
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015
437

LETTER

Towards Interactive Object-Oriented Programming

Keehang KWON†a), Kyunghwan PARK†b), Nonmembers, and Mi-Young PARK†c), Member

SUMMARY To represent interactive objects, we propose a choice-
disjunctive declaration statement of the form S �R where S ,R are the (pro-
cedure or field) declaration statements within a class. This statement has
the following semantics: request the user to choose one between S and R
when an object of this class is created. This statement is useful for repre-
senting interactive objects that require interaction with the user.
key words: interactions, object-oriented, computability logic

1. Introduction

Interactive programming [4], [5] is an important modern
trend in information technology. Despite the attention,
object-oriented languages [6]–[8] have traditionally lacked
mechanisms for representing interactive objects. For exam-
ple, an object like a lottery ticket is in a superposition state
of several possible values and require further interactions
with the environment to determine their final value.

To represent interactive objects, we propose to adopt
a choice-disjunctive operator in computability logic [1], [2].
To be specific, we allow, within a class definition, a choice-
disjunctive declaration statement of the form S � R. This
statement has the following semantics: request the user to
choose one between S and R when an object is created. This
statement is useful for representing interactive objects. For
example, a lottery ticket, declared as value = $0 � value =
$1M, indicates that it has two possible values, nothing or
one million dollars, and its final value will be determined by
the environment (or the user).

As a more complex example, consider a car rental sys-
tem which is declared as

bmw = 320 � honda = civic � honda = accord.

This system is in a superposition state of several possible
f ields and requires the user to determine its final field (the
car maker) and its value (the model). Note that this system
is very difficult to encode in Java because the field itself is
only determined at run-time.

There are many objects which requires a form of
bounded-choice interactions; the user is expected to choose
one among many alternatives. Examples include most inter-
active objects such as airline ticketing systems and McDon-
alds. These objects may be encoded into traditional Java

Manuscript received February 20, 2013.
Manuscript revised October 2, 2014.
†The authors are with Computer Eng., DongA Univ., Korea.

a) E-mail: khkwon@dau.ac.kr
b) E-mail: khpark@dau.ac.kr (Corresponding author)
c) E-mail: openmp@dau.ac.kr

DOI: 10.1587/transinf.2013EDL8047

objects, but these encodings are typically complex, indirect
and very awkward due to the dynamic nature of interactive
objects.

The use of � thus provides us a mechanism with which
we can represent most interactive objects in an elegant way.
This is, as far as we know, the first attempt to providing
interactive features to objects in object-oriented languages.
Hence, the major advantage of our proposal over Java is that
it can optimally encode interactive objects which require the
user to choose one among many alternatives.

The remainder of this paper is structured as follows.
We describe the new language Javai in the next section. In
Sect. 3, we present some examples. Section 4 concludes the
paper.

2. The Language

The language is a subset of the core (untyped) Java with
some extensions. It is described by G- and D-formulas given
by the syntax rules below:

G ::= A | x = E | G; G | o = new D

D ::= A := G | x = E | ∀x D | D ∧ D | D � D

In the rules above, o is an object name, x is a field name, E
is an expression, and A represents a procedure (or a method)
of the form p(t1, . . . , tn). The notation x = E in G denotes
an assignment statement.

A D-formula is called a class definition. The notation
x = E in D denotes a field x with an initial value E. The
notation A := G in D denotes a procedure declaration where
G is called a procedure body. The notation D ∧ D denotes a
conjunction of two D-formulas.

In the transition system to be considered, G-formulas
will function as the main program (or procedure bodies),
and a set of tuples 〈o,D〉 where o is an object name and D is
a D-formula will constitute a program.

We will present an operational semantics for this lan-
guage via a proof theory. The rules are formalized by means
of what it means to execute the main task G from a program
P. These rules in fact depend on the top-level constructor in
the expression, a property known as uniform provability [3].
Below the notation 〈o,D〉;P denotes {〈o,D〉} ∪ P but with
the 〈o,D〉 tuple being distinguished (marked for backchain-
ing). Note that execution alternates between two phases:
the goal-reduction phase (one without a distinguished tuple)
and the backchaining phase (one with a distinguished tu-
ple). The notation S sand R denotes the following: execute

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

438
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.2 FEBRUARY 2015

S and execute R sequentially. It is considered a success if
both executions succeed. The notation o.G represent an as-
sociation of o with every field or procedure name appearing
in G. For example, if G is p(t1, . . . , tn), then o.G represents
o.p(t1, . . . , tn).

Definition 1. Let o be an object name, let G be a main
task and let P be a program. Then the notion of execut-
ing 〈P, o.G〉 successfully and producing a new program P′–
ex(P, o.G,P′) – is defined as follows:

(1) ex(〈o, (A := G)〉;P, A,P′) if ex(P, o.G,P′) . % match-
ing procedure for A is found

(2) ex(〈o,∀xD〉;P, A,P′) if ex(〈o, [t/x]D〉;P, A,P′). %
argument passing

(3) ex(〈o,D1 ∧ D2〉;P, A,P′) if ex(〈o,D1〉;P, A,P′). %
looking for the procedure A in D1.

(4) ex(〈o,D1 ∧ D2〉;P, A,P′) if ex(〈o,D2〉;P, A,P′). %
looking for the procedure A in D2

(5) ex(P, o.A,P′) if 〈o,D〉 ∈ P and ex(〈o,D〉;P, A,P′). %
a procedure call in object o

(6) ex(P, o.x = E,P′) where P′ is obtained from P by first
evaluating E to E′ and updating the value of the field x
to E′ in the object o.

(7) ex(P,G1; G2,P2) if ex(P,G1,P1) sand
ex(P1,G2,P2).

(8) ex(P, o = new D, {〈o,D′〉} ∪ P) where D′ is obtained
from D by first removing choice-disjunctions and then
by initializing its fields. % object creation

If ex(P,G,P1) has no derivation, then the machine returns
the failure. In the above, the rules (1) to (4) deal with the
backchaining phase, whereas the rules (5) to (8) deal with
the goal reduction phase. Our operational semantics is a
standard one appearing in most textbooks. Only the rule (8)
is a novel feature.

3. Examples

Imagine Temple University charges $5,000 as its tuition for
nonemployees and $3,000 for employees. An example of
this class is provided by the following program:

class TempleU
tuition = 0 ∧
(employee = true � employee = f alse) ∧

(comp tuition() := i f employee then tuition = $3000
else tuition = $5000)

void main()
TempleU p = new TempleU;
comp tuition();
print(p.tuition)

In the above, creating a TempleU object via the new con-
struct basically proceeds as follows: the machine asks the
user “are you an employee?”. If the user answers yes by
choosing the left disjunct, employee will be initialized to
true and the machine will eventually print $3000 for its tu-
ition. If the user answers no by choosing the right disjunct,
employee will be initialized to f alse and the machine will
eventually print $5000 for its tuition. Our language thus
makes it possible to customize the amount for tuition via
interaction with the user.

4. Conclusion

In this paper, we extend the core Java with the addition of
disjunctive statements within a class definition. This exten-
sion allows statements of the form S � R where S ,R are
statements. These statements are particularly useful for rep-
resenting interactive objects.

Acknowledgements

This work was supported by Dong-A University Research
Fund.

References

[1] G. Japaridze, “Introduction to computability logic,” Annals of Pure
and Applied Logic, vol.123, pp.1–99, 2003.

[2] G. Japaridze, “Sequential operators in computability logic,” Informa-
tion and Computation, vol.206, no.12, pp.1443–1475, 2008.

[3] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs
as a foundation for logic programming,” Annals of Pure and Applied
Logic, vol.51, pp.125–157, 1991.

[4] L.A. Stein, “Interactive programming: Revolutionizing introductory
computer science,” ACM Comput. Surv. 28, 4es, Article no.103, Dec.
1996.

[5] R. Perera, “First-order interactive programming,” 12th Interna-
tional Conference on Practical Aspects of Declarative Languages
(PADL’10), pp.186–200, Jan. 2010.

[6] A.C. Kak, Programming with Objects: A Comparative Presentation
of Object-Oriented Programming with C++ and Java, John Wiley &
Sons, New York, NY, USA, 2003.

[7] J. Albahari and B. Albanhari, C# 5.0 Pocket Reference, O’Reilly Me-
dia, 224 pages, May 2012.

[8] J. Bloch, Effective Java, second Ed., Addison-Wesley, 2008.

