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Decoding of Projective Reed–Muller Codes by Dividing
a Projective Space into Affine Spaces

Norihiro Nakashima∗, Hajime Matsui†

Toyota Technological Institute, Nagoya 468-8511, Japan.

Abstract

A projective Reed–Muller (PRM) code, obtained by modifyinga Reed–Muller code with
respect to a projective space, is a doubly extended Reed–Solomon code when the dimension of the
related projective space is equal to 1. The minimum distanceand the dual code of a PRM code are
known, and some decoding examples have been presented for low-dimensional projective spaces.
In this study, we construct a decoding algorithm for all PRM codes by dividing a projective space
into a union of affine spaces. In addition, we determine the computational complexity and the
number of errors correctable of our algorithm. Finally, we compare the codeword error rate of our
algorithm with that of the minimum distance decoding.

Key Words: error-correcting codes, affine variety codes, Gröbner basis, Berlekamp–Massey–
Sakata algorithm, discrete Fourier transform.

1 Introduction

Projective Reed–Muller (PRM) codes have been investigatedextensively since they were first intro-
duced by Lachaud [1] in 1988. Sørensen [2] determined the minimum distances of PRM codes and
proved that the dual code of a PRM code is also a PRM code or is spanned by a PRM code and a
vector of ones. In addition, Berger and Maximy [3] presentedconditions under which PRM codes
are cyclic or quasi-cyclic. Recently, Ballet and Rolland [4] examined low-weight codewords of PRM
codes and obtained an estimation of the second weight. The PRM codes of one-dimensional projec-
tive spaces are also considered to be doubly extended Reed–Solomon codes. Decoding examples for
PRM codes related to low dimensional projective spaces are presented in [5], [6], [7].

To realize practical communication channels, many researchers constructed decoding procedures
whose computational complexities are polynomial time. In addition, they investigated the numbers
of errors correctable and the codeword error rates. Although the minimum distance decoding (MDD)
[8], [9] achieves a good codeword error rate, the computational complexity of the MDD based on
generating all codewords is known to be exponential. Pellikaan [10] developed a decoding algorithm
for linear codes, which correctst-errors if there existt-error correcting pairs. The computational
complexity of this algorithm isO(n3), wheren is the code length. The Feng–Rao decoding algorithm
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[11], [12] is also shown as a decoding method ofO(n3) for linear codes. The number of errors
correctable by the Feng–Rao algorithm is determined by Feng–Rao bounds [11], [12], [13], [14]. It
is possible that these two algorithms can be applied to PRM codes. However, we cannot find any
observations oft-error correcting pairs and Feng–Rao bounds for PRM codes, and it is difficult to
determine the numbers of errors correctable.

The objective of the present study is to investigate a decoding algorithm for all PRM codes such
that its computational complexity is less thanO(n3) and the number of errors correctable is deter-
mined. We construct a new decoding algorithm by dividing a projective space into a union of affine
spaces that a decoding algorithm proposed the second author[15] is applied for each affine compo-
nent. In our algorithm, we adopt the Berlekamp–Massey–Sakata (BMS) algorithm [16], [17], [18],
[19] to obtain a Gröbner basis whose zeros are the error positions, and we use the discrete Fourier
transform (DFT) to determine the error values. After that, we prove that the computational complexity
of our algorithm is strictly less thanO(n3). In particular, the complexity of the error position determi-
nation isO(zn2) and that of the error value determination isO(qn2), wherez is the maximum of the
cardinalities of Gröbner bases obtained by BMS algorithm for all components andq is the finite field
cardinality. We havez < n/q. Next, we determine the number of errors correctable by our algorithm
component-wise. This implies the number of errors correctable at arbitrary positions. Finally, we
compare the codeword error rate of our algorithm with that ofthe MDD and find them to be similar
for some high-order PRM codes.

The remainder of this paper is organized as follows. In Section 2, we present some preliminary
notation and recall the results of a previous study [15]. In Section 3, we present an example of PRM
code that shows a difficulty to construct a decoding algorithm. In Section 4, we construct a decoding
algorithm for all PRM codes. In Section 5, we determine the number of errors corrected by our
algorithm. In Section 6, we present an example of a decoding procedure. In Section 7, we compute
the computational complexity of our algorithm. In Section 8, we compare the codeword error rate of
our algorithm with that of MDD. Finally, in Section 9, we summarize our findings and conclude the
paper by briefly discussing the scope for future investigation.

2 Preliminaries

2.1 Reed–Muller codes

Throughout this paper, letq be a prime power and letFq denote a finite field consisting ofq elements.
Let mbe a positive integer. We define

Am(Fq) =
{

(ω1, . . . , ωm)
∣

∣

∣ω1, . . . , ωm ∈ Fq

}

, (2.1)

whereAm(Fq) is called anm-dimensional affine space overFq. We often omit a coefficient field
Fq and writeAm(Fq) = Am for short. LetFq[X1, . . . ,Xm] denote the polynomial ring overFq in m
variables. For a polynomialf (X1, . . . ,Xm) ∈ Fq[X1, . . . ,Xm], we often write f (X1, . . . ,Xm) = f . Let
f (ω1, . . . , ωm) denote the value obtained by substituting (ω1, . . . , ωm) ∈ Am for f ∈ Fq[X1, . . . ,Xm].

Let Fq[X1, . . . ,Xm]≤ν denote the set of all polynomials inFq[X1, . . . ,Xm] of degree≤ ν.

Definition 2.1 (Reed–Muller code, RM code)A RM code overFq of orderν and length qm is defined
by

RMν(m, q) =
{

( f (P))P∈Am

∣

∣

∣ f ∈ Fq[X1, . . . ,Xm]≤ν
}

. ✷ (2.2)
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It has been shown (cf. [20]) that the dimensionk and the minimum distanced of RMν(m, q) are

k =
ν

∑

t=0

m
∑

j=0

(−1)j

(

m
j

)(

t − jq +m− 1
t − jq

)

, (2.3)

d = (q− s)qm−r−1, (2.4)

wherer ands are respectively the quotient and remainder obtained whenν is divided byq − 1; that
is, 0≤ r < m− 1, 0≤ s< q− 1, andν = r(q− 1)+ s. For a finite setΩ, letFΩq = {(cP)P∈Ω | cP ∈ Fq}

denote theFq-linear space indexed byΩ. For a subsetC of FΩq , we denote the dualC⊥ of C by

C⊥ =















(uP)P∈Ω ∈ F
Ω

q

∣

∣

∣

∣

∣

∣

∣

∑

P∈Ω

cPuP = 0 for all (cP)P∈Ω ∈ C















. (2.5)

The following is widely known (see, e.g., [2]).

Proposition 2.2 Letµ = m(q− 1)− ν. The dual ofRMν(m, q) is obtained by

RMν(m, q)⊥ = RMµ−1(m, q). ✷ (2.6)

2.2 Projective Reed–Muller codes

We define

Pm(Fq) = (Am+1 \ {0})/ ∼ (2.7)

with the equivalence relation

P1 ∼ P2 if P1 = λP2 for someλ ∈ Fq \ {0}, (2.8)

wherePm(Fq) is called anm-dimensional projective space overFq. We often writePm(Fq) = Pm.
We express the equivalence class of a representative (ω0, ω1, . . . , ωm) as (ω0 : ω1 : · · · : ωm).

For eachP = (ω0 : ω1 : · · · : ωm) ∈ Pm, let i be the smallest index such thatωi , 0. Then,
(0, . . . , 0, 1, ω′i+1, . . . , ω

′
m) is a representative ofP, whereω′j = ω j/ωi for j > i. Let R denote the

polynomial ringFq[X0,X1, . . . ,Xm] over Fq in variablesX0,X1, . . . ,Xm. The valuef (P) is defined
by substituting the representative (0, . . . , 0, 1, ω′i+1, . . . , ω

′
m) for f = f (X0,X1, . . . ,Xm) ∈ R; this is

uniquely determined. A projective space is identified by a union of affine spaces, i.e.,

Pm = Ψ0 ∪ Ψ1 ∪ · · · ∪Ψm, (2.9)

whereΨi = {(0 : · · · : 0 : 1 :ωi+1 : · · · : ωm) ∈ Pm | ω j ∈ Fq, i + 1 ≤ j ≤ m} is a subset ofPm for all
i ∈ {0, 1, . . . ,m} by which an (m− i)-dimensional affine space is identified.

Let n be the number of elements inPm. Then,n = (qm+1 − 1)/(q− 1) = qm
+ · · · + q+ 1. LetRν

denote the linear subspace ofR consisting of homogeneous polynomials of degreeν.

Definition 2.3 (Projective Reed–Muller code, PRM code)A PRM code overFq of orderν and length
n is defined by

PRMν(m, q) =
{

( f (P)P∈Pm

∣

∣

∣ f ∈ Rν
}

. ✷ (2.10)
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Table 1: Parameters of PRMν(2, 16)

ν 5 8 11 14 17 20 23 26 29
k 21 45 78 120 168 207 237 258 270
d 192 144 96 48 15 12 9 6 3

A PRM code is trivial (i.e., dim PRMν(m, q) = n) if ν > m(q− 1) (see [2, Remark 3]). Therefore,
in the rest of this paper, we assume that 0< ν ≤ m(q− 1). It is shown (cf. [2]) that PRMν(m, q) is an
(n, k, d)-code with

k =
r

∑

t=0

















m+1
∑

j=0

(−1)j

(

m+ 1
j

)(

s+m− t + (t − j)q
s+ 1− t + (t − j)q

)

















, (2.11)

d = (q− s)qm−r−1, (2.12)

wherer andsare determined by 0≤ r < m, 0≤ s< q−1, andν−1 = r(q−1)+ s. Table 1 lists some
dimensions and minimum distances of PRMν(2, 16). The following is used later in Lemma 4.1.

Theorem 2.4 ([2]) Letµ = m(q− 1)− ν. The dual ofPRMν(m, q) is obtained by the following:

1. PRMν(m, q)⊥ = PRMµ(m, q) if ν . 0 (modq− 1),

2. PRMν(m, q)⊥ = span
Fq
{1,PRMµ(m, q)} if ν ≡ 0 (modq− 1), where1 = (1, . . . , 1) ∈ Fn

q. ✷

2.3 Affine variety codes

LetΨ be a non-empty subset ofAm, i.e.,∅ , Ψ ⊆ Am. We define an idealZ(Ψ) of Fq[X1, . . . ,Xm] as

Z(Ψ) = { f ∈ Fq[X1, . . . ,Xm] | f (P) = 0 for all P ∈ Ψ}. (2.13)

Definition 2.5 (Affine variety code) For anFq-linear subspace L of a quotient ring
Fq[X1, . . . ,Xm]/Z(Ψ), we define an affine variety code as

C(L,Ψ) = {( f (P))P∈Ψ ∈ F
Ψ

q | f ∈ L}. ✷ (2.14)

We previously proposed a decoding algorithm [15, Algorithm2] for a class of affine variety codes
using the BMS algorithm and DFT. The following definitions are required to explain this decoding
algorithm. LetM be the set of all monomials whose exponent of each variable isless thanq, i.e.,
M = {Xa1

1 · · ·X
am
m | (a1, . . . , am) ∈ Nm

0 , a1, . . . , am ≤ q− 1}, whereN0 is the set of nonnegative integers.

Definition 2.6 (Discrete Fourier transform, DFT) A linear
mapF is defined by

F : FAm
q → F

M
q , (cP)P∈Am 7→

















∑

P∈Am

cPh(P)

















h∈M

, (2.15)

andF is called a DFT onFAm
q . ✷
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The following map is the inverse ofF , and is called an inverse discrete Fourier transform (IDFT)
onFAm

q . For a finite setΩ, let |Ω| denote the number of elements inΩ.

Definition 2.7 For each P= (ω1, . . . , ωm) ∈ Am, we define a subsetsupp(P) of {1, . . . ,m} bysupp(P) =
{i | ωi , 0 (1≤ i ≤ m)}. Let s= | supp(P)|. A linear mapF −1 is defined by

F −1 : FM
q → F

Am
q , (rh)h∈M 7→ (cP)P∈Am, (2.16)

where

cP = (−1)s
q−1
∑

l1=1

· · ·

q−1
∑

ls=1



















∑

J⊆supp(P)c

(−1)|J|rh(P,l,J)



















ω
−l1
1 · · ·ω

−ls
s , (2.17)

J runs over all subsets ofsupp(P)c
= {1, . . . ,m} \ supp(P), and h(P,l,J) = Xb1

1 · · ·X
bm
m is a monomial

such that

bi =



























l i if i ∈ supp(P),

q− 1 if i ∈ J,

0 if i < supp(P) ∪ J. ✷

(2.18)

Let ≺ be a monomial order, andGΨ a Gröbner basis for the idealZ(Ψ) (see [21], [22], [23] or
[24] for the theory of Gröbner bases). We writeXa

= Xa1
1 · · ·X

am
m for a = (a1, . . . , am) ∈ Nm+1

0 . Let
f ∈ Fq[X1, . . . ,Xm], where f =

∑

a∈Nm
0
λaXa for some coefficientsλa ∈ Fq. The leading monomial

LM( f ) of f is the maximum of the monomials arranged in≺ that have nonzero coefficients in f , i.e.,
LM( f ) = max≺{Xa | λa , 0}. For a subsetΦ of Ψ, we define a setD(Φ) as

D(Φ) = {Xa | a ∈ Nm
0 } \ {LM( f ) | 0 , f ∈ Z(Φ)}. (2.19)

Since{Xq
1 − X1, . . . ,X

q
m − Xm} ⊆ Z(Ψ), we haveD(Φ) ⊆ D(Ψ) ⊆ M. We note thatD(Ψ) forms a basis

for Fq[X1, . . . ,Xm]/Z(Ψ) (see [23, Theorem 19]).
Let zbe the number of elements in the Gröbner basisGΦ, and{ f (1), . . . , f (z)} the set of elements in

GΦ.

Definition 2.8 A linear mapEΦ is defined by

EΦ : FD(Φ)
q → F

M
q , (rh)h∈D(Φ) 7→ (rg)g∈M , (2.20)

where forg ∈ M,

rg =
∑

h∈D(Φ)

vhrh, (2.21)

vh is obtained by the division algorithm byGΦ:

g(X) =
∑

0≤w<z

u(w)(X) f (w)(X) + v(X) (2.22)

for some u(w)(X) ∈ Fq[X1, . . . ,Xm] andv(X) =
∑

h∈D(Φ) vhh ∈ Fq[X1, . . . ,Xm]. ✷
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Definition 2.9 Let L be a subspace ofFq[X1, . . . ,Xm]/Z(Ψ) overFq. We say that L has a monomial
basis if

L = span
Fq

(B) for someB ⊆ D(Ψ). ✷ (2.23)

Example 2.10 LetΨ = A1(F4). Then, Z(Ψ) = 〈X4
+ X〉 and D(Ψ) = {1,X,X2,X3}. The linear space

L = span
F4
{1,X,X2,X3} has a monomial basis B= {1,X,X2,X3} ⊆ D(Ψ). Next, L′ = span

F4
{1+ X2}

does not have any monomial basis, since1+ X2 is not in D(Ψ). ✷

Example 2.11 Let Ψ = A2(F4). Since Z(Ψ) = 〈X4
1 + X1,X4

2 + X2〉, we have D(Ψ) = {Xi
1X

j
2 | 0 ≤

i, j ≤ 3}. Then, L= span
F4
{1,X1 + X2,X2} has a monomial basis B= {1,X1,X2}, since X1 is a linear

combination of X1 + X2 and X2. ✷

Example 2.12 LetΨ = Am. Then, Z(Ψ) = 〈Xq
1−X1, . . .X

q
m−Xm〉. We have that C(L,Ψ) = RMν(m, q),

where B= {
∏m

j=1 X
aj

j |
∑m

j=1 a j ≤ ν, 0 ≤ a1, . . . , am ≤ q − 1} and L = span
Fq

(B). Thus, L has a
monomial basis B. ✷

Let (rP)P∈Ψ = (cP)P∈Ψ + (eP)P∈Ψ be a received word, where (cP)P∈Ψ ∈ C⊥(L,Ψ) and (eP)P∈Ψ ∈ F
Ψ

q .
Let Φ = {P ∈ Ψ | eP , 0} be the set of error positions of the received word (rP)P∈Ψ. We call
(
∑

P∈Ψ rPh(P))h∈B a syndrome of (rP)P∈Ψ related toC(L,Ψ). It follows from (cP)P∈Ψ ∈ C⊥(L,Ψ) that
(
∑

P∈Ψ rPh(P))h∈B = (
∑

P∈Ψ ePh(P))h∈B. Thus, the syndrome is aB-component ofF ((eP)P∈Am), where
eP = 0 if P ∈ Am\Ψ. LetRΨ : FAm

q → FΨq be the restriction map. Algorithm 1 is a decoding algorithm
for C⊥(L,Ψ). To apply Algorithm 1, it is sufficient thatL has a monomial basisB. We note that a RM
code is expressed asC⊥(L,Ψ) such thatL has a monomial basis by Proposition 2.2 and Example 2.12.

Algorithm 1: Error correction forC⊥(L,Ψ) [15]
Input : (rP)P∈Ψ ∈ F

Ψ

q , where (rP)P∈Ψ = (cP)P∈Ψ + (eP)P∈Ψ, (cP)P∈Ψ ∈ C⊥(L,Ψ) and (eP)P∈Ψ ∈ F
Ψ

q
Output : (ĉP)P∈Ψ

Step 1. (Sh)h∈B = (
∑

P∈Ψ rPh(P))h∈B.
Step 2. CalculateGΦ from the syndrome (Sh)h∈B by

the BMS algorithm (cf. [22], [25]).

Step 3. (êP)P∈Ψ = RΨ ◦ F
−1 ◦ EΦ ((Sh)h∈B).

Step 4. (ˆcP)P∈Ψ = (rP)P∈Ψ − (êP)P∈Ψ.

In the case when the dimension ofC⊥(L,Ψ) is not 0, Algorithm 1 computes (cP)P∈Ψ correctly, i.e.,
(ĉP)P∈Ψ = (cP)P∈Ψ, if

2|Φ| < dFR(C⊥(L,Ψ)), (2.24)

wheredFR(C⊥(L,Ψ)) is a Feng–Rao bound. In Step 1, we calculate a syndrome (Sh)h∈B of (rP)P∈Ψ. In
Step 2, we calculate the Gröbner basisGΦ for Z(Φ) whose zeros are error positions. In Step 3, we
extend the syndrome (Sh)h∈B = (

∑

P∈Ψ ePh(P))h∈B to F ((eP)P∈Am) by applyingEΦ. Then, by applying
RΨ ◦ F

−1, we obtain the error word (eP)P∈Ψ.
If the dimension ofC⊥(L,Ψ) is 0, Algorithm 1 computes all error words correctly, i.e.,(ĉP)P∈Ψ =

(cP)P∈Ψ for all (eP)P∈Ψ ∈ FΨq . Indeed, sinceL has a monomial basisB = M, we have (Sh)h∈B =

(Sh)h∈M = (
∑

P∈Ψ ePh(P))h∈M = F
(

(eP)P∈Am

)

. This means that the syndrome is the image of an error
word by the DFT. Thus, by applyingRΨ ◦ F −1 to the syndrome, we obtain the error word (eP)P∈Ψ.
Hence, in this case, we do not calculate Step 2 andEΦ of Step 3.
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3 Basis for PRM codes

In general, ifL has a monomial basis and a Feng–Rao bound ofC⊥(L,Ψ) is high, Algorithm 1 has a
good codeword error rate. However, whenC⊥(L,Ψ) is a PRM code, it is difficult to determine whether
L has a monomial basis. In this section, we present an example of PRM codeC⊥(L,Ψ) such thatL
does not have any monomial bases.

First, we prove that a PRM code is the dual of an affine variety code. A projective spacePm is
identified by a setΨ =

⋃m
i=0{(0, . . . , 0, 1, ωi+1, . . . , ωn) | ωi+1, . . . , ωn ∈ Fq} of representatives inAm+1.

Let ν be a positive integer andµ = m(q− 1)− ν. Let L = span
Fq
{Xa ∈ R/Z(Ψ) | a ∈ Nm+1

0 , |a| = µ} if
ν . 0 moduloq− 1, andL = span

Fq
{1, Xa ∈ R/Z(Ψ) | a ∈ Nm+1

0 , |a| = µ} if ν ≡ 0 moduloq− 1. Then,
C⊥(L,Ψ) = PRMν(m, q) by Eq. (2.10), Eq. (2.14) and Theorem 2.4. To determine whether L has a
monomial basis, we need to consider reductions inR/Z(Ψ) and linear combinations of elements inL.

Next, we present an example of a PRM code such thatL does not have any monomial bases. Let
|a| = a0 + a1 + · · · + am for a = (a0, a1, . . . , am) ∈ Nm+1

0 . In this section, we fix a monomial order
≺ in the following manner:Xa ≺ Xb if “ |a| < |b|” or “ |a| = |b| and there exists an indexℓ such that
am = bm, am−1 = bm−1, . . . , aℓ+1 = bℓ+1 andaℓ < bℓ.”

Definition 3.1 A set of polynomialsG is defined as follows:

1. When m= 1, we setG = {Xq
1 − X1, (X0 − 1)(X1 − 1),X2

0 − X0}.

2. When m= 2, we setG = {Xq
2 −X2,X

q
1 −X1, (X0−1)(X1−1)(X2−1), (X0−1)(X2

1 −X1),X2
0 −X0}.

✷

The inclusionG ⊆ Z(Ψ) immediately follows. Let〈G〉 denote the ideal ofR generated byG. By
Buchberger’s criterion (see [21, Theorem 2.6.6]), we can directly verify thatG is a Gröbner basis for
〈G〉. Thus, we can compute a basis for a quotient ringR/〈G〉, and we have dimFq(R/〈G〉) = n by
[21, Proposition 5.3.4]. At the same time, we have dimFq(R/Z(Ψ)) = |Ψ| = n by [23, Theorem 19].
Therefore,Z(Ψ) coincides with〈G〉. In particular,G is a Gröbner basis forZ(Ψ). By (2.19), we have
that

1. D(Ψ) = {Xa1
1 | 0 ≤ a1 ≤ q− 1} ∪ {X0} if m= 1,

2. D(Ψ) = {Xa1
1 Xa2

2 | 0 ≤ a1, a2 ≤ q− 1} ∪ {X0X
a2
2 | 0 ≤ a2 ≤ q− 1} ∪ {X0X1} if m= 2.

We show monomial positions ofD(Ψ) in Fig. 1 and Fig. 2.

Example 3.2 Let q = 4,m = 2, ν = 3. By Theorem 2.4, we have C⊥(L,Ψ) = PRM3(2, 4), where
L = span

F4
{1, Xa | |a| = 3} ⊆ F4[X0,X1,X2]/Z(Ψ). Monomials X0X2

1, X2
0X1 can be reduced in

F4[X0,X1,X2]/Z(Ψ) as follows:

X0X
2
1 = X2

1 + X0X1 − X1, X2
0X1 = X0X1. (3.1)

Thus, X2
1 − X1 is obtained by a linear combination of elements in L. However, it follows from a direct

calculation that any linear combination of elements in L containing X2
1 − X1 is not in D(Ψ). This

means that L does not have any monomial bases. ✷
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Figure 1: Monomial positions ofD(Ψ) if m= 1, q = 4

Figure 2: Monomial positions ofD(Ψ) if m= 2, q = 4

4 Decoding algorithm

In this section, we construct a decoding algorithm for all PRM codes following the decomposition
Pm =

⋃m
i=0Ψi. As described in Section 3, there exists a PRM code that does not have any monomial

bases. On the other hand, for eachΨi-component, we can find a suitable monomial basisBi such
that C⊥(span

Fq
(Bi),Ψi) is a RM code. Then, we obtain aΨi-component of an error ward (eP)P∈Pm

by applying Algorithm 1 from a syndrome related to the RM code. By repeating this for alli ∈
{0, 1, . . . ,m}, we obtain the error word (eP)P∈Pm. We describe a non-trivial procedure to calculate the
syndrome in Lemma 4.1.

Let ν be an integer where 0< ν ≤ m(q − 1), and letµ = m(q − 1) − ν. Let (cP)P∈Pm be a
codeword in PRMν(m, q). After an error word (eP)P∈Pm occurs, we assume that we receive the word
(rP)P∈Pm = (cP)P∈Pm + (eP)P∈Pm. Using the following settings, we can construct a decoding algorithm
by which the error word (eP)P∈Pm may be corrected.

Let i ∈ {0, 1, . . . ,m}. We define a subsetBi of Rµ by

Bi =















m
∏

j=i

X
aj

j

∣

∣

∣

∣

∣

∣

∣

∑m
j=i a j = µ, 0 < ai,

0 ≤ ai+1, . . . , am ≤ q− 1















. (4.1)

We recall thatΨi is identified by{(0, . . . , 0, 1, ωi+1, . . . , ωm) | ωi+1, . . . , ωm ∈ Fq} ⊆ Am+1. Since
Z(Ψi) ⊆ R is generated by{X0, . . . ,Xi−1,Xi − 1,Xq

i+1 − Xi+1, . . . ,X
q
m − Xm}, we haveR/Z(Ψi) =

Fq[Xi+1, . . . ,Xm]/〈Xq
i+1 − Xi+1, . . . ,X

q
m − Xm〉. Then, Bi = {

∏m
j=i+1 X

aj

j |
∑m

j=i+1 a j ≤ µ − 1, 0 ≤
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ai+1, . . . , am ≤ q − 1} in R/Z(Ψi), which is the set of monomials inD(Ψi) of degree≤ µ − 1. By
Eq. (2.2) and Eq. (2.14),

C(span
Fq

(Bi),Ψi) = RMµ−1(m− i, q). (4.2)

Therefore,
(

∑

P∈Ψi
ePh(P)

)

h∈Bi
is a syndrome of (eP)P∈Ψi related to RMµ−1(m− i, q). If we calculate the

syndrome
(

∑

P∈Ψi
ePh(P)

)

h∈Bi
, we can apply Step 2 and Step 3 of Algorithm 1 asΨ = Ψi, B = Bi,

(Sh)h∈B =

(

∑

P∈Ψi
ePh(P)

)

h∈Bi
andC⊥(span

Fq
(B),Ψ) = RMµ−1(m− i, q)⊥. A procedure to obtain the

syndrome is described later in Lemma 4.1.

Algorithm 2: Decoding algorithm for PRMν(m, q)

Input : (rP)P∈Pm ∈ F
Pm
q , where (rP)P∈Pm = (cP)P∈Pm + (eP)P∈Pm, (cP)P∈Pm ∈ PRMν(m, q) and (eP)P∈Pm ∈ F

Pm
q

Output : (êP)P∈Pm

for i ∈ {0, 1, . . . ,m} do
(Step 1)
if i = 0 then

r (0)
P = rP for P ∈ Pm.

else

r (i)
P = rP − êP for P ∈

⋃i−1
j=0Ψ j .

r (i)
P = rP for P ∈

⋃m
j=i Ψ j .

end
(Step 2)

CalculateS(i)
h =

∑

P∈Pm
r (i)

P h(P) for h ∈ Bi.

(Step 3)

Calculate (êP)P∈Ψi by Algorithm 1 asΨ = Ψi , B = Bi and (Sh)h∈B =
(

S(i)
h

)

h∈Bi
.

end

In Algorithm 2, (êP)P∈Pm = (eP)P∈Pm if ( êP)P∈Ψi = (eP)P∈Ψi for all i ∈ {0, 1, . . . ,m}. Let i0 be the
smallest integer satisfyingµ ≥ (m− i0)(q− 1)+ 1, i.e.,

i0 = m−

⌊

µ − 1
q− 1

⌋

. (4.3)

If i0 ≤ i ≤ m, then (êP)P∈Ψi = (eP)P∈Ψi for all (eP)P∈Ψi ∈ F
Ψi
q . Indeed, since RMµ−1(m− i, q) = F

Ψi
q , the

dimension of RMµ−1(m− i, q)⊥ is 0 (see the last paragraph of Section 2.3).
Here, we explain how we obtain the syndrome

(

∑

P∈Ψi
ePh(P)

)

h∈Bi
and how we apply Algorithm 1

in Algorithm 2. We fix an integeri where 0≤ i ≤ m. In Step 1, ifi = 0, then we setr (0)
P = rP for

P ∈ Pm. If 0 < i ≤ m, we assume that we already know theΨ0,Ψ1, . . . ,Ψi−1 components of the error
word, i.e.,êP = eP for all P ∈

⋃i−1
j=0Ψ j. We set a modified received word (r (i)

P )P∈Pm by removing the
Ψ0,Ψ1, . . . ,Ψi−1 components of the error word, i.e.,

r (i)
P =















rP − eP if P ∈
⋃i−1

j=0Ψ j,

rP if P ∈
⋃m

j=i Ψ j.
(4.4)

Then,r (i)
P = cP if P ∈

⋃i−1
j=0Ψ j, andr (i)

P = cP + eP if P ∈
⋃m

j=i Ψ j.
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In Step 2, we calculateS(i)
h =

∑

P∈Pm
r (i)

P h(P) for h ∈ Bi. Since (h(P))P∈Pm ∈ PRMν(m, q)⊥ for h ∈ Bi

by Theorem 2.4, we have that
∑

P∈Pm

cPh(P) = 0 for h ∈ Bi. (4.5)

Lemma 4.1 We have that
(

S(i)
h

)

h∈Bi
is the syndrome of(eP)P∈Ψi related toRMµ−1(m− i, q), i.e.,

(

S(i)
h

)

h∈Bi
=

















∑

P∈Ψi

ePh(P)

















h∈Bi

. (4.6)

Proof: Let h ∈ Bi. It follows from Eq. (4.4) and Eq. (4.5) that

S(i)
h =

∑

P∈Pm

r (i)
P h(P) (4.7)

=

∑

P∈Pm

cPh(P) +
∑

P∈
⋃m

j=i Ψ j

ePh(P) (4.8)

=

∑

P∈
⋃m

j=i Ψ j

ePh(P) =
∑

P∈Ψi

ePh(P), (4.9)

whereh(P) = 0 for P ∈
⋃m

j=i+1Ψ j, since thei-th exponent ofh is positive and thei-th entry ofP is 0.
✷

In Step 3, if 0≤ i < i0, then we apply Algorithm 1 from Eq. (4.6) asΨ = Ψi, B = Bi. Thus,
we obtain theΨi-component of the error word. Ifi0 ≤ i ≤ m, we obtain theΨi-component of the
error word by applying the IDFT to Eq. (4.6). By repeating Steps 1, 2 and 3 fori ∈ {0, 1, . . . ,m}, we
complete the decoding procedure. We remark that corresponding codes to which we apply Algorithm
1 are listed in the middle column of Table 2.

5 Number of errors correctable

Let 0< ν ≤ m(q−1) andµ = m(q−1)−ν. LetΨ bePm (or resp.Ψi). The number of errors correctable
for PRMν(m, q) (or resp. RMµ−1(m− i, q)⊥) is defined by

max



















|Φ|

∣

∣

∣

∣

∣

∣

∣

∣

Φ ⊆ Ψ,

(êP)P∈Ψ = (eP)P∈Ψ

for (eP)P∈Ψ ∈ F
Ψ

q with
Φ = {P ∈ Ψ | eP , 0}



















, (5.1)

where (êP)P∈Ψ is the output of (eP)P∈Ψ by applying Algorithm 2 to PRMν(m, q) (or resp. Algorithm 1
to RMµ−1(m− i, q)⊥). We note that the output of (eP)P∈Ψ coincides with that of (cP)P∈Ψ + (eP)P∈Ψ for
all codewords (cP)P∈Ψ, since the syndrome does not depend on codewords.

In this section, we determine the number of errors correctable for PRMν(m, q). We recall that
Algorithm 2 computes an error word correctly if Algorithm 1 computes theΨi-component of the
error word correctly for alli ∈ {0, 1, . . . ,m}. We set

t0 =

⌊

(q− s)qm−r−1 − 1
2

⌋

, (5.2)

whereν = r(q − 1) + s, 0 ≤ s < q − 1, 0 ≤ r ≤ m− 1. The numbers of errors correctable for
RMµ−1(m− i, q)⊥ are determined in Proposition 5.1.
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Proposition 5.1 Let i0 be the integer defined in(4.3).

1. If 0 ≤ i < i0, then the number of errors correctable forRMµ−1(m− i, q)⊥ is t0.

2. If i0 ≤ i ≤ m, then the number of errors correctable forRMµ−1(m− i, q)⊥ is qm−i.

Proof: Assertion 2 has already been proved. Here, we prove Assertion 1. Let 0≤ i < i0. By (2.6), we
have

RMµ−1(m− i, q)⊥ = RM(m−i)(q−1)−(µ−1)−1(m− i, q) (5.3)

= RMν−i(q−1)(m− i, q). (5.4)

In addition, by [26, Proposition 4.16], there exists an ordered basis for RMν−i(q−1)(m− i, q) such that
dFR(RMν−i(q−1)(m− i, q)) = dmin(RMν−i(q−1)(m− i, q)). Thus, by (2.24), the number of errors correctable
is

⌊

dFR(RMν−i(q−1)(m− i, q)) − 1

2

⌋

(5.5)

=

⌊

dmin(RMν−i(q−1)(m− i, q)) − 1

2

⌋

(5.6)

=

⌊

(q− s)q(m−i)−(r−i)−1 − 1
2

⌋

(by Eq. (2.4)) (5.7)

=

⌊

(q− s)qm−r−1 − 1
2

⌋

= t0. ✷ (5.8)

The result of Proposition 5.1 is listed in the rightmost column of Table 2.

Corollary 5.2 Let t be the number of errors correctable forPRMν(m, q). Then, we have t= t0. ✷

Proof: By Theorem 5.1, we havet ≥ t0. If {P ∈ Pm | eP , 0} ⊆ Ψ1 and|{P ∈ Pm | eP , 0}| = t0 + 1, it
does not always hold that (ˆeP)P∈Pm = (eP)P∈Pm. Hence, we havet ≤ t0 ✷

Thus, the number of errors correctable for PRMν(m, q) is the same as that for RMµ−1(m, q)⊥. In
special error cases, Algorithm 2 can correct more errors than t0 which is described in Section 8.

6 Numerical example

In this section, we present a numerical example of a decodingprocedure related to a three-dimensional
projective space. To the best of our knowledge, this is the first example for three-dimensions in
the literature. We consider the case whenm = 3, q = 4, ν = 5. The code length and dimension
of PRM5(3, 4) aren = 85 andk = 50, respectively. By Theorem 2.4, we have PRM5(3, 4)⊥ =
PRM4(3, 4). Letα be a generator of a cyclic groupF×4 satisfyingα2

+ α + 1 = 0, andβ denotesα2.
Then,Fq = {0, 1, α, β}.

Fig. 3 presents a numerical example for applying Algorithm 2to PRM5(3, 4). At Information
polynomial of Fig. 3, we show the coefficients of f ∈ R5. The (i, j)th entry of the 4× 4 matrix named
a3 = l of B0 is the coefficient ofX5−i− j−l

0 Xi
1X j

2Xl
3. Similarly, we show coefficients ofB1, B2 andB3 by

matricies. For example, the coefficient of X3
0X2

1 is α, that ofX4
1X2 is β. At Codeword, we show the

valuescP indexed byP ∈ P3. For example,c(1:0:1:β) = α, c(0:0:1:α) = β.

11



Table 2: (Left) Components ofPm, (Middle) corresponding codes to which we apply Algorithm 1and
(Right) component-wise numbers of errors correctable

Components Corresponding codes Numbers of errors correctable
Ψ0 RMµ−1(m, q)⊥ t0
Ψ1 RMµ−1(m− 1, q)⊥ t0
Ψ2 RMµ−1(m− 2, q)⊥ t0
...

...
...

Ψi0−1 RMµ−1(m− i0 + 1, q)⊥ t0

Ψi0

(

F
Ψm−i0
q

)⊥

qm−i0 = |Ψm−i0 |

...
...

...

Ψm−1

(

F
Ψ1
q

)⊥
q1
= |Ψ1|

Ψm

(

F
Ψ0
q

)⊥
1 = |Ψ0|

We havei0 = 2 andt0 = 3. In theΨi-component fori ∈ {0, 1}, we use the monomial order≺
defined in Section 3, and correct three errors. For example, if i = 0, monomials arranged as follows:
1 ≺ X1 ≺ X2 ≺ X3 ≺ X2

1 ≺ X2X1 ≺ X2
2 ≺ X3X1 ≺ · · · . Moreover, we obtain and use Gröbner bases

G(0)
= {g

(0)
1 = X2

2 + αX2 + βX1, g
(0)
2 = X2X1 + X2 + αX1 + α, g

(0)
3 = X2

1 + X1, g
(0)
4 = X3 + αX2 + 1} in

theΨ0-component, andG(1)
= {g

(1)
1 = X2

3 + βX2 + β, g
(1)
2 = X3X2 + X3 + α, g

(1)
3 = X2

2 + βX2 + 1} in the
Ψ1-component.

We correct all error words in theΨi-component ifi ∈ {2, 3}. The number of errors correctable are
four and one in theΨ2- and theΨ3-component, respectively.

7 Computational complexity

In this section, we calculate computational complexities of Algorithm 2 based on the total number
of finite-field operations. For eachΨi-component of Algorithm 2, the error positions are determined
in Step 2 of Algorithm 1 and the error valueseP for all P ∈ Ψi are determined in Step 3 of Algo-
rithm 1. To observe a precise complexity, we separate the decoding procedure into the error position
determination and the error value determination.

Definition 7.1 Let f(q) and g(q) be two functions defined on a subset of real numbers. We write
f (q) = O(g(q)) if and only if there exist constants q0 and C such that| f (q)| ≤ C|g(q)| for all q > q0.✷

Let Ni = qm−i be the cardinality ofΨi, andzi the cardinality of the Gröbner basis obtained by the BMS
algorithm for theΨi-component fori ∈ {0, 1, . . . ,m}.

Theorem 7.2 Let n= (qm+1 − 1)/(q− 1) = qm
+ · · · + q+ 1 the length ofPRMν(m, q).

1. The computational complexity of the error position determination of Algorithm 2 is O(zn2),
where z= max{z0, z1, . . . , zm} ≤ N0/q = qm−1 < n/q.

2. The computational complexity of the error value determination of Algorithm 2 is O(qn2).

3. The total complexity of Algorithm 2 is O(wn2), wherew = max{q, z} ≤ qm−1 < n/q.
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Information polynomialf ∈ R5

B0
0
1
2
3

a3 = 0 a3 = 1 a3 = 2 a3 = 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
β 1 α β α 1 0 0 β 1 β α β β α α

1 0 1 1 0 α α α 0 α α α 0 α α α
1 β 0 α 1 0 α α β α α α α α α α
α α α α α α α α α α α α α α α α

B1

0
1
2
3

0 1 2 3
1 β 0 α
α α α 1
β β 0 α
β 0 α α

B2

0
1
2
3

β

0
α

α

B3 0

→

Codeword (cP)P∈P3

Ψ0
0
1
α

β

ω3 = 0 ω3 = 1 ω3 = α ω3 = β

0 1 α β 0 1 α β 0 1 α β 0 1 α β
β α 0 α 1 β 1 β 1 1 α 1 0 0 1 1
α α 0 0 α β 0 0 β β β 0 α α 0 α
0 1 β α 1 α α α α β 0 0 1 α 0 α
α α 0 β α 1 1 β 1 1 α β 1 0 0 α

Ψ1

0
1
α

β

0 1 α β
1 α 0 β

β β β β

β α α 0
1 β β α

Ψ2

0
1
α

β

α

0
β

β

Ψ3 0

→

Received word (rP)P∈P3

Ψ0

β α 0 α 1 β 1 β 1 1 α 1 0 0 1 1
α α 0 0 α β 0 0 β β β 0 α β 0 α
0 1 β α 1 α α α 1 β 0 0 1 α 0 α
α 0 0 β α 1 1 β 1 1 α β 1 0 0 α

Ψ1

1 α 0 β

β β β α

α α α 0
1 β 0 α

Ψ2

β

α

α

0

Ψ3 β

→

Syndrome (black cells) and its extension in theΨ0-component

B0

0 β β β α β β β 0 α α α α 1 1 1
1 0 0 α 1 β β β 1 α α α 0 1 1 1
0 α 0 α 0 β β β β α α α β 1 1 1
0 β 0 0 α β β β 0 α α α α 1 1 1→

Ψ0-component of the error word→
Modified received word (r (1)

P )P∈P3

Ψ0

β α 0 α 1 β 1 β 1 1 α 1 0 0 1 1
α α 0 0 α β 0 0 β β β 0 α α 0 α
0 1 β α 1 α α α α β 0 0 1 α 0 α
α α 0 β α 1 1 β 1 1 α β 1 0 0 α

Ψ1

1 α 0 β

β β β α

α α α 0
1 β 0 α

Ψ2

β

α

α

0

Ψ3 β

→
··→

Error word (eP)P∈P3

Ψ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 β 0 0 0 0 0 0
0 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ψ1

0 0 0 0
0 0 0 1
1 0 0 0
0 0 β 0

Ψ2

1
α

1
β

Ψ3 β

Figure 3: Decoding example for PRM4(3, 4)

Proof: For theΨi-component, the computational complexities of the error position determination and
the error value determination areO(ziN2

i ) = O(ziq2m−2i) [22], [25] andO(qN2
i ) = O(q2m−2i+1) [15],

respectively. According to [22], [25], we havezi ≤ Ni/q = qm−i−1 < Ni for all i ∈ {0, 1, . . . ,m}. Hence,
the computational complexity of the error position determination in Algorithm 2 isO(

∑m
i=0 ziq2m−2i),

and that of the error value determination isO(
∑m

i=0 q2m−2i+1).
Since the proofs of assertions 1 and 2 are similar and assertion 3 follows from 1 and 2, we verify

only assertion 1. For allq > 1, we haveq2/2 < q2 − 1. Thus,

z0q
2m
+ z1q

2m−2
+ z2q

2m−4
+ · · · + zm (7.1)

≤ z(q2m
+ q2(m−1)

+ q2(m−2)
+ · · · + 12) (7.2)

= z
q2m+2 − 1

q2 − 1
< z

2q2m+2

q2
= 2zq2m. (7.3)

This means
∑m

i=0 ziq2m−2i
= O(zq2m). It is clear thatzq2m < zn2 for all q > 1, and thenzq2m

= O(zn2).✷
We note that Theorem 2 does not depend onν, becauseν only affects|Bi | which can be replaced

by an upper bound|Ψi | = qm−i during the complexity analysis.
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From the proof of Theorem 7.2, the computational complexities areO(yq2m) andyq2m
= O(yn2),

wherey = z, y = q or y = w. We also haveyn2
= O(yq2m). Indeed, since (q − 1)2 − (q2/2) =

(1/2)(q2 − 4q+ 2) = (1/2)(q− 2)2 − 1 > 0 for all q > 3, we have

yn2
= y

(

qm+1 − 1
q− 1

)2

< y
q2m+2

(q− 1)2
< 2yq2m. (7.4)

In this sense, Theorem 7.2 is an optimal evaluation for the computational complexity of Algorithm 2.

8 Codeword error rate comparison with MDD

In this section, we investigate the codeword error rate of Algorithm 2 and compare it with that of
the MDD which achieves the best rate of the three previous methods described in Introduction. We
consider two types of errors correctable. In the first type, the number of errors correctable ist0, and
such errors are always correctable (see Corollary 5.2). Thesecond type is a specialized case, for
which the number of errors correctable has been listed component-wise in Table 2. These two types
have different codeword error rates. We refer to the decoding method for the first and second cases as
Proposed Method 1 (PM1) and Proposed Method 2 (PM2), respectively. Let p be a symbol error rate.
The codeword error rate of PM1 is then 1− P, whereP =

∑t0
j=0

(

n
j

)

p j(1− p)n− j. The codeword error

rate of PM2 is 1−
∏i0−1

i=0 Pi, wherePi =
∑t0

j=0

(

qm−i

j

)

p j(1− p) j for i ∈ {0, 1, . . . , i0 − 1}.
Tables 3 and 4 list numerical examples of the number of errorscorrectable by PM1 and the MDD.

In these tables, the double lines indicate the turning positions of the quotient obtained whenν is
divided byq− 1. The difference between the number of errors correctable decreases when the above-
mentioned quotient increases. LettMD be the number of errors correctable by the MDD. The codeword
error rate of the MDD is 1−

∑tMD
j=0

(

n
j

)

p j(1− p)n− j
= 1−P−

∑tMD
j=t0+1

(

n
j

)

p j(1− p)n− j. Recall that 1−P is
the codeword error rate of PM1. Therefore, the lower the differencetMD − t0 between the number of
errors correctable by PM1 and the MDD, the lower the difference between their codeword error rates.
In the right hand side of Table 3, i.e., where the quotient obtained by dividingν by q− 1 ism− 1, the
difference is one or less. Further, in some cases, the codeword error rate of PM1 coincides with that
of the MDD.

Figs. 4 and 5 show the codeword error rates for PRM17(2, 16) and PRM9(3, 8). Whenν is suffi-
ciently large, the performance curves of PM1 and PM2 are close to that of the MDD, as shown in Fig.
4. In Fig. 5, the performance curve of PM2 is distinct from that of PM1 because the cardinality and
number of errors correctable are not negligible.

9 Conclusion

In this paper, we have constructed a decoding algorithm for all PRM codes by dividing a projec-
tive space into a union of affine spaces. We have determined the number of errors correctable for
PRMν(m, q). Although it is the same as the number of errors correctablefor RMν(m, q), advantages of
Algorithm 2 are that the codeword is longer and the code parameters are more flexible. We have also
proved that the computational complexities of Algorithm 2 isO(wn2), wherew = max{q, z0, z1, . . . , zm}

is less thann/q. Finally, we compared the codeword error rate of three typesof decoding procedures.
When the order of a PRM code is sufficiently high, the codeword error rate of Algorithm 2 is closeto
that of the MDD. Further improvement of our algorithm is required to decrease the difference between
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Table 3: Number of errors correctable by Algorithm 2 and the MDD for PRMν(2, 16)

ν 5 8 11 14 17 20 23 26 29
Algorithm 2 87 63 39 15 6 5 3 2 0

MDD 95 71 47 23 7 5 4 2 1
Difference 8 8 8 8 1 0 1 0 1

Table 4: Number of errors correctable by Algorithm 2 and the MDD for PRMν(3, 8)

ν 2 4 6 9 12 14 16 18
Algorithm 2 191 127 63 23 11 7 3 2

MDD 223 159 95 27 15 7 3 2
Difference 32 32 32 4 4 0 0 0

its codeword error rate and that of the MDD. This could be a topic for future studies regarding the
decoding theory of PRM codes.
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