moreover,

since (ψ +KN)(ψ′ +K ′N) = S + K̂N mod N2, the key K ′ can be computed as

K ′ =
[(S + K̂N)(ψ +KN)−1 − ψ′] mod N2

N
,

which expresses the function f2.

Second example KEMQR: To apply the recent 3-move ZKPK of Cramer and Damg̊ard [6], we
will use an expanded version of the Goldwasser-Micali encryption scheme. In particular, Gen is the
same as above, except that a quadratic non-residue y ∈ QNR+1

N is added to pk. The algorithm

Encap takes K
$←{0, 1}` and r

$← Z`N , returning the key K and its encapsulation

ψ =
(
yK[1]r[1]2 mod N, . . . , yK[`]r[`]2 mod N

)
.

The algorithm Decapsk(ψ), for 1 ≤ i ≤ `, returns K[i] = 0 if ψ[i] is a quadratic residue modulo N ;
otherwise returns K[i] = 1. The scheme KEMQR is homomorphic, and has semantic security under
the QR assumption.

In [6], the protocol WIPK{(K, r) : ψ = Encap
(
N ; (K, r)

)
}, is realized by a Σ-protocol, with

soundness error 2−` and communication cost O(`) (instead of O(`2) via the cut-and-choose tech-
nique). Turning the Σ-protocol into a fully zero-knowledge one with 4 moves can be done by
standard techniques (e.g., see [8]).

4.2 The OT protocol

We show that an adaptive OTn
k×1 can be constructed from a loosely homomorphic KEM = (Gen,

Encap, Decap).

Initialization Phase

1. The sender S generates (pk, sk)← Gen and sends pk to R. The sender proves that pk is a valid
public-key by ZKPM.



2. For i = 1, . . . , n, the sender S generates (ψ(ri),Ki) = Encap(pk; ri) by choosing ri randomly
and sends to R

Ci = (Ai, Bi) = (ψ(ri),KiMi),

where ri is a random string used by Encap.
3. The sender proves by ZKPK that he knows ri of ψ(ri) for every 1 ≤ i ≤ n. Alternatively, he

proves that he knows sk by ZKPK.
4. (Permuting and Blinding) The receiver chooses ui randomly for 1 ≤ i ≤ n, and generates

Encap(pk;ui) = (ϕ(ui),K
′
i).

He then randomly picks a permutation π on {1, . . . , n}, computes Ui = Aπ(i) · ϕ(ui), and sends
U1, . . . , Un to the sender. The receiver, equipped with secrets (u1, . . . , un) and π, proves in
ZKPK that [

U1 = Aπ(1) · ϕ(u1)
]
∧ · · · ∧

[
Un = Aπ(n) · ϕ(un)

]
.

We will describe in Sect.4.3 how to perform the ZKPK with O(n log n) communication cost.

The jth Transfer Phase

5. The receiver chooses an index 1 ≤ σ ≤ n, then sends U = Uπ−1(σ).

6. The sender checks U ∈ {U1, . . . , Un}, computes K̂ = Decapsk(U) and sends K̂ to the receiver.
7. The sender proves that K̂ = Decapsk(U) by ZKPM.
8. Note that U = Aσ · ϕ(uπ−1(σ)). The receiver computes

Kσ = f2

(
Aσ, ϕ(uπ−1(σ)),K

′
π−1(σ), K̂

)
,

and then obtains Mσ by computing BσK
−1
σ . (In additive groups, this becomes Bσ −Kσ, and

all Bi as above are Ki +Mi.)

Theorem 2 The generic OTn
k×1 from permutation networks above is fully simulatable, if the KEM

scheme has semantic security. In other words, loosely-homomorphic KEM implies adaptive OT.

The proof is postponed in Appendix C. Below we will show how to obtain efficient instantiations
based on specific complexity assumptions.

4.3 How to execute the ZKPK at Step 4

The case n = 2: First, let us focus on n = 2, proving the knowledge of u1, u2 such that

U1 = Aπ(1) · ϕ(u1) ∧ U2 = Aπ(2) · ϕ(u2),

for some permutation π on {1, 2}. The task is equivalent to proving(
U1 = A1 · ϕ(u1) ∧ U2 = A2 · ϕ(u2)

)
∨
(
U1 = A2 · ϕ(u1) ∧ U2 = A1 · ϕ(u2)

)
,

depending on whether
(
π(1), π(2)

)
= (1, 2) or (2, 1). Expanding further, what is proved becomes(

U1 = A1 · ϕ(u1) ∨ U1 = A2 · ϕ(u1)
)
∧
(
U1 = A1 · ϕ(u1) ∨ U2 = A1 · ϕ(u2)

)
∧
(
U2 = A2 · ϕ(u2) ∨ U1 = A2 · ϕ(u1)

)
∧
(
U2 = A2 · ϕ(u2) ∨ U2 = A1 · ϕ(u2)

)
.
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Fig. 3. From n = 2 to n = 4 with a permutation network of five switches.

The above are exactly four OR-proofs. If one can implement the interactive proof WIPK{(u) :
U = A ·ϕ(u)} by a Σ-protocol, then it is well-known that one can efficiently realize the OR-proofs
also with Σ-protocols. Note that if u1, u2 are known, then the permutation π can be extracted as
well. Transforming Σ-protocols to ZKPK ones can be done by well-known techniques [7]. There-
fore, the ZKPK for n = 2 in consideration can be implemented in four rounds, and we count its
communication cost asymptotically as O(1).

From 2 to general n: We will use the idea of n-permutation networks, which turn n inputs to n
outputs, and the outputs are a permutation of the inputs. It is known that n-permutation networks
can be built from 2-ones, which are called switches. There are constructions of n-permutation
networks with O(n log2 n) [5] or even O(n log n) switches [1,10]. A comprehensive treatment on the
topic can be found in [5, Chapter 28].

The idea is now we replace the switches by the WIPK protocol for n = 2 described above. We
need O(n log n) protocols as switches, and each protocol requires O(1) communication cost, so that
the total communication cost becomes O(n log n).

Let us concretely illustrate how one proceeds from n = 2 to n = 4, using the permutation
network depicted in Fig.3 of five switches. The elements Wi, Ti, Ui are sent to the sender by the
receiver5. The first two switches ρ and ν prove that

W1 = Aρ(1) · ϕ(w1),W3 = Aρ(3) · ϕ(w3),W2 = Aν(2) · ϕ(w2),W4 = Aν(4) · ϕ(w4).

Consequently, the second two switches δ and η ensure

T1 = Wδ(1) · ϕ(t1), T2 = Wδ(2) · ϕ(t2), T3 = Wη(3) · ϕ(t3), T4 = Wη(4) · ϕ(t4).

The final switch τ is between T2 and T3, showing

U2 = Tτ(2) · ϕ(v2) ∧ U3 = Tτ(3) · ϕ(v3).

To ease the illustration, let us take concrete switches τ = (2 3) (namely 2 to 3 and vice versa),
δ = (1 2), ν = (2 4), and the others are identity switches. Denote U ∼ A if there is u such that
U = A · ϕ(u), so that

U1 ∼ T1 ∼W2 ∼ A4

U2 ∼ T3 ∼W3 ∼ A3

U3 ∼ T2 ∼W1 ∼ A1

U4 ∼ T4 ∼W4 ∼ A2

5 In general, the receiver needs to send n (= 4 in Fig.3) elements at O(logn) (= 3 in Fig.3) steps.



which means (U1, U2, U3, U4) blinds and permutes (A1, A2, A3, A4) as expected.

Instantiations: As shown above, we just need to implement the atomic WIPK{(u) : U = A ·ϕ(u)}
by a Σ-protocol.

DCR assumption: Set ϕ(u) = uN mod N for u ∈ ZN , so that the atomic WIPK is similar to
the GQ proof [15].

QR assumption: Set

ϕ (u = (K, r)) =
(
yK[1]r[1]2 mod N, . . . , yK[`]r[`]2 mod N

)
for u = (K, r) ∈ Z`2 × Z`N . The elegant result of Cramer and Damg̊ard [6] gives us the desired
3-move WIPK with soundness error 2−`.

4.4 How to execute other zero-knowledge protocols

The ZKPM at step 7, in the case of KEMDCR, is equivalent to proving rN = U + K̂N mod N2

for some r, for which the 4-move ZK protocol can be found in [24]. For KEMQR, proving U =

(yK̂[1]r[1]2 mod N, . . . , yK̂[`]r[`]2 mod N) for some r ∈ Z`N is needed, which can be accomplished by
the 4-move ZK protocol for the knowledge of ` square roots in [6].

We now turn to the necessary protocols for the validity of the public key. Proving y is a quadratic
non-residue can be done in 4 moves as in [6]. What is left is how to prove the validity of N , namely
N = pq for some distinct primes p, q. We proceed in two steps: first proving gcd(N,φ(N)) = 1 in 4
moves (see Appendix D), and then showing N = pq as required. Merging the moves of the former
and the latter gives us the 4-move protocol for the validity of N . The latter protocol is accomplished
as follows.

Proving N = pq in four moves: Suppose gcd(N,φ(N)) = 1 and N is not a prime, so that N =∏ν
i=1 pi for ν ≥ 2, and let y ∈ J +1

N \ (Z∗N )2. Improving a cut-and-choose protocol in [20], the
following protocol proves that ν = 2.

1. The verifier sends random z1, . . . , z` ∈ J +1
N to the prover.

2. The prover shows that there are (mi, ri) ∈ Z2 × Z∗N satisfying

z1 = ym1r21 ∧ · · · ∧ z` = ym`r2` ,

by the 4-move ZK protocol of Cramer and Damg̊ard [6], whose communication cost is O(`)
elements in Z∗N with soundness error 2−`.

The completeness, soundness, and zero-knowledge properties are checked in Appendix E.

5 Extensions

5.1 UC-secure OT under the DDH assumption

Although being fully-simulatable, the schemes in previous sections is not UC-secure. The reason is
that rewinding is used in the zero-knowledge proofs. Therefore, to obtain UC-secure OT protocols,
it suffices to use UC-secure zero-knowledge proofs in our constructions.



Observe that all zero-knowledge proofs used in Sect.3 can be effectively realized from Σ-
protocols. Therefore, if we can turn a Σ-protocol into a UC-secure zero-knowledge one, then we are
done. Fortunately, such a transformation is presented by Hazay and Nissim [17] (see also [26]) with
the help of a UC-secure commitment scheme (e.g., by Lindell [25]), with a bit sacrifice in efficiency.
Let (a, c ∈ {0, 1}, z) be transcripts of the Σ-protocol, we roughly describe the transformation here
for completeness.

1. The prover generates (a, 0, z0) and (a, 1, z1). The prover then commits a, z0, z1 to the verifier
via a UC-secure commitment scheme (e.g. [25]).

2. The verifier sends back a challenge c
$←{0, 1}.

3. The prover decommits a, zc. The verifier then checks whether (a, c, zc) is correct as in the basic
Σ-protocol.

One needs to repeat the above L times to obtain soundness error 2−L. Plugging this transformation
into the instantiation in Sect.3, we obtain a UC-secure OT protocol under the DDH assumption.
(Note that the UC-secure commitment scheme of Lindell [25] is under the DDH assumption.) The
trade-off for this higher security is the efficiency loss by a factor L.

5.2 Leakage-resilient adaptive OT under the DDH assumption

Let us re-consider the generic construction given in Sect.4, yet further assume that the randomness
of the sender at the first step is somehow leaked. Namely, the randomness used to generate the
secret sk is leaked. We show that if using leakage-resilient encryption, the resulting OT instantiation
remains secure. Specifically, under the DDH assumption, consider the following KEM derived from
Naor and Segev [28, Eprint, Sect.5.2]. The scheme is proved leakage-resilient with rate 1− o(1).

– Gen: s1, . . . , s`
$← Zq, g1, . . . , g`

$←G, h =
∏`
i=1 g

si
i . Set the public key pk = (g1, . . . , g`, h) and

the secret key s = (s1, . . . , s`).

– Encap: Take r
$← Zq, the encapsulation of K = hr is (gr1, . . . , g

r
` ).

– Decap: To decapsulate (gr1, . . . , g
r
` ), compute

∏`
i=1(g

r
i )
si , which equals hr.

The KEM is homomorphic and leakage-resilient, so we can apply the result in Sect.4 to obtain a
leakage-resilient OT protocol under the DDH assumption. The atomic WIPK used in the permuta-
tion network is to essentially prove the knowledge of r ∈ Zq satisfying C = (gr1, . . . , g

r
` ). This WIPK

and other required zero-knowledge proofs can be realized efficiently.
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A Proof of Theorem 1

Lemma 3 (Receiver security) The OTn
k×1 protocol in Sect.3 is secure against sender corrup-

tion.

Proof. For every real-world adversary A who corrupts the sender, we construct an ideal-world
adversary A′ such that the advantage Adv(Z) is negligible.

We will consider a sequence of games beginning from game G0, which is the real world exper-
iment, and proceed to the final game, which is the ideal world experiment as in Sec.2.2. For each
integer i, let

Pr(Gi) = Pr (Z = 1 in game Gi) ,

and denote Pr(Gi) ≈ Pr(Gj) when the two values are negligibly close.

Game G0: This is the real world experiment such that the sender is controlled by the adversary
A. By definition Pr(G0) = Pr(Z = 1 in the real world).

Game G1: This game is the same as the previous one except the following. In the initialization
phase, the game extracts M∗i (1 ≤ i ≤ n) from A by using the knowledge extractor of the ZKPK.

If it fails, then the protocol stops. Since the failure occurs with negligible probability, we have
Pr(G0) ≈ Pr(G1).

Game G2: This game is the same as game G1 except that, in the initialization phase, the game
uses two zero-knowledge simulators of the ZKPKs for proving the knowledge of skR, and (π, si)
respectively. Since ZKPK protocols are zero-knowledge, we have Pr(G1) ≈ Pr(G2).

Game G3: This game is the same as the previous one, except that C ′i(1 ≤ i ≤ n) are ran-
domly chosen from the ciphertext space. We have Pr(G3) ≈ Pr(G2), thanks to the semantic
security of the threshold encryption scheme. (Namely, TEnc(I; si) are almost random, so are
C ′i = Cπ(i)TEnc(1; si).)

Game G4: This game is the same as the previous one except the following. In each transfer phases,
the receiver chooses C ′ randomly and distinctly from the set {C ′1, . . . , C ′n}. Since the view of A is
unchanged, we have Pr(G4) = Pr(G3).

Game G5: This game is the ideal world experiment in which an ideal-world adversary A′ uses A
as a black-box as follows.

1. A′ receives (M1, . . . ,Mn) from Z, and sends (M1, . . . ,Mn) to A.
2. A′ runs game G4 with A, where A′ plays the role of the receiver, which can be accomplished

since σ, the secret index of the receiver, is not used in game G4.
3. A′ sends the extracted (M∗1 , . . . ,M

∗
n) as in game G1 to Fadapt.

4. In each transfer phase, if A behaved in an acceptable way, then A′ sends b = 1 to Fadapt.
Otherwise A′ sends b = 0 to Fadapt.

5. Suppose that A sends Aout to Z at the end of the game. Then A′ sends A′out = Aout to Z.



We have Pr(G4) = Pr(G5), and by definition Pr(Z = 1 in the ideal world) = Pr(G5). Summing
up all above, we have Adv(Z) = |Pr(G0)− Pr(G5)| is negligible as required. ut

Lemma 4 (Sender security) The OTn
k×1 protocol in Sect.3 is secure against receiver corruption.

Proof. For every real-world adversary A who corrupts the receiver, we construct an ideal-world
adversary A′ such that the advantage of the environment Adv(Z) is negligible.

We again consider a sequence of games in which the first is the real world experiment of Sec.2.2,
while the final is the ideal world experiment. Again, let Pr(Gi) = Pr(Z = 1 in game Gi).

Game G0: In this game the receiver is controlled by the adversary A, and by definition Pr(G0) =
Pr(Z = 1 in the real world).

Game G1: This game is the same as game G0 except the following. In the initialization phase, the
game extracts skR, and (π, si) by using the extractors of the corresponding ZKPKs respectively.

Unless the extractors fail, which occurs with negligible probability, games G1 and G0 are iden-
tical, so that Pr(G1) ≈ Pr(G0).

Game G2: In this game the index σ used in the transfer phase is extracted as follows. Since A
sends C ′ such that C ′ ∈ {C ′1, . . . , C ′n}, the sender searches the index 1 ≤ ρ ≤ n satisfying C ′ = C ′ρ.
Recall C ′ = C ′π−1(σ), so π−1(σ) = ρ, and hence σ = π(ρ). Since the change is syntactic, we have

Pr(G2) = Pr(G1).

Game G3: This game is the same as the previous one except the following. In each transfer phase,
the game computes µS as

µS = f(pk, Cσ,Mσ, sπ−1(σ), skR).

Since the change is syntactic, we have Pr(G3) = Pr(G2).

Game G4: This game is the same as the previous one except the following. In each transfer phase,
instead of running the ZKPK proving the correct decryption of C ′ under skS, the zero-knowledge
simulator of the ZKPK is run so that Pr(G4) = Pr(G3).

Game G5: This game is the same as the previous one except the following. In the initialization
phase, each Ci is randomly chosen. It is easy to see that Pr(G5) ≈ Pr(G4) thanks to the semantic
security of the TPKE scheme.

Game G6: This game is the ideal world experiment in which an ideal-world adversary A′ uses A
as a black-box as follows.

1. A′ runs game G5 with A, where A′ plays the role of the sender.

2. In each transfer phase, A′ sends σ which is extracted as in game G2 to Fadapt, and obtains Mσ.
Then A′ computes µS as in game G3.

3. Suppose that A sends Aout to Z at the end of the game. Then A′ sends A′out = Aout to Z.

We have by definition Pr(G6) = Pr(Z = 1 in the ideal world). Summing up all above, we have
Adv(Z) = |Pr(G0)− Pr(G6)| is negligible as required. ut



B The properties of the d-linear assumption-based threshold PKE

Correctness: The correctness of the threshold variant comes from the following equations Rψ =
R(φ(skS + skR)) = (Rφ)(skS + skR) = C[1](skS + skR) = (C[1]skS)(C[1]skR) = µSµR ∈ G.

Homomorphism: Following from below equations

TEnc(M ;R) · TEnc(M ′;R′) =
(
Rφ, (Rψ)M

)
·
(
R′φ, (R′ψ)M ′

)
=
(
(Rφ)(R′φ), (Rψ)(R′ψ)MM ′

)
=
(
(R+R′)φ, (R+R′)ψMM ′

)
= TEnc(MM ′;R+R′).

Semantic security: The security of the threshold variant can be reduced to its original PKE
as follows. Note that TEnc(1;R) =

(
Rφ,Rφ · (skS + skR)

)
=
(
Rφ, (Rφ · skS)(Rφ · skR)

)
=(

Rφ, (RψS)(RψR)
)
.

Suppose S is corrupted. In that case we have (Rφ,RψR) is indistinguishable from random from
the view of S, so is TEnc(1;R). Similarly, TEnc(1;R) is still random-like if R is corrupted.
Therefore, even either S or R is corrupted, TEnc(1;R) still looks random.

Proper message space: This (and the right below property) is for the usage the shuffle protocols
of [14]. The message space is G of prime order q, which does not have small prime factors if q
is big enough.

Root extraction: Given Ce = TEnc(M ;R) =
(
Rφ, (Rψ)M

)
with (e, q) = 1, we want to extract

(m, r) satisfying C = TEnc(m; r). This is done by just putting m = M [e−1 mod q], and r =
R · [e−1 mod q] =

(
R[1](e−1 mod q), . . . , R[d](e−1 mod q)

)
.

Computing µS without skS: Referring to Fig.2, we show that the element µS = TDec(skS, C
′) =

C ′[1] · skS can be computed by R in case the receiver already knew Mσ. Note that

C ′ = C ′π−1(σ) = Cσ · TEnc(1;Sπ−1(σ)) = TEnc(Mσ;Rσ + Sπ−1(σ))

so that C ′[1] = (Rσ + Sπ−1(σ))φ, and hence

µS = (Rσ + Sπ−1(σ))φ · skS = (Rσφ · skS)(Sπ−1(σ)φ · skS)

=
(
Rσφ · (sk − skR)

)(
Sπ−1(σ)φ · (sk − skR)

)
for sk = skS + skR

= (Rσφsk) · (Sπ−1(σ)φsk) ·
{
Rσφ(−skR)

}
·
{
Sπ−1(σ)φ(−skR)

}
= (Cσ[2]M−1σ ) · (Sπ−1(σ)ψ) ·

{
Cσ[1](−skR)

}
·
{
Sπ−1(σ)φ(−skR)

}
def
= f(φ, ψ,Cσ,Mσ, Sπ−1(σ), skR),

which is a function of what R has, as desired.

C Proof of Theorem 2

Lemma 5 (Receiver security) The OTn
k×1 protocol in Sect.4 is secure against sender corrup-

tion.



Proof. For every real-world adversary A who corrupts the sender, we construct an ideal-world
adversary A′ such that the advantage Adv(Z) is negligible. We consider a series of games as
follows.

Game G0: This is exactly the real-world experiment where the sender is corrupted.

Game G1: This game is the same as the above game except that it extracts the secret key sk from
the corrupted sender. It is easy to see that Pr(G1) ≈ Pr(G0).

Game G2: The difference in this game is that U1, . . . , Un is chosen randomly and sent to the sender.
Then the simulator for the corresponding ZKPK (at step 4) is run. It is clear that Pr(G2) ≈ Pr(G1).

Game G3: This is the ideal experiment in which A′ runs game G2 with A. Since A′ extracts sk
from A, it obtains M∗i from Ci for 1 ≤ i ≤ n and sends all the messages to Fadapt. In each transfer,
A′ chooses U randomly and distinctly from {U1, . . . , Un}. Moreover, if the ZKPM (at step 7) passes,
A′ sends 1, otherwise sends 0 to Fadapt.

We thus have Pr(G3) = Pr(G2) and hence Pr(G3) ≈ Pr(G0), meaning the ideal and real worlds
are indistinguishable, so that Adv(Z) must be negligible as required. ut

Lemma 6 (Sender security) The OTn
k×1 protocol in Sect.4 is secure against receiver corruption.

Proof. For every real-world adversary A who corrupts the receiver, we construct an ideal-world
adversary A′ such that the advantage of the environment Adv(Z) is negligible. We consider a
series of games as follows. First, game G0 is the real-world experiment.

Game G1: This game is identical to the above game, except that it extracts the secrets u1, . . . , un
and π from the corrupted receiver. We have Pr(G1) ≈ Pr(G0).

Game G2: In this game, the index σ is extracted as follows. In the transfer phase, when the
receiver sends U , the game searches for an index 1 ≤ ρ ≤ n such that U = Uρ. By the construction
U = Uπ−1(σ) so that ρ = π−1(σ) and hence σ = π(ρ). We have Pr(G2) ≈ Pr(G1).

Game G3: In this game, K̂ = Decapsk(Uπ−1(σ)) = Decapsk
(
Aσ · ϕ(uπ−1(σ))

)
is alternatively com-

puted as K̂ = f1
(
Aσ, ϕ(uπ−1(σ)), BσM

−1
σ ,K ′π−1(σ)

)
. We have Pr(G3) ≈ Pr(G2).

Game G4: In this game, all Ci = (Ai, Bi) are randomly chosen. By the semantic security of KEM,
we have Pr(G4) ≈ Pr(G3).

Game G5: This is the ideal world in which A′ runs A as in game G4. The adversary A′ extracts
σ as in game G2, and the index is sent to Fadapt to obtain Mσ. Then the key K̂ is computed as
in game G3. All the zero-knowledge proofs to the corrupted receiver are replaced by the simulated
ones. It is clear that Pr(G5) ≈ Pr(G4) so that Pr(G5) ≈ Pr(G0), and hence Adv(Z) is negligible
as required. ut

D Proving gcd(N,φ(N)) = 1

Suppose that N is odd and not a prime. The factorization of N is

N =

ν∏
i=1

prii ,

for odd, distinct primes pi, integers ri ≥ 1, and ν ≥ 1. We suggest the following 4-move protocol
showing that gcd

(
N,φ(N)

)
= 1.



1. The verifier sends random y1, . . . , y` ∈ Z∗N to the prover.
2. The prover shows in ZKPM that there are xi ∈ Z∗N satisfying yi = xNi for all 1 ≤ i ≤ `.

Completeness: if gcd
(
N,φ(N)

)
= 1 then x 7→ xN is a bijection over Z∗N . Given y1, . . . , y` ∈ Z∗N ,

the prover then can compute the N -th roots xi to complete the protocol.
Soundness: Suppose gcd

(
N,φ(N)

)
> 1. We have the set (Z∗N )N = {xN : x ∈ Z∗N} is a subgroup

of (but does not equal) Z∗N , so that |(Z∗N )N | ≤ φ(N)/2. Thus for a random y ∈ Z∗N , Pr[y ∈
(Z∗N )N ] ≤ 1/2, so that

Pr[∃xi ∈ Z∗N : yi = xNi ∀1 ≤ i ≤ `] = Pr[yi ∈ (Z∗N )N∀1 ≤ i ≤ `] ≤ 2−`,

which is the soundness error.
Zero-knowledge: coming directly from the sub-protocol.

If gcd
(
N,φ(N)

)
= 1, then ri = 1 for all i, which is the fact we use in proving N = pq. To see why,

note that φ(N) =
∏ν
i=1 p

ri−1
i (pi− 1), so that 1 = gcd

(
N,φ(N)

)
≥
∏ν
i=1 p

ri−1
i , and hence ri = 1 for

all i.

E Proofs for ZKPM of N = pq

Completeness: If ν = 2, namely N = p1p2, then for all z ∈ J +1
N = QRN ∪QNR+1

N , there always
exists (m, r) ∈ Z2 × Z∗N meeting z = ymr2 mod N .

Soundness: Suppose ν ≥ 3. Since N is not a square of an integer, |J +1
N | = φ(N)/2 and |(Z∗N )2| =

φ(N)/2ν . Thus [J +1
N : (Z∗N )2] = 2ν−1 ≥ 4. For a random z ∈ J +1

N ,

Pr[z = ymr2 for some m, r ∈ Z2 × Z∗N ]

= Pr[z = r2 for some r] + Pr[zy−1 = r2 for some r]

= Pr[z ∈ (Z∗N )2] + Pr[zy−1 ∈ (Z∗N )2]

≤ 2 · 1

4
=

1

2
,

so that Pr[z1 = ym1r21 ∧ · · · ∧ z` = ym`r2` ] ≤ 2−` provided that ν ≥ 3.
Zero-knowledge: coming directly from the protocol at step 2.


