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A Simple Improvement for Integer Factorizations with Implicit
Hints
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SUMMARY In this paper, we describe an improvement of integer fac-
torization of k RSA moduli Ni = piqi (1 ≤ i ≤ k) with implicit hints,
namely all pi share their t least significant bits. May et al. reduced this
problem to finding a shortest (or a relatively short) vector in the lattice of
dimension k obtained from a given system of k RSA moduli, for which they
applied Gaussian reduction or the LLL algorithm. In this paper, we improve
their method by increasing the determinant of the lattice obtained from the
k RSA moduli. We see that, after our improvement, May et al.’s method
works smoothly with higher probability. We further verify the efficiency of
our method by computer experiments for various parameters.
key words: integer factorization with implicit hints

1. Introduction

The integer factorization is a fundamental theme of com-
puter algebra and also an important topic of public key cryp-
tography, especially for cryptosystems whose security relies
on the infeasibility of integer factorization (e.g., the RSA
cryptosystem [15]). So far, many researchers proposed var-
ious methods for factoring integers, such as Pollard’s rho
method [14], the number field sieve [6] and so on. There is
another aspect for integer factorization: characterizations of
weaker integers, namely studying properties with which we
can efficiently factor integers, for example, Pollard’s p − 1
method [13].

In this paper, we investigate the integer factorization
with implicit hints. The origin of this topic is Coppersmith’s
paper [1]: He proposed a method for factoring an RSA mod-
ulus N = pq, provided we know a half of the most signifi-
cant bits of p. This is a kind of factorization methods using
some explicit hints.

On the other hand, May and Ritzenhofen proposed a
method for integer factorization with implicit hints [8]. For
an RSA modulus N1 = p1q1 to be factored, we get some
hints of k − 1 RSA moduli Ni = piqi (2 ≤ i ≤ k) satisfying
p1 ≡ p2 ≡ · · · ≡ pk (mod 2t), that is, all pi share the t least
significant bits. Their method reduces the factorization of
N1, more precisely finding q1, to finding a short non-zero
vector in the lattice associated with a system of congruences
obtained from implicit hints. In order to realize that, they
used the so-called LLL algorithm [7], which computes a ba-
sis in which the length of each component vector is rela-
tively short.
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Let α be an integer such that qi < 2α. In the case of
k ≥ 3, under certain assumptions based on the Minkowski
theorem and a property of a lattice, we get qi efficiently if
the inquality t ≥ k

k−1α holds [8]. In the case of k = 2, if
the inequality t ≥ 2α + 3 holds, then we always get q1 and
q2 in polynomial time of log N1 and log N2 by the so-called
Gaussian reduction. We remark that, in the case of k = 2,
the paper [5] showed an improved bound t ≥ 2α + 1 for the
condition above.

Recently, in the case where k = 2 and t ≤ 2α, Nuida et
al. [11] improved the May-Ritzenhofen method by analyz-
ing the inverse matrix of the matrix consisting of the basis
obtained by Gaussian reduction. Their method works ef-
ficiently if the quantity 22α−t is sufficiently small. On the
other hand, as pointed out in their paper, it seems to be dif-
ficult to generalize their method to the case k ≥ 3.

In this paper, we give an alternative improvement of the
May-Ritzenhofen method. Namely, we increase the size of
the lattice corresponding to a given system of k RSA mod-
uli with implicit hints. Then the length of the target vector
consisting of non-trivial factors of the RSA moduli becomes
relatively shorter. Therefore, we expect that, after our lattice
construction, the success probability of the method [8] be-
comes higher.

As in Nuida et al.’s method [11], our method works ef-
ficiently if the quantity 22α−t is sufficiently small. On the
other hand, unlike the work [11], it is easy to generalize our
method to the case k ≥ 3. We further verify the efficiency
of our method by computer experiments for various param-
eters.

The remainder of this paper is organized as follows:
In Sect. 2, we introduce some facts on lattices needed later.
In Sect. 3, we describe an overview of previous works. In
Sect. 4, we describe our improvement on the factorization
with implicit hints. In Sect. 5, we implement our method
and verify the efficiency. In Sect. 6, we give the conclusion
and future works.

2. Preliminaries

Let n be a positive integer. An integer lattice (resp. a lattice)
is a discrete additive subgroup of Zn (resp. Rn). More intu-
itively, we describe it as follows: Let d be a positive integer
with d ≤ n, and let b1, . . . , bd ∈ Zn be linearly independent
vectors over Q. Then the set of all integer combinations of
bi’s forms an integer lattice L, that is,
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L =

 d∑
i=1

aibi | ai ∈ Z
 .

We call {b1, . . . , bd} a basis of L, and the value d the rank
or dimension of L. A lattice is said to have full rank if d = n.

Since we deal with only an integer lattice of full rank in
this paper, we use the notation “lattice” for “integer lattice
of full rank”, unless otherwise specified.

The determinant of a lattice L ⊆ Zn, denoted by det(L),
is defined by | det(B)|, where B is the square matrix whose
column vectors consist of a basis of L. The determinant of
L is equal to the volume of the parallelotope spanned by the
basis of L. We note that the determinant is invariant under
unimodular transformations of B.

Let ||u|| denote the Euclidean norm of a vector u.
The following result gives a bound of the determinant

of a lattice with respect to the Euclidean norm.

Theorem 1 (Hadamard’s inequality [9]): Let L ⊆ Zn be a
lattice with basis {b1, . . . , bn}. Then we have

det(L) ≤
n∏

i=1

||bi||.

The successive minima of a lattice L of dimension n,
denoted by λi(L) for 1 ≤ i ≤ n, are defined by the minimal
radius of a ball containing i linearly independent lattice vec-
tors of L. Especially, a vector u in L with ||u|| = λ1(L) is a
shortest (non-zero) vector contained in L. By definition, we
see λi(L) ≤ λ j(L) for i ≤ j.

In the case of a lattice L of dimension two (i.e., n = 2)
with basis {b1, b2}, we can compute efficiently a basis {u1,
u2} such that ||ui|| = λi(L) for i = 1, 2 with the running time
O(log2(max{||b1||, ||b2||})) by applying Gaussian reduction.
(For Gaussian reduction, we refer the readers to [9].)

In the case of a lattice of dimension n ≥ 3, there ex-
ists no efficient method to guarantee the output of a short-
est vector contained in a given lattice. Alternatively, A. K.
Lenstra et al. proposed an algorithm (the so-called LLL al-
gorithm) in polynomial running time of input size for com-
puting a basis whose first component vector has a relatively
short length.

Theorem 2 (LLL [7]): Let L ⊆ Zn be a lattice with ba-
sis {b1, . . . , bn}. Then the LLL algorithm outputs a basis
{u1, . . . , un}, called a reduced basis, satisfying the following
properties:

1. ||u1|| ≤ 2
n−1

4 det(L)
1
n ;

2. ||u1|| ≤ 2
n−1

2 λ1(L).

The runnning time of the algorithm is estimated as O(n5(n+
log bmax) log bmax), namely polynomial time with respect
to the input size, where bmax is the largest absolute value
among elements in the basis vectors {b1, . . . , bn}.
Remark 1: With the same notation as in Theorem 2, let u
be a shortest vector in L. We see that both of u and u1 are
vectors in the set M := {x ∈ L | ||x|| ≤ 2

n−1
2 λ1(L)}. So, if the

rank of the lattice generated by vectors in M is equal to one,

then the vector u1 becomes a shortest vector in L, namely
u1 = ±u.

We introduce the Minkowski bound on a shortest vec-
tor of a lattice.

Theorem 3 (Minkowski [10]): Let L be a lattice of dimen-
sion n. Then L contains a non-zero vector u with

||u|| = λ1(L) ≤
√

n det(L)
1
n .

3. Previous Works

In this section, we describe May et al.’s method [8] for the
factorization of k RSA moduli with implicit hints, and its
improvement [11] in the case of k = 2. For the case k =
2, we use the improved estimation of ||u2|| = λ2(L) in [5]
instead of the original one in [8].

We make the following heuristic assumption based on
the Minkowski theorem (Theorem 3).

Assumption 1: Let L be a lattice of dimension n. We
assume that, if a non-zero vector b in L satisfies ||b|| ≤√

n · det(L)
1
n , then b is a shortest vector in L.

Now we are ready to describe the method in [8] for
factoring k RSA moduli with implicit hints.

Let Ni = piqi (1 ≤ i ≤ k) be k RSA moduli. We assume
gcd(Ni, N j) = 1 for 1 ≤ i < j ≤ k, and that qi < 2α for
1 ≤ i ≤ k. We further suppose p1 ≡ · · · ≡ pk (mod 2t), that
is, all pi share their t least significant bits.

Let

L :=



x1
...

xk

 ∈ Zk | x1 −
N1

Ni
xi ≡ 0 (mod 2t),

2 ≤ i ≤ k

 , (1)

be a lattice with a basis





1
N2
N1

mod 2t

N3
N1

mod 2t

...
Nk
N1

mod 2t


,



0
2t

0
...
0


, . . . ,



0
0
...
0
2t




.

Then we have det(L) = 2(k−1)t and q :=


q1
...

qk

 ∈ L.

Adapting Assumption 1 to integer factorizations with
implicit hints above, we obtain the following result. †

†More precisely, Theorem 4 is obtained by applying the LLL
algorithm to a result in [8]. We note that, in [8], May et al. devel-
oped their theory under the use of the Kannan algorithm [4] and
the Helfrich algorithm [3], which are deterministic algorithms for
computing a shortest vector in a given lattice. However, in prac-
tice, they implemented their method by using the LLL algorithm
instead of these deterministic algorithms above.
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Theorem 4: Let the notation be as above, and let
{u1, . . . , uk} be the basis obtained by applying the LLL al-
gorithm to the above basis of L. If the following conditions

1. ||q|| ≤
√

k · 2(k−1)t/k, in particular, α ≤ k−1
k t;

2. u1 is a shortest vector in L;

hold, then we have q = ±u1 under Assumption 1. In other
words, we get the non-trivial factor qi of each RSA modulus
Ni.

Remark 2: By the second property in Theorem 2, it is rare
that the second condition in Theorem 4 holds as k becomes
large. So, as our strategy for factorization using the LLL
algorithm, we make the first condition stronger (namely, we
raise the lower bound of t). This stategy seems to be effec-
tive at least from the experimental point of view. In fact,
the method in [8] works smoothly for the implementation if
t ≥ k

k−1α+ ϵ holds, where the value ϵ depends on the param-
eters k, α and t etc. In the case of the experimental result
in [8], they evaluate as 3 ≤ ϵ ≤ 7. On the other hand, if
the first condition in Theorem 4 holds, then both of q and u1
are relatively short vectors in L. Therefore, it is likely that
q = ±u1 even if neither q nor u1 is a shortest vecor in L.

By using our method described in the next section, we
can get the vector q for the case where the method in [8]
does not give it, including the case where Assumption 1 does
not necessarily hold.

We next restrict ourselves to the case k = 2. In this
case, by [5], we get an improved evaluation of the method
above with no assumption unlike the cases of k ≥ 3: For
the case k = 2, the corresponding basis of the latttice L

is
{(

1
N2
N1

mod 2t

)
,

(
0
2t

)}
, and the determinant is equal to 2t.

From Gaussian reduction, we get the basis {u1, u2} with
||ui|| = λi(L) for i = 1, 2. Then, from Hadamard’s inequal-
ity, we have 2t = | det(L)| ≤ ||u1|| · ||u2|| ≤ ||u2||2. Therefore,
if ||q|| < 2

t
2 ≤ ||u2||, then we have q = au1 for some in-

teger a, by the definition of the successive minima. Since
q1 and q2 are different primes, we have a = ±1, namely,
q = ±u1. In particular, if t ≥ 2α + 1, then we have

||q|| =
√

q2
1 + q2

2 <
√

2 · 22α ≤ 2
t
2 and q = ±u1.

We remark that, from the experimental point of view in
[5], it seems that the condition t ≥ 2α+ 1 is a tight bound so
that q = ±u1 holds.

Furthermore, in the case of k = 2 and t ≤ 2α, Nuida
et al. [11] showed that, the integer coefficients a and b of
q = au1 + bu2 satisfy the relation |a|, |b| ≤ 2 · 22α−t by ana-
lyzing the inverse matrix of the matrix (u1, u2). Applying the
exhaustive search of the coefficients a and b as above, this
result implies that we can efficiently find q1 and q2, namely
prime divisors of N1 and N2, if the quantity 22α−t is suffi-
ciently small (e.g., polynomial size of log N1 and log N2).

However, this method seems to be difficult to general-
ize to the cases k ≥ 3 because of the difficulty of analyzing
the size of elements of the inverse matrix of the k × k matrix

consisting of the basis obtained by the LLL algorithm.
In the next section, we propose an alternative method

in the case where the previous work [8] seems to be difficult
to work smoothly. Namely, we consider the case t ≤ 2α for
k = 2 and the case t < k

k−1α for k ≥ 3.

4. Proposed Method

In this section, we propose an improved method of the previ-
ous work [8] for factoring k RSA moduli with implicit hints.

For the simplicity of the description, we first consider
the case of two RSA moduli (i.e., k = 2).

4.1 The Case of Two RSA Moduli

Let the notation be the same as in the previous section,
namely, let N1 = p1q1 and N2 = p2q2 be two RSA mod-

uli with gcd(N1, N2) = 1, and let q =
(
q1
q2

)
. We suppose that

p1 ≡ p2 (mod 2t), and that qi < 2α for i = 1, 2.
We consider the case t ≤ 2α, otherwise we can easily

get q1 and q2 from Gaussian reduction.
Our strategy is to construct a lattice which contains the

vector q and whose determinant is greater than ||q||2. Once
we have found such a lattice, we can easily get the vector
q in the same way as the previous work [8]. Namely, the
vector q becomes the first component vector (up to sign) in
the basis obtained by applying Gaussian reduction.

In order to do this, we consider the following problem,
which is a natural generalization of the previous work: For
any positive integer ℓ, we consider a congruence modulo
2t+ℓ to which the vector q is a solution and of which the
determinant of the lattice associated with the solution set is
equal to 2t+ℓ.

Let (p2 − p1) mod 2t+ℓ ≡ β · 2t with 0 ≤ β < 2ℓ, then
we have p2 ≡ p1 + β · 2t (mod 2t+ℓ). Multiplying both sides
by q1q2, we have

N2q1 ≡ N1q2 + (βq2 · 2t)q1 (mod 2t+ℓ).

Hence, we obtain the congruence

q1 −
N1

N2 − (βq2) · 2t q2 ≡ 0 (mod 2t+ℓ).

We define λ := βq2 mod 2ℓ. Then we obtain the fol-
lowing result.

Theorem 5: Let N1 = p1q1 and N2 = p2q2 be two RSA

moduli with gcd(N1, N2) = 1, and let q =
(
q1
q2

)
. We assume

p1 ≡ p2 (mod 2t). Then, for any positive integer ℓ, there
exists an integer λ with 0 ≤ λ < 2ℓ such that

q ∈ L′

:=
{ (

x
y

)
∈ Z2 | x − N1

N2 − λ · 2t y ≡ 0 (mod 2t+ℓ)
}
.
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A Z-basis of L′ is
{(

1
N2−λ·2t

N1
mod 2t+ℓ

)
,

(
0

2t+ℓ

)}
, and the de-

terminant of L′ is equal to 2t+ℓ.

Remark 3: In Theorem 5, when we try to find a λ by ex-
haustive search, the total number of the candidates is 2ℓ.

If we choose ℓ so that
√

2 · 2α ≤ 2
t+ℓ
2 , equivalently

ℓ ≥ 2α − t + 1, then we find the vector q in the same way as
the previous work [8]. Like the previous method [11], our
method also works efficiently if the quantity 22α−t is suffi-
ciently small (see Remark 3).

4.2 The Case of k RSA Moduli with k ≥ 3

We directly generalize our method described in the previous
subsection to a system of k RSA moduli with k ≥ 3:

Applying our method described in the previous subsec-
tion (at most) k − 1 times, we obtain the following result.

Theorem 6: Let the notation be the same as in Sect. 3. We
let ℓ2, . . . , ℓk be k − 1 non-negative integers satisfying ℓ2 +
· · ·+ ℓk = ℓ †. Then, there exists a (k− 1)-tuple (λ2, . . . , λk)
with 0 ≤ λi < 2ℓi (2 ≤ i ≤ k) such that

q ∈ L′ :=



x1
...

xk

 ∈ Zk | x1 −
N1

Ni − λi · 2t xi ≡ 0

(mod 2t+ℓi ), 2 ≤ i ≤ k

 .
A Z-basis of L′ is



1
N2−λ2·2t

N1
mod 2t+ℓ2

N3−λ3·2t

N1
mod 2t+ℓ3

...
Nk−λk ·2t

N1
mod 2t+ℓk


,



0
2t+ℓ2

0
...
0


, . . . ,



0
0
...
0

2t+ℓk




,

and the determinant of L′ is equal to 2(k−1)t+ℓ.

Remark 4: In Theorem 6, if we fix a tuple (ℓ2, . . . , ℓk)
with ℓ2 + · · · + ℓk = ℓ when we try to find such a tuple
(λ2, . . . , λk) by exhaustive search, then the total number of
the candidates is 2ℓ.

Combining our method with Theorem 4, we get the fol-
lowing result.

Theorem 7: Let the notation be as above. We choose the
value ℓ so that ||q|| ≤

√
k · 2((k−1)t+ℓ)/k. In particular, if

ℓ ≥ kα − (k − 1)t, then this inequality holds. Further, we
assume that, for a lattice L, the first component vector of
the basis obtained by the LLL algorithm is a shortest vector
in L. If the quantity 2kα−(k−1)t is sufficiently small, then we

†For given k and ℓ, the total number of (k − 1)-tuple
(ℓ2, . . . , ℓk)’s with ℓ2 + · · · + ℓk = ℓ is equal to

(
ℓ+k−2
ℓ

)
.

get efficiently the vector q by applying the LLL algorithm,
under Assumption 1.

5. Experimental Results

We implemented our algorithm on a Pentium G6950
2.8 GHz PC with 2 GB RAM. Our algorithm is written in
C++ using NTL [16] with gcc 4.1.2 compiler. Further, we
compared our method with Nuida et al.’s method for k = 2.

Let p, q and N = pq be integers whose bit-lengths have
the same as those of pi, qi and Ni = piqi respectively. Let
α denote the bit-length of q and suppose all pi share their
t least significant bits. For this experiments, we set the bit-
length of N as 1000 bit. We try the factorizations 100 times
for each setting of parameters.

We then evaluate the results from the following aspects
(as well as the running time and the success rate):

1. the lattice size applied to Gaussian reduction/ the LLL
algorithm (i.e., the bit length of the determinant of the
lattice);

2. the ratio of the exhaustive serch to the whole.

The former concerns the success rate. The latter is use-
ful for comparing our method with Nuida et al.’s method.

Nuida et al.’s method consists of two parts as follows:

LR: Gaussian reduction for the lattice L given by (1) for
k = 2;

ES: the exhaustive search of a and b satisfying q = au1 +
bu2 with |a|, |b| ≤ 22α+1−t, where {u1, u2} is the basis
obtained by Gaussian reduction in the [LR] part.

According to two parts above for Nuida et al.’s method,
we divide our method into two parts as follows:

LR: Gaussian reduction for the lattice L′ with ℓ = λ = 0
in Theorem 5, which coincides with the [LR] part in
Nuida et al.’s method;

ES: the exhaustive search, that is, Gaussian reduction for
the lattices L′ with λ (0 ≤ λ < 2ℓ) for a fixed ℓ , 0 in
Theorem 5.

We then compare the ratios of the [ES] part to the
whole, namely the quotients [ES]/([LR] + [ES]).

We note that the description “the additional bits ℓ is
equal to zero” means the previous method [8]. The notation
“success” means a trial in which the target vector q becomes
the first component vector (up to sign) in the basis obtained
by the LLL algorithm or Gaussian reduction. For our evalu-
ations of running times in this paper, we count only success
trials.

5.1 Two RSA Moduli

We set the bit-length of q as 250, namely α = 250. We
implemented the factorization of two RSA moduli with im-
plicit hints p1 ≡ p2 (mod 2t) for various pairs (t, ℓ) with
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Table 1 Attack for factoring k RSA moduli with (k, α) = (2, 250).

number of bound additional bits of lattice size: success
shared bits t 2α + 1 bits ℓ (k − 1)t + ℓ rate

501 501 0 501 100 %

500 501 0 500 38 %
1 501 100 %

491 501

0 491 0 %
8 499 0 %
9 500 40 %

10 501 100 %

additional bits ℓ, by using our method (Table 1). We note
that the running time of all experiments is below 1 second.

By the evaluation of the paper [5], we get the target
vector q by the original/our methods whenever ℓ ≥ 2α −
t + 1. Even if the condition above does not hold, we see
that the success rate grows high as the value ℓ grows and
tends to 2α− t + 1. As the value ℓ becomes large, the length
of the target vector q becomes relatively short because the
determinant of the corresponding lattice becomes large. So
the probability that the vector q is a shortest vector in the
lattice becomes high, in which case we get the target vector
q by Gaussian reduction.

On the other hand, the running time increases as the
value ℓ becomes large. By Remark 3, the running time is
proportional to 2ℓ, namely an exponential time with respect
to the value ℓ. In other words, the ratio of the exhaustive
search part to the whole increases as the value ℓ becomes
large. So it is important how to decrease the running time as
the value ℓ becomes large.

Next we compare our method with Nuida et al.’s
method [11] (Table 2) †. We set the value ℓ as ℓ = 2α+1− t,
the minimum value which guarantees that the target vector
q coincides with the first component vector (up to sign) of
the basis obtained by Gaussian reduction (i.e., the success
rate is always 100%).

In all cases, Nuida et al.’s method is much faster than
our method. This is because the [ES] part in our method
includes Gaussian reduction for each candidate λ, while the
same part in Nuida et al.’s method consists only of the com-
putation of au1+bu2 for each candidate (a, b). In fact, we can
see the difference between two methods from the rightmost
two columns in Table 2.

5.2 k RSA Moduli with k ≥ 3

We implemented the factorization of k RSA moduli with im-
plicit hints p1 ≡ · · · ≡ pk (mod 2t) for various pairs (t , ℓ)
with additional bits ℓ, by using our method (Tables 3 and
4). We note that the notation “n/a” (resp. “∗”) means “not
applicable” (resp. “less than 1 second”).

For the partition of additional bits ℓ into a (k − 1)-tuple
(ℓ2, . . . , ℓk) with ℓ = ℓ2 + · · · + ℓk, we chose the partition
as flat as possible. Namely, dividing ℓ by k − 1, we let r

†By 100%, in the ratio column, we mean a probability more
than or eqaul to 99.5%.

(resp. s) be the quotient (resp. the remainder). We then set

a (k − 1)-tuple (ℓ2, . . . , ℓk) as (
s︷             ︸︸             ︷

r + 1, . . . , r + 1, r, . . . , r).
In this case, the upper bound of the largest absolute value
among elements of the matrix consisting of the basis ob-
tained from the partition is equal to the smallest value,
2t+r+1. (On the other hand, the upper bound is 2t+ℓ in the
case where (ℓ2, . . . , ℓk) = (ℓ, 0, . . . , 0).) So our partition
above might lead to more efficient computation of the LLL
algorithm (recall Theorem 2).

As in the case k = 2, we see from Tables 3 and 4 that
the success rate grows high as the value ℓ becomes large.
This implies that, under Assumption 1, the probability that
the first component vector obtained by the LLL algorithm
becomes a shortest vector in a given lattice grows high as
the value ℓ becomes large. We can explain the situation
as follows. For a (fixed) input (k, α) and a chosen value
ℓ = ℓ2+ · · ·+ ℓk, the target vector q is contained in L′ associ-
ated with some (λ2, . . . , λk) as in Theorem 6. On the other
hand, the first component vector u1 obtained by the LLL al-
gorithm applied to L′ satisfies ||u1|| ≤ 2

k−1
2 λ1(L′) ≤ 2

k−1
2 ||q||.

Since the right-hand side of this inequality is constant, the
ratio of the volume of the set {x | ||x|| ≤ 2

k−1
2 λ1(L′)} to the

volume of L′ , 2(k−1)t+ℓ, becomes small as ℓ becomes large.
Therefore, it is probable that the number of vectors in the
set {x ∈ L′ | ||x|| ≤ 2

k−1
2 λ1(L′)} becomes small as ℓ becomes

large, which indicates that the probability that u1 becomes a
shortest vector in L′ becomes large (see Remark 1).

As in the case k = 2, the running time increases as the
value ℓ becomes large (see Remark 4).

For Assumption 1, we remark that, unlike the case
k = 2, given a lattice L of dimension more than two, there
exists no effective condition for a non-zero vector in L to
have the shortest length among L\{o}. Furthermore, the LLL
algorithm does not guarantee the output of a shortest vector
in a given lattice. Therefore, from the theoretical point of
view, the original/our methods do not guarantee to get the
target vector q even if the value ℓ becomes sufficiently large,
which is indicated by the experimental results (Tables 3 and
4).

On the other hand, the heuristic bound on the value ℓ,
namely ℓ ≥ kα − (k − 1)t, seems to be sufficiently reliable.
That is, the success rate is nearly equal to 100 % in the case
ℓ ≥ kα − (k − 1)t + ϵ with a few bits ϵ, which is the same
consideration as in [8] (or Remark 2). From our experimen-
tal results, we guess that the size of ϵ is not negligible as k
becomes large. In relation to that, we further see that, for
a given tuple (N, k, α), the success rate depends only on the
bit size of lattice, (k−1)t+ ℓ, applied to Gaussian reduction/
the LLL algorithm. This gives an indication on the optimal
value of ℓ. For example, in the case of the input parameter
tuple (N, k, α) = (1000, 3, 250), if we want to factor inte-
gers with probability 70%, then we choose the parameter ℓ
such that (k − 1)t + ℓ = 2t + ℓ = 753. To make this asser-
tion more clear, we need to implement our method for more
cases. Contrary to the experimental evaluation, we get no
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Table 2 Comparison between two methods with (k, α) = (2, 250).

number of additional bits ℓ methods running time ratio: [ES]/([LR]+[ES])
shared bits t (ℓ = 2α + 1 − t) (ave.) (ave.)

499 2 Nuida et al. [11] 2.800 × 10−4 s 19%
our method 1.286 × 10−3 s 52%

496 5 Nuida et al. [11] 2.800 × 10−4 s 45%
our method 5.880 × 10−3 s 77%

493 8 Nuida et al. [11] 6.000 × 10−4 s 61%
our method 3.976 × 10−2 s 93%

490 11 Nuida et al. [11] 4.280 × 10−3 s 65%
our method 3.095 × 10−1 s 99%

487 14 Nuida et al. [11] 4.552 × 10−2 s 94%
our method 2.696 s 100%

Table 3 Attack for factoring k RSA moduli with (k, α) = (3, 250).

number of bound bound on ℓ : additional bits of lattice size: success running time
shared bits t ⌈ k

k−1α⌉ kα − (k − 1)t bits ℓ (k − 1)t + ℓ rate ave. min. max.
379 375 −8 0 758 99 % ∗ ∗ ∗

375 375 0

0 750 1 % ∗ ∗ ∗
1 751 16 % ∗ ∗ ∗
3 753 73 % ∗ ∗ ∗
5 755 94 % ∗ ∗ ∗
7 757 99 % ∗ ∗ ∗

368 375 14

0 736 0 % n/a n/a n/a
14 750 0 % n/a n/a n/a
15 751 10 % 3.45 s ∗ 8.09 s
17 753 70 % 18.71 s ∗ 34.17 s
19 755 95 % 64.37 s ∗ 140.14 s

Table 4 Attack for factoring k RSA moduli with (k, α) = (10, 350).

number of bound bound on ℓ : additional bits of lattice size: success running time
shared bits t ⌈ k

k−1α⌉ kα − (k − 1)t bits ℓ (k − 1)t + ℓ rate ave. min. max.
391 389 −19 0 3519 97 % ∗ ∗ ∗

390 389 −10

0 3510 1 % ∗ ∗ ∗
1 3511 6 % ∗ ∗ ∗
3 3513 34 % ∗ ∗ ∗
5 3515 72 % ∗ ∗ ∗
7 3517 93 % ∗ ∗ 1.12 s
9 3519 99 % 2.22 s ∗ 4.45 s

389 389 −1

0 3501 0 % n/a n/a n/a
9 3510 0 % n/a n/a n/a
10 3511 6 % 4.29 s ∗ 8.59 s
12 3513 43 % 12.04 s ∗ 34.99 s
14 3515 82 % 52.68 s ∗ 140.22 s
16 3517 94 % 218.13 s ∗ 559.21 s
18 3519 99 % 992.60 s ∗ 2203.58 s

theoretical estimation on the optimal value of ℓ.

6. Conclusion and Future Works

We described an improved method for factoring k RSA
moduli with implicit hints. More precisely, we proposed a
method for raising the modulus of the congruence obtained
from the implicit hints. This leads to the increase of the de-
terminant of the corresponding lattice by multiplicative fac-
tor 2ℓ with respect to our setting parameter ℓ. As a result,
from the experimental point of view, we see that our method
increases the success rate for getting the target vector q con-
sisting of non-trivial factors for a given system of k RSA
moduli.

Our future works are as follows:

1. How to decrease the total number of the candidates
when we construct the congruence modulo 2t+ℓi in our
method;

2. Theoretical and experimental evaluations on the opti-
mal value of ℓ;

3. Construction of an effective condition for a non-zero
vector to be shortest among L \ {o} for a given lattice L
of dimension more than two;

4. Construction of a condition for the LLL algorithm to
output a shortest vector for a given lattice;

5. Generalization to integer factorizations with other im-
plicit hints, for example implicit hints of most signifi-
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cant and middle bits [2];
6. Application to other RSA moduli types, for example

Okamoto-Uchiyama’s RSA modulus p2q [12] and Tak-
agi’s RSA modulus prq [17].
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