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Abstract

A projective Reed—Muller (PRM) code, obtained by modifyiagReed—Muller code with
respect to a projective space, is a doubly extended Reeam8nlcode when the dimension of the
related projective space is equal to 1. The minimum distandghe dual code of a PRM code are
known, and some decoding examples have been presentedvfdiriensional projective spaces.
In this study, we construct a decoding algorithm for all PRdes by dividing a projective space
into a union of &ine spaces. In addition, we determine the computational [Exityp and the
number of errors correctable of our algorithm. Finally, veenpare the codeword error rate of our
algorithm with that of the minimum distance decoding.

Key Words: error-correcting codes,fline variety codes, Grobner basis, Berlekamp—Massey—
Sakata algorithm, discrete Fourier transform.

1 Introduction

Projective Reed—Muller (PRM) codes have been investigaxéehsively since they were first intro-
duced by Lachaud [1] in 1988. Sgrensen [2] determined thémim distances of PRM codes and
proved that the dual code of a PRM code is also a PRM code omisngol by a PRM code and a
vector of ones. In addition, Berger and Maxiniy [3] presertedditions under which PRM codes
are cyclic or quasi-cyclic. Recently, Ballet and Rollanfig4amined low-weight codewords of PRM
codes and obtained an estimation of the second weight. TMedeldes of one-dimensional projec-
tive spaces are also considered to be doubly extended Reledré codes. Decoding examples for
PRM codes related to low dimensional projective spacesrasepted in[5],[6],17].

To realize practical communication channels, many rebeasaconstructed decoding procedures
whose computational complexities are polynomial time. ddion, they investigated the numbers
of errors correctable and the codeword error rates. Althdhhg minimum distance decoding (MDD)
[8], [9] achieves a good codeword error rate, the computaticomplexity of the MDD based on
generating all codewords is known to be exponential. Rallik{10] developed a decoding algorithm
for linear codes, which correctserrors if there exist-error correcting pairs. The computational
complexity of this algorithm i©(n%), wheren is the code length. The Feng—Rao decoding algorithm

*Email: nakashima@toyota-ti.ac.jp
TEmail: matsui@toyota-ti.ac.jp


http://arxiv.org/abs/1412.4365v3

[11], [12] is also shown as a decoding methodQ@(h®) for linear codes. The number of errors
correctable by the Feng—Rao algorithm is determined by-Heag boundd [11]/[12][[13][[14]. It
is possible that these two algorithms can be applied to PR#i&€o However, we cannot find any
observations of-error correcting pairs and Feng—Rao bounds for PRM codwesjtas difficult to
determine the numbers of errors correctable.

The objective of the present study is to investigate a degpdigorithm for all PRM codes such
that its computational complexity is less th@(n®) and the number of errors correctable is deter-
mined. We construct a new decoding algorithm by dividing @gmtive space into a union offae
spaces that a decoding algorithm proposed the second difjas applied for eachfiine compo-
nent. In our algorithm, we adopt the Berlekamp—Massey-8al&MS) algorithm [[16], [117], 18],
[19] to obtain a Grobner basis whose zeros are the errotipasj and we use the discrete Fourier
transform (DFT) to determine the error values. After tha prove that the computational complexity
of our algorithm is strictly less tha@(n®). In particular, the complexity of the error position detér
nation isO(zr?) and that of the error value determinatiorQggr?), wherez is the maximum of the
cardinalities of Grobner bases obtained by BMS algoritbnafl components andis the finite field
cardinality. We have < n/q. Next, we determine the number of errors correctable by lyarihm
component-wise. This implies the number of errors cortdetat arbitrary positions. Finally, we
compare the codeword error rate of our algorithm with thahefMDD and find them to be similar
for some high-order PRM codes.

The remainder of this paper is organized as follows. In 8ai, we present some preliminary
notation and recall the results of a previous study [15]. éotl®n[3, we present an example of PRM
code that shows afiliculty to construct a decoding algorithm. In Sectidon 4, westarct a decoding
algorithm for all PRM codes. In Sectidd 5, we determine thenber of errors corrected by our
algorithm. In Sectionl6, we present an example of a decodiageglure. In Sectio 7, we compute
the computational complexity of our algorithm. In Secfigm@& compare the codeword error rate of
our algorithm with that of MDD. Finally, in Sectidd 9, we suranze our findings and conclude the
paper by briefly discussing the scope for future investagyati

2 Preliminaries

2.1 Reed-Muller codes

Throughout this paper, letbe a prime power and |&, denote a finite field consisting gfelements.
Let mbe a positive integer. We define

Ay(Fy) = {(wl, ey W) | Wi,...,WnE Iﬁ‘q} , (2.1)

where A, (Fq) is called anm-dimensional fiine space oveF,;. We often omit a cocient field

Fq and writeApn(Fq) = Ay, for short. LetFg[Xy, ..., Xy] denote the polynomial ring ovef, in m

variables. For a polynomidl(X, ..., Xm) € Fq[Xy,. .., Xn], we often writef (Xy,..., Xy) = f. Let

f(w1, ..., wnm) denote the value obtained by substituting,( . ., wm) € Amfor f e Fo[Xa, ..., Xq].
Let Fy[ X1, . .., Xm]<, denote the set of all polynomials y[ Xy, . . ., Xy] of degree< v.

Definition 2.1 (Reed—Muller code, RM code)A RM code oveF , of ordery and length ' is defined
by

RM, (M, q) = {(f(P))pes, | f € FlXe,.... Xn]s}. O (22)
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It has been shown (cf._[20]) that the dimensloand the minimum distanatof RM,(m, q) are

O (m\(t—jg+m-1
S e
t=0 j=0

d=(q-99™" (2.4)
wherer ands are respectively the quotient and remainder obtained whermlivided byq — 1; that
is,0<r<m-1,0<s<qg-1,andv =r(q- 1)+ s. For afinite sef, IetIF;2 = {(Cp)peq | Cp € Fy}
denote thé -linear space indexed kY. For a subse€ of Fg, we denote the du&@+ of C by

C = {(UP)PeQ € IFS

Z cpup = O for all (Cp)peg € C} . (25)

PeQ

The following is widely known (see, e.glL./[2]).

Proposition 2.2 Letu = m(q — 1) — v. The dual oRM,(m, g) is obtained by

RM,(m g)* = RM,.1(mg). O (2.6)
2.2 Projective Reed—Muller codes
We define

]P)m(Fq) = (Am+1 \ {O})/ ~ (2-7)

with the equivalence relation

P1~ P, if Py=2AP,forsomele g\ {0}, (2.8)
whereP(F,) is called amm-dimensional projective space ovgy. We often writeP(Fq) = Pr.

We express the equivalence class of a representabyeu(, ..., wn) @S Wo : w1 : -+ : Wn).

For eachP = (wo : w1 @ -+ : wm) € Py, leti be the smallest index such that # 0. Then,

©,....0,1, wi,j,...,wp) is a representative d?, wherew| = wj/w;i for j > i. Let R denote the
polynomial ringFq[Xo, X, ..., Xy] over Fq in variablesXy, Xy, ..., Xyn. The valuef(P) is defined
by substituting the representative, (0.,0,1, w/,,,...,wp) for f = f(Xo, X1,..., Xy) € R; this is
uniquely determined. A projective space is identified by muiof afine spaces, i.e.,

Pn=%YoUWYiU---UW¥q, (2.9)

where?; ={(0:---:0:1 w1 wm) € Pn|w;eFy i+1<|<misasubsetoPyforall
i €{0,1,...,m} by which an (n— i)-dimensional fiine space is identified.

Let n be the number of elementsiy,. Then,n = (™! -1)/(g-1)=qg"+---+ g+ 1. LetR,
denote the linear subspaceRtonsisting of homogeneous polynomials of degree

Definition 2.3 (Projective Reed—Muller code, PRM code)A PRM code ovelF, of ordery and length
n is defined by

PRM,(m, q) = {(f(P)per, | f €R}. O (2.10)



Table 1. Parameters of PRK2, 16)

v 5 8 (11| 14 | 17 | 20 | 23 | 26 | 29
21 | 45 | 78| 120 | 168 | 207 | 237 | 258 | 270
d| 192|144 | 96| 48 | 15 | 12 9 6 3

=~

A PRM code is trivial (i.e., dim PRMm, ) = n) if v > m(q— 1) (seell2, Remark 3]). Therefore,
in the rest of this paper, we assume that ® < m(q — 1). It is shown (cf.[[2]) that PRMm, g) is an
(n, k, d)-code with

G, mt1\(s+m—t+(t-j)q
4= 90m (2.12)

wherer andsare determinedby@r <m,0<s<q-1,andv-1=r(q-1)+s. Tablel lists some
dimensions and minimum distances of PR®116). The following is used later in Lemrha 4.1.

Theorem 2.4 ([2]) Letu = m(g — 1) — v. The dual oPRM,(m, q) is obtained by the following:
1. PRM,(m, g)* = PRM,(m, q) if v # 0 (modq — 1),
2. PRM,(m,q)* = span {1, PRM,(m,g)} if v = 0 (modq — 1), wherel = (1,...,1) € [Fg. a

2.3 Affine variety codes
Let¥ be a non-empty subset éf,, i.e.,0 # ¥ C An,. We define an idea (V) of Fy[Xy,..., Xy] as
Z(P) = {f e Fg[Xq,..., X | f(P) =0forall P e ¥} (2.13)

Definition 2.5 (Affine variety code) For anF4-linear subspace L of a quotient ring
Fo[ X1, ..., Xn]/Z(¥), we define anjfiine variety code as

CLY)={(f(P))pev € Fy | f €L} D (2.14)

We previously proposed a decoding algorithm [15, Algoritjfor a class of fine variety codes
using the BMS algorithm and DFT. The following definition® aequired to explain this decoding
algorithm. LetM be the set of all monomials whose exponent of each variabdessstham, i.e.,

M = {Xi‘l o XE (A, ... am) € N ay, ..., an < - 1}, whereNj is the set of nonnegative integers.

Definition 2.6 (Discrete Fourier transform, DFT) A linear
map¥ is defined by

F i Fym > FY, (Cp)pean, P (Z CPh(P)] , (2.15)
heM

PeAm

and¥ is called a DFT oriF,™. O



The following map is the inverse ¢f, and is called an inverse discrete Fourier transform (IDFT)

on Fqu. For a finite sef?, let |Q| denote the number of elements(in

Definition 2.7 Foreach P= (wy, ..., wn) € Ay, we define a subsstppP) of {1, ..., m}bysuppf) =
{i]wi#0(1<i<m). Let s=|suppP)|. A linear mapF 1is defined by

Fi: IF‘Q” - F&,Am, (rh)rem + (Cp)pea (2.16)
where
q-1 g-1
Co= (-1 D >3 > (g, fy e wl, (2.17)
l1=1 Is=1 | JCsuppP)°©

J runs over all subsets afuppP)® = {1,...,m} \ suppP), and hp, 5 = Xi’lmx,?qm is a monomial
such that

l; if i € suppP),
bi=3q-1 ifie] (2.18)
0 ifi ¢ suppP)ud. O

Let < be a monomial order, angy a Grobner basis for the ided(¥) (see [21], [22], [[23] or
[24] for the theory of Grobner bases). We wrké = X3 ... Xgr for a = (ay,...,am) € NJ*L Let
f e Fo[Xi,..., Xn], where f = DaeNy 1aX? for some cofficientsi, € Fy. The leading monomial
LM( f) of f is the maximum of the monomials arrangedkithat have nonzero céiecients inf, i.e.,
LM( ) = max.{X?| 1,4 # 0}. For a subseb of ¥, we define a sdD(®) as

D(®) = (X | ae NT}\ {LM(f) |0 # f € Z(D)}. (2.19)

Since(X] — Xq,..., Xm — Xm} € Z(¥), we haveD(®) € D(¥) € M. We note thaD(¥) forms a basis
for Fo[Xa, ..., Xm]/Z(¥) (seel[28, Theorem 19]).

Let zbe the number of elements in the Grobner bggisand{f®, ..., @} the set of elements in
Go.

Definition 2.8 A linear map&y, is defined by
So - FE((D) - FQA, (rn)nep@) F (g)gems (2.20)
where forg € M,

r, = Z Uhlh, (2.21)

heD(®)

g

v IS obtained by the division algorithm Igy:

g(X) = Z u@(X) @ (X) + v(X) (2.22)

O<w<z

for some (¥)(X) € Fqg[ X4, ..., Xm] andu(X) = Ypep) vhh € Fq[Xq, . . ., Xm]. O



Definition 2.9 Let L be a subspace @[ Xy, ..., Xn]/Z(¥) overF,. We say that L has a monomial
basis if

L= sparﬁ}q(B) forsomeBC D(V¥). O (2.23)

Example 2.10 Let¥ = A((F4). Then, %) = (X* + X) and D(¥) = {1, X, X2, X3}. The linear space
L = span, {1, X, X2 X3} has a monomial basis B {1, X, X?, X3} € D(¥). Next, L' = spap, {1+ X?}
does not have any monomial basis, siiceX? is not in D(¥). O

Example 2.11 Let ¥ = Ay(F,). Since Z¥) = (X] + X1, X5 + Xp), we have Q¥) = {XQX% |0 <
i, ] <3} Then, L= span, {1, X; + X, Xo} has a monomial basis B {1, X;, Xz}, since X is a linear
combination of X+ X, and X%. O

Example 2.12 Let¥ = Ap,. Then, 2¥) = (X] = Xy,... Xh—Xm). We have that @, ¥) = RM,(m, q),
where B= {[T[, X" | 31,8 <v 0< &,....,.an< g-1jand L= span (B). Thus, L has a
monomial basis B. O

Let (rp)pew = (Cp)pew + (Ep)pew be a received word, whereg)pey € CH(L,¥) and €p)pey € Fy.
Let® = {P € ¥ | ep # 0} be the set of error positions of the received worg)f.y. We call
(X pey rph(P))cg @ syndrome ofri)pey related toC(L, V). It follows from (Cp)pey € C*(L, V) that
Epew rPh(P))ieg = (X pew €h(P))eg- Thus, the syndrome is B-component offF ((ep)pes, ), Where
ep=0ifPe A, \P. LetRy : Fﬁm - Fg’ be the restriction map. Algorithid 1 is a decoding algorithm
for C+(L, ¥). To apply Algorithni 1, it is sflicient thatL has a monomial basB. We note that a RM
code is expressed &5 (L, ¥) such that. has a monomial basis by Proposition|2.2 and Exainplé 2.12.

Algorithm 1: Error correction foiC+(L, ) [15]
Input: (rp)pey € Fy, where (p)pey = (Cp)peyw + (€)pew, (CP)pey € CH(L, W) and €p)pey € Fy
Output: (Cp)pew

Step 1. Bnhes = (Zpew pPh(P))pep.
Step 2. Calculatgq from the syndromeS)neg by
the BMS algorithm (cf.[[22],25]).

Step 3. €p)pey = Ry © F 1o Eo ((Sh)nep)-
Step 4. €p)pey = (rp)pey — (€p)pey.

In the case when the dimension®@f(L, P) is not 0, Algorithn 1 computes§)pey correctly, i.e.,
(Cp)pew = (Cp)pey, if

20| < der(CH(L, ), (2.24)

whered:r(C*(L, ¥)) is a Feng—Rao bound. In Step 1, we calculate a syndr&y)g.£ of (rp)pey. In
Step 2, we calculate the Grobner bagis for Z(®) whose zeros are error positions. In Step 3, we
extend the syndromeS)neg = (Xpey €pN(P))neg t0 F ((€r)res,,) BY applyingEq. Then, by applying
Ry o F~1, we obtain the error wordsg)pey.

If the dimension ofc*+(L, W) is 0, Algorithm[1 computes all error words correctly, i€g)pcy =
(cp)pey for all (ep)pey € Fg’ Indeed, sincd. has a monomial basiB = M, we have &) =
(Shhem = Cpew €h(P))rem = F ((€P)pea,,)- This means that the syndrome is the image of an error
word by the DFT. Thus, by applyinBy o ¥ ! to the syndrome, we obtain the error woes)ecy.
Hence, in this case, we do not calculate Step 2&ndf Step 3.

6



3 Basis for PRM codes

In general, ifL has a monomial basis and a Feng—Rao bour@'¢E, \P) is high, Algorithm[1 has a
good codeword error rate. However, wHeh(L, ¥) is a PRM code, it is diicult to determine whether
L has a monomial basis. In this section, we present an exarhplRM codeC*(L, ¥) such that_
does not have any monomial bases.

First, we prove that a PRM code is the dual of diin@ variety code. A projective spaé&, is
identified by a se¥ = (Ji26{(0,...,0,1, wis1, ..., wn) | Wis1, ..., wn € Fg} Of representatives iAm,1.
Let v be a positive integer and= m(g—- 1) — v. LetL = spaﬁl}q{xa € R/Z(Y) | ae Ng*i,|al = u} if
v # 0 modulog -1, andL = span {1, X® € R/Z(¥) | a€ Nj*,|al = u} if v = 0 modulog— 1. Then,
Ct(L,¥) = PRM,(m,q) by Eq. [2EIID), Eq.[(2.14) and Theoréml2.4. To determine drédt has a
monomial basis, we need to consider reductior3/@'¥') and linear combinations of elementsLin

Next, we present an example of a PRM code suchltldges not have any monomial bases. Let
la =ag+a;+---+anfora=(a,ay,...,an € Ng”l. In this section, we fix a monomial order
< in the following mannerX? < X if “|al < |b|” or “|a| = |b| and there exists an indéxsuch that

am = bm, 8m-1 = Pm-1, ..., &1 = bpyg @nda, < by
Definition 3.1 A set of polynomialg is defined as follows:
1. When m= 1, we setg = {X{ — X1, (Xo — 1)(X1 — 1), X5 — Xo}.

2. When m= 2, we selG = {X3 — Xz, X{ = Xz, (Xo — 1)(X1 — 1)(Xz — 1), (Xo — 1) (X2 — Xy), X2 = Xo}.
O

The inclusiong C Z(¥) immediately follows. LetG) denote the ideal dR generated byg. By
Buchberger’s criterion (seg |21, Theorem 2.6.6]), we caeaty verify thatG is a Grobner basis for
(G). Thus, we can compute a basis for a quotient iRi¢gG), and we have dim(R/(G)) = n by
[21, Proposition 5.3.4]. At the same time, we have g(R/Z(¥)) = [¥| = n by [23, Theorem 19].
Therefore Z(?) coincides withKG). In particular,G is a Grobner basis faZ(¥). By (2.19), we have
that

1. D(¥) ={X*|0<a <q- 1 U{X}if m=1,
2. DY) = {(XP*XP|0<a,a<q-1U{XX?|0<a <q-1}U{XX}if m=2.
We show monomial positions @(¥) in Fig.[d and Fig[P.

Example 3.2Let q= 4,m = 2,v = 3. By Theoreni_ 214, we have@L,¥) = PRM;(2, 4), where
L = span,{1, X? | |a = 3} C Fu[Xo, X1, Xz]/Z(¥). Monomials %XZ, X3X; can be reduced in
Fa[Xo, X1, X5]/Z(¥) as follows:

XoX& = X2 + XoXg = Xg,  X3Xy = XoXi. (3.1)

Thus, )§ — X; is obtained by a linear combination of elements in L. Howgavésllows from a direct
calculation that any linear combination of elements in L @ining X2 — X; is not in D(¥). This
means that L does not have any monomial bases. a



Figure 1: Monomial positions d(¥) if m=1,q=4

Figure 2: Monomial positions d(¥) if m=2,q=4

4 Decoding algorithm

In this section, we construct a decoding algorithm for alMPBodes following the decomposition
Pm = U, Wi. As described in Sectidd 3, there exists a PRM code that datdsave any monomial
bases. On the other hand, for eaicomponent, we can find a suitable monomial b&isuch
that Ci(spar]}q(Bi),‘I’i) is a RM code. Then, we obtain#-component of an error wared)pcp,,

by applying Algorithm[1 from a syndrome related to the RM cod®y repeating this for all €
{0,1,...,m}, we obtain the error wordef)pcp,. We describe a non-trivial procedure to calculate the
syndrome in Lemm@a4.1.

Let v be an integer where & v < m(q — 1), and lety = m(q — 1) — v. Let (Cp)pep,, bE @
codeword in PRM(m, g). After an error word &p)pcp,, OCCUrS, we assume that we receive the word
(rp)pee, = (Cp)per,, + (€P)pep,. Using the following settings, we can construct a decodiggrithm
by which the error wordep)pcr,, may be corrected.

Leti € {0,1,...,m}. We define a subs&; of R, by

m
B = {]_[ X!
j=i

We recall that?; is identified by{(0,...,0,1, wi;1,...,wm) | Wis1,...,wm € Fq} € Apy. Since
Z(¥;) < Ris generated byXo,..., X1, X — L X!, = Xis,..., X5, = Xm}, we haveR/Z(¥;)

Fo[Xiets o Xl /Xy = Xisns oo, X = X). Then, B = ([T X | Zhiaa < p—1, 0 <

0<ayg...,an<q-1

m .= .
Zj:iaj u, 0<a, } 4.1)
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&1,...,.am < -1} in R/Z(Y¥;), which is the set of monomials iD(¥;) of degree< u — 1. By
Eq. (2.2) and Eq[(2.14),

C(span,(Bi), ¥i) = RM,_1(m—1i.q). (4.2)

Therefore(zpéyi eph(P))heB_ is a syndrome ofep)pcy, related to RM_i1(m—1i, q). If we calculate the
syndrome(zpeq,i eph(P))heB‘, we can apply Step 2 and Step 3 of Algorithin 194s= ¥;, B = B;,

(Sh)hes = (Zpeq,i eph(P))heB_ andCL(sparﬂq(B),‘P) = RM,.1(m—1i,g)*. A procedure to obtain the
syndrome is described later in Lemmal4.1.

Algorithm 2: Decoding algorithm for PRMm, q)

Input: (rp)per,, € Fq™, where (p)pee,, = (Cp)per,, + (€p)pery, (CP)per, € PRM,(M, Q) and €p)per, € Fq"
Output: (&)pez,,
forie{0,1,..., m} do
(Step 1)
if i = 0then
‘ rf,o) =rp for P € Py,
else
) =rp—&forPe Uizs ¥.
rd =rpforPe UL ;.
end
(Step 2)
CalculateSS) = Ypep,, rg)h(P) forh e B;.
(Step 3)

Calculate é)pey, by Algorithm[d as¥ = ¥, B = B and Gn)nes = (Sg))heB»'

end

In Algorithm[2, @ )pep,, = (€P)pep,, if (€p)pew, = (€p)pey; fOr alli € {0,1,...,m}. Leti, be the
smallest integer satisfying> (m—-ipg)(q— 1)+ 1, i.e.,

(4.3)

If ig < i < m, then €)pey, = (6p)pey, for all (ep)pey, € Fy'. Indeed, since RM (m—i,q) = Fy', the
dimension of RM_;(m—i,g)* is O (see the last paragraph of Secfion 2.3).

Here, we explain how we obtain the syndro(ﬁi‘:;bewi eph(P))heB_ and how we apply Algorithral1

in Algorithm[2. We fix an integer where 0< i < m. In Step 1, ifi = 0, then we set = r; for
P e Ppn. If0 <i < m, we assume that we already know tHg ‘V's, ..., '¥i_; components of the error
word, i.e.,ép = ep forall P € Uij;%, ¥;. We set a modified received Worcg)()pepm by removing the
Yo, ¥4,. .., ¥i_1 components of the error word, i.e.,

(4.4)

() _Jre—ep if PelUY
P re if Pe U ¥

Then,rd = coif Pe U ¥), andr) = cp + ep if P e UT, ;.
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In Step 2, we calculats?) = Y'r. rOn(P) for h € B;. Since b(P))pes,, € PRM,(m,q)* forh e B
by Theoreni 24, we have that

Z csh(P) =0 forh e B;. (4.5)

PePnm

Lemma 4.1 We have tha@Sﬂ))heBk is the syndrome d&p)pey, related toRM,,_y(m—1i,q), i.e.,

(SS))heBi - [Z ePh(P)] ’ (4.6)
heB;

PeY;

Proof: Leth € B;. It follows from Eq. [4.4) and Eq[{4.5) that

s¥ = > rdn(P) (4.7)
PePn,
= Z cph(P) + Z eph(P) (4.8)
PePp, PeULL; ¥
= > &h(P)= > eh(P), (4.9)
PEU'J-“:i Wi Pe¥;

whereh(P) = 0 for P € (i1, '}, since the-th exponent oh is positive and thé-th entry of P is 0.
O

In Step 3, if 0< i < ig, then we apply Algorithni]1 from EqL_(4.6) & = ¥;, B = B;. Thus,
we obtain the¥;-component of the error word. 1§ < i < m, we obtain the¥;-component of the
error word by applying the IDFT to Ed.(4.6). By repeatingté, 2 and 3 for € {0, 1,..., m}, we
complete the decoding procedure. We remark that correspgrddes to which we apply Algorithm
[ are listed in the middle column of Talilk 2.

5 Number of errors correctable

LetO< v <m(g—1) andu = m(q—1)-v. Let¥ bePy, (or resp.¥;). The number of errors correctable
for PRM,(m, q) (or resp. RM_1(m—i,g)*) is defined by

{ (Er)pew = (EP)Pew }
maxy |®| ,

O C Y, for(ep)pey € Fy with
O={PeV¥|e =0}

where €p)pey is the output of €p)pcyw by applying Algorithni2 to PRIM(m, g) (or resp. Algorithni L
to RM,_1(m—1i,q)*). We note that the output 0&¢)pcy coincides with that of€p)pcy + (€p)pey for
all codewords¢p)pey, Since the syndrome does not depend on codewords.

In this section, we determine the number of errors corréettdy PRM,(m, ). We recall that
Algorithm [2 computes an error word correctly if Algorithoh broputes the¥;-component of the
error word correctly for all € {0, 1, ..., m}. We set

o {(q —s)gm "t - 1|
0 — 2 ,

wherev =r(q-1)+s 0<s<q-1 0<r <m-1. The numbers of errors correctable for
RM,_1(m—i,q)* are determined in Propositidn b.1.

(5.1)

(5.2)

10



Proposition 5.1 Let iy be the integer defined i@.3).
1. If 0 <i < ip, then the number of errors correctable f@M,_;(m—i, g)* is t.
2. Ifip < i < m, then the number of errors correctable ®RM,_;(m - i, g)* is ™.

Proof: Assertior 2 has already been proved. Here, we prove Assitibet 0< i < ip. By (2.8), we
have

RM#_l(m - i, CI)J' = RM(m)(q_l)_(ﬂ_l)_l(m - i, Q) (53)
= RM, jq-1(Mm-i,q). (5.4)

In addition, by [26, Proposition 4.16], there exists an oedebasis for RNLjq-1)(m — i, g) such that
der(RM,—i(g-1y(M—1i, Q)) = dmin(RM,_i(g-1)(M—i, q)). Thus, by[(2.24), the number of errors correctable
is

{dpR(RMV_i(q_lzz(m —i,0)) - 1| (5.5)
_ dmm(RMv_i(q_g(m— i,q)) - 1| (5.6)
_ (a- S)CI(’“‘;‘“‘”‘1 - 1| (by Eq @2)) (5.7)
_|@- s)ol;“-'-1 - 1| o o (5.8)

The result of Proposition 5.1 is listed in the rightmost cotuof Table 2.
Corollary 5.2 Lett be the number of errors correctable I8BRM,(m, ). Then, we havett,. O

Proof: By Theoremi 511, we havie> to. If (Pe Py, | ep # 0} C ¥, and[{P € Py, | € # O} = to + 1, it

does not always hold thag{)pcr,, = (€p)pcr,. HENCE, WE have< ty O
Thus, the number of errors correctable for PR q) is the same as that for RMi(m, g)*. In

special error cases, Algorithith 2 can correct more erromstthanhich is described in Sectign 8.

6 Numerical example

In this section, we present a numerical example of a decqaimgedure related to a three-dimensional
projective space. To the best of our knowledge, this is tts ékample for three-dimensions in
the literature. We consider the case when= 3,q = 4,v = 5. The code length and dimension
of PRMs5(3,4) aren = 85 andk = 50, respectively. By Theorem 2.4, we have PRBA4)- =
PRM,(3,4). Leta be a generator of a cyclic groly satisfyinga? + @ + 1 = 0, andB denotesr?.
Then,Fq = {0,1, @, B}.

Fig.[3 presents a numerical example for applying Algorifirro PRM;(3,4). At Information
polynomial of Fig[B, we show the cficients off € Rs. The (, j)th entry of the 4x 4 matrix named
ag = | of By is the codicient ofxg"""xilx;xg. Similarly, we show coféicients ofB;, B, andBs by
matricies. For example, the dfieient of X3X? is «, that of X{X, is 8. At Codeword, we show the
valuescp indexed byP € P3. For examplegi.o.15 = @, Co.0:10) = B-

11



Table 2: (Left) Components df,,, (Middle) corresponding codes to which we apply Algorifhari
(Right) component-wise numbers of errors correctable

Componentg Corresponding codes Numbers of errors correctable
Yo RM,_1(m, q)* to
Y, RM,_1(m-1,9)* to
¥, RMu—l(m -2,0)* to
LPiofl RMﬂ 1(m Io +1, CI)J‘ to
Wi i
LIlio (Fq 0) quFID = |LPm*i0|
: \1;1 A ) :
O (F&?) gt = ¥l
Wi (Fae)” 1= ¥

We haveig = 2 andt, = 3. In the¥;-component foii € {0, 1}, we use the monomial order
defined in Sectiohl3, and correct three errors. For exanfale; D, monomials arranged as follows:
1< X< X< X3< X2 < X2X1 < X < X3X; < --- . Moreover, we obtain and use Grobner bases
GO = (g0 = X2+ aXz + B%4, ¢ x2x1 + Xo + aXl +a,gY = X2+ X1, = Xg + aXy + 1} in
the Wo- component, ang® = (1) = X2+ BXo + B, g5 = XaXo + Xz + @, g = X2 + BX, + 1} in the
Yi-component.

We correct all error words in th;-component ifi € {2, 3}. The number of errors correctable are
four and one in th&,- and the?;-component, respectively.

7 Computational complexity

In this section, we calculate computational complexitieglgorithm [2 based on the total number
of finite-field operations. For eacH-component of Algorithm2, the error positions are deteedin
in Step 2 of Algorithn{L and the error values for all P € ¥; are determined in Step 3 of Algo-
rithm[dl. To observe a precise complexity, we separate thedieg procedure into the error position
determination and the error value determination.

Definition 7.1 Let f(g) and g(q) be two functions defined on a subset of real numbers. We write
f(g) = O(gy(q)) if and only if there exist constantg gnd C such thatf (q)| < Clg(q)| for all g > go.O

LetN, = g™ be the cardinality o¥;, andz the cardinality of the Grobner basis obtained by the BMS
algorithm for the¥;-component for € {0, 1,..., m}.

Theorem 7.2 Let n= (™! -1)/(q—1) = g" + - -- + g + 1 the length oPRM,(m, g).

1. The computational complexity of the error position detieation of AlgorithniR is Qr?),
where z= maxzy, 7, . ..,Zn} < No/q = g™ < n/q.

2. The computational complexity of the error value deteatiam of Algorithni® is Qqr?).

3. The total complexity of Algorithinh 2 is(@n?), wherew = maxdq, z} < ™! < n/q.

12



Information polynomialf € Rs

ag=0 ag=1 ag=2 a=3
0123012301230123 Syndrome (black cells) and its extension in tgcomponent
Boﬁlaﬁalooﬁlﬁ BB 0/;/3/;0/;/)‘.00
111|0]|1]1]|0|a |« 0|« 0 ; TN . R CIRAE
2[11gT0] [1]0 B - BB ala|a|p1]1]1
3la|a a B alalala|l]l|1
0123 l
o[1TgT0 e 0]2] }
Biifalalall By 1 m Bs@ Yo-component of the error word
2[B[A [0 2[a] !
3[p]0 3 Modified received wordré,l))peﬂp3
Bla|0lall|B|1|Bl1|1l|a|2]0|0|1|2
Codeword €p)pep, \Poa a|0|0]a|B|0|0|B|B|B|0|la|a|0|a
w3 =0 ws=1 ws=a w3=p O({1|B8|la|l|la|a|ala|B|0|0]l|a|0|a
0lapfp0lapfOlapO0ladlg wwOﬂallﬁliwﬁlOOa
. O [BTeT0 e ITATATA[A i a I[0T0]1]T 1]a]0]B 3]
0
lla|a|0|0|a|B|O0|0)|B|B|B|0]a|a|0|a BIB|B|a | @ |
al0|l(B|lal|l|e|a|a]la|B|0]|0]l|a|0|a \Plaaao lyzi lP3
Bla|la|0|Bla|l|1|B|l|1l]|a|B]1|0]|0]|a 118|0|a 2
01ap l
o[1i]«J0]B ofe] .
v 1[B[BA1B] w.1[0] ws[O]
alpglalalO a|B] Jf
Bl1|B[B|e B8] Error word €p)per,
ol0(0|0JO|0O|0O|0O]JO|O|O|0OfjO|O|O|O
) ol0(0|0JO|0O|0O|0O]JO|O|0O|0OfjO|1|0O]|0
Received wordre)pep, YolgToTolo[o[o[0]0[0[z[0[0[0]0]0]0
ﬁagglgégéégéogél O[a|0|0]0]|0O[0|0[0|0[0]|0[0[0[0]0
a|a a a a —
lPOO1,8&1&&&1[)’001a0a 8882 1]
a|0[0[Ble|1][1]B[1]1[a (B[00 Y1 151510 lyz% \y3
1la|0|B 5] 0[0[3[0 A
BB |B|a a L
‘Plaaao TZE lPs
180« 0

Figure 3: Decoding example for PRES, 4)

Proof: For theW;-component, the computational complexities of the err@itpm determination and
the error value determination a@(zN?) = O(zg*™?) [22], [25] andO(gN?) = O(g?™2+1) [15],
respectively. According td [22],]25], we haze< N;/q= g™~ < N, foralli € {0,1, ..., m}. Hence,
the computational complexity of the error position deteration in Algorithn2 isO(Y ", zg*™?),
and that of the error value determinatiorQgy, ", g?™2+1),

Since the proofs of assertions 1 and 2 are similar and ass&fiollows from 1 and 2, we verify
only assertion 1. For aj > 1, we havey?/2 < ¢ — 1. Thus,

ZOqu n Zqum—Z + 22q2m—4 44 Zy (71)

< AP + P 4 D) 4.4 12) (7.2)
q2m+2 -1 2q2m+2

=z 71 <z 7 = 22q2m. (7.3)

This means.", zg*™ 2 = O(zg™). It is clear thazg®™ < zr? for all g > 1, and therzef™ = O(zr?).O
We note that Theorem _2 does not depend pbecause only afects|B;| which can be replaced
by an upper boun¥;j| = g™ during the complexity analysis.
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From the proof of Theorein 7.2, the computational complesitireO(yo’™) andyg®™ = O(yn?),
wherey = z,y = qory = w. We also havegn®> = O(yg®). Indeed, sinceq — 1) — (¢?/2) =
(1/2)(@? - 49+ 2) = (1/2)(q - 2)*> = 1 > O for allg > 3, we have

< 2yoP™. (7.4)

m+1 1 2 q2m+2
n? = (q ) <
S T N B TR N2

In this sense, Theorelm 7.2 is an optimal evaluation for tlmeprdgational complexity of Algorithrial2.

8 Codeword error rate comparison with MDD

In this section, we investigate the codeword error rate @foAthm[2 and compare it with that of
the MDD which achieves the best rate of the three previoufodstdescribed in Introduction. We
consider two types of errors correctable. In the first type,iumber of errors correctabletss and
such errors are always correctable (see Corollary 5.2). sEeend type is a specialized case, for
which the number of errors correctable has been listed camgewise in Tabl€l2. These two types
have diferent codeword error rates. We refer to the decoding metiratié first and second cases as
Proposed Method 1 (PM1) and Proposed Method 2 (PM2), rasplct_et p be a symbol error rate.
The codeword error rate of PM1 is ther-1P, whereP = th:o (rj‘)pj(l — p)™i. The codeword error

rate of PM2 is 1- [ P;, whereP, = ¥ | (qn;_')pj(l —p)iforie{0,1,...,io— 1}.

Tabled B anfl4 list numerical examples of the number of ecamzctable by PM1 and the MDD.
In these tables, the double lines indicate the turning mostof the quotient obtained whenis
divided byq- 1. The diterence between the number of errors correctable decreasestiae above-
mentioned quotient increases. ligt be the number of errors correctable by the MDD. The codeword
error rate of the MDD is + 3 (rj‘)pj(l— pri=1-P-3¥ (’J‘) pi(1- p)™i. Recall that - P is
the codeword error rate of PM1. Therefore, the lower thietnceyp — to between the number of
errors correctable by PM1 and the MDD, the lower thi&edlence between their codeword error rates.
In the right hand side of Tablé 3, i.e., where the quotienainletd by dividingy by q— 1 ism- 1, the
difference is one or less. Further, in some cases, the codewordate of PM1 coincides with that
of the MDD.

Figs.[4 and b show the codeword error rates for RIERI16) and PRM(3, 8). Whenv is sufi-
ciently large, the performance curves of PM1 and PM2 areedioghat of the MDD, as shown in Fig.
4. In Fig.[8, the performance curve of PM2 is distinct fromtthBPM1 because the cardinality and

number of errors correctable are not negligible.

9 Conclusion

In this paper, we have constructed a decoding algorithm [fdPRM codes by dividing a projec-
tive space into a union offiane spaces. We have determined the number of errors coredtab
PRM,(m, g). Although it is the same as the number of errors correctabl@M, (m, g), advantages of
Algorithm[2 are that the codeword is longer and the code petars are more flexible. We have also
proved that the computational complexities of Algorifiins @{wn?), wherew = maxq, 2o, z, . . . , Zn}

is less tham/q. Finally, we compared the codeword error rate of three tgbpeecoding procedures.
When the order of a PRM code isfBaiently high, the codeword error rate of Algorithim 2 is clase
that of the MDD. Further improvement of our algorithmis reqd to decrease theftierence between
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Table 3: Number of errors correctable by Algorithin 2 and tHeDvMfor PRM, (2, 16)

y 5118|1114 17| 20| 23| 26| 29
Algorithm[2 || 87 | 63| 39| 15| 6 | 5| 3 | 2 | O
MDD 95|71 (47|123|| 7| 5| 4|21
Difference || 8 8 8 8 1 0 1 0 1

Table 4: Number of errors correctable by Algorithin 2 and tHeDvfor PRM,(3, 8)

v 2 4 6 9 |12 14| 16| 18
Algorithm[Z || 191 | 127 | 63 || 23 | 11| 7 | 3 | 2
MDD 2231 159| 95| 27|15 7 | 3 | 2
Difference || 32 | 32 | 32|| 4 | 4 0 0 0

its codeword error rate and that of the MDD. This could be actéqr future studies regarding the
decoding theory of PRM codes.
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