
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014
2253

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

A Lower Bound on the Gate Count of Toffoli-Based Reversible
Logic Circuits

Takashi HIRAYAMA†a), Member, Hayato SUGAWARA†, Nonmember, Katsuhisa YAMANAKA†,
and Yasuaki NISHITANI†, Members

SUMMARY We present a new lower bound on the number of gates
in reversible logic circuits that represent a given reversible logic function,
in which the circuits are assumed to consist of general Toffoli gates and
have no redundant input/output lines. We make a theoretical comparison
of lower bounds, and prove that the proposed bound is better than the pre-
vious one. Moreover, experimental results for lower bounds on randomly-
generated reversible logic functions and reversible benchmarks are given.
The results also demonstrate that the proposed lower bound is better than
the former one.
key words: reversible logic circuits, Toffoli gates, lower bound, logic min-
imization

1. Introduction

The synthesis of reversible logic circuits is a fundamental
part of the quantum logic field. NOT, CNOT, and Toffoli
gates are typically used for synthesizing reversible logic cir-
cuits [1]–[4] as well as quantum logic ones [5]. Fredkin and
SWAP gates are also known [6]–[8] as other types of re-
versible logic gates. Figure 1 shows an example of Toffoli
gates. The standard Toffoli (Fig. 1 (c)) is a 3-bit gate and it
can be generalized to k-bit Toffoli like Fig. 1 (d).

In this paper, NOT, CNOT, Toffoli, and k-bit Toffoli
are referred to as the general Toffoli library since NOT and
CNOT can be considered as 1-bit and 2-bit Toffolis, respec-
tively. We discuss the reversible logic synthesis with the
general Toffoli library.

Some types of reversible circuits may have redundant
input/output lines [2]. Since the presence of those redun-
dant lines is considered as the cost of the circuits [9], it is
desirable not to use the redundant lines. For that reason,
the most fundamental model is the reversible circuits with-
out redundant lines [1], [3], [4], [6]–[8], [10]. We deal with
the reversible logic circuits without redundant input/output
lines.

In addition to redundant lines, there are many
technology-specific cost metrics [11]–[13]: the number of
elementary gates, quantum cost, delay, depth etc. How-
ever, their relevance will change depending on future de-
velopments in quantum-circuit technologies. Therefore,
this paper adopts the number of gates as the fundamen-

Manuscript received November 29, 2013.
Manuscript revised April 11, 2014.
†The authors are with the Department of Electrical Engineer-

ing and Computer Science, Iwate University, Morioka-shi, 020–
8551 Japan.

a) E-mail: hirayama@cis.iwate-u.ac.jp
DOI: 10.1587/transinf.2013LOP0013

(a) NOT (b) CNOT

(c) Toffoli (d) 4-bit Toffoli

Fig. 1 Example of reversible gates.

tal and technology-independent cost metric. Although dif-
ferent gates require different resources in a precise sense,
the metric approximately reflects the complexity of circuits.
Szyprowski et al. [22] compared many complexity measures
for reversible functions and have reported that the Reed-
Muller spectra size gives the best estimation for the com-
plexity of minimum circuits. The comparison was done ex-
perimentally, and the estimation was not a kind of theoreti-
cal upper or lower bounds on the circuit complexity.

For the Toffoli-based logic synthesis, a number of op-
timization algorithms have been proposed; some of which
are the exact minimization and others are the heuristic sim-
plification. Golubitsky et al. [14], [23] and Szyprowski et
al. [15] studied the exact minimization. Their algorithms
guarantee the minimality of the resulting circuits. However,
the extent of applicability of the exact minimizers is lim-
ited to smaller functions only. For larger functions, heuristic
simplification [1]–[3], [6], [8], [16] is useful, which does not
guarantee the minimality but obtains near optimum circuits
in a practical computation time. Theoretically the circuits
obtained by heuristic simplifiers can be seen as the upper
bounds for the exact minimum ones. This means that many
methods for obtaining the upper bounds for given functions
have been already studied. As analytical bounds, Saeedi et
al. [17] discussed the upper bounds for the classes of func-
tions with various length of cycles.

As well as upper bounds, lower bounds have theoretical
and practical significance as a measure of the complexity of
reversible circuits. However, the works for the lower bounds
are far fewer. Maslov et al. [9] and Shende et al. [18] pre-
sented the upper and lower bounds on the longest minimum
circuits for the class of all n-input reversible functions. With
regard to the lower bounds for given functions, Higashiohno

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

2254
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

et al. [19] presented a simple lower bound by evaluating the
Positive Polarity Reed-Muller expressions (PPRMs) of the
functions. We present a new and better lower bound on the
minimum number of Toffoli gates in the reversible circuits
that represent a given function. The number of Toffoli gates
used in a reversible circuit is also called the gate count in
this paper.

The paper is organized as follows. The next section
outlines some preliminaries and reviews the previous lower
bound. Section 3 presents a new lower bound. In Sect. 4, it
is proved mathematically that the proposed bound is better
than the previous one. Section 5 describes the fast calcu-
lation of the bounds. The experimental results are given in
Sect. 6. We conclude in Sect. 7.

2. Preliminaries

In this paper, n-input single-output logic functions (“logic
functions” for short) are represented by positive polar-
ity Reed-Muller expressions (PPRMs) [20]. It is known
that any logic function can be represented by the PPRM
uniquely. For example, the logic function x1 x̄2+x2 is written
as x1 ⊕ x2 ⊕ x1x2 in PPRM.

The composition of an n-input single-output logic
function f and an n-input n-output logic function F is de-
noted by f ◦ F and is defined as the mathematical function
composition, i.e., the composite function f ′ = f ◦F is the n-
input single-output logic function such that f ′(X) = f (F(X))
for all the input vectors X ∈ {0, 1}n. Similarly, the com-
posite function F1 ◦ F2 of n-input n-output logic functions
F1 and F2 is the n-input n-output logic function such that
F′(X) = F1(F2(X)) for all X ∈ {0, 1}n. The composition of
functions is always associative.

Now we give a notation of an n-input n-output logic
function. Let xi (1 ≤ i ≤ n) be the variable that represents
the i-th element of the input vector. By regarding xi as a
logic function, the composition xi ◦ F can be seen as the
logic function that represents the i-th output of F. By letting
fi = xi ◦ F, F is denoted by fi and xi in pairs as follows.

[f1/x1, f2/x2, . . . , fn/xn] where fi = xi ◦ F

Each fi/xi describes the i-th output and input. The trivial
case where fi = xi ◦ F = xi, or xi/xi is sometimes omitted in
this notation, for simplicity.

Example 1: {x1, x2, x3} is a set of variables. F = [x1 ⊕
x2x3/x1, x2 ⊕ 1/x2, x3/x3] is a 3-input 3-output logic func-
tion, where fi is written in PPRM. In this case, F can be also
represented as [x1⊕ x2x3/x1, x2⊕1/x2] by omitting the nota-
tion of x3/x3. Generally, the composition of n-input single-
output logic function f and n-input n-output logic function
F can be considered as a substitution in PPRMs, in which
each variable x of f is replaced with x◦F. Let f = x3⊕ x1x2

and F = [x1 ⊕ x2x3/x1, x2 ⊕ 1/x2]. The composition f ◦ F
results in (x3 ⊕ x1x2) ◦ F = (x3 ◦ F) ⊕ (x1 ◦ F)(x2 ◦ F) =
x3 ⊕ (x1 ⊕ x2x3)(x2 ⊕ 1) = x3 ⊕ x1x2 ⊕ x1. Suppose that
F′ = [x1⊕x1x2⊕x3/x1, x3⊕x1x2/x3]. The composition F′◦F

Fig. 2 Example of reversible logic circuit.

results in [x2x3 ⊕ x3 ⊕ x1x2/x1, x2 ⊕ 1/x2, x3 ⊕ x1x2 ⊕ x1/x3],
whose output functions x ◦ (F′ ◦ F) are obtained separately
as follows.

x1 ◦ (F′ ◦ F) = (x1 ◦ F′) ◦ F = (x1 ⊕ x1x2 ⊕ x3) ◦ F

= x2x3 ⊕ x3 ⊕ x1x2

x2 ◦ (F′ ◦ F) = (x2 ◦ F′) ◦ F = x2 ◦ F

= x2 ⊕ 1

x3 ◦ (F′ ◦ F) = (x3 ◦ F′) ◦ F = (x3 ⊕ x1x2) ◦ F

= x3 ⊕ x1x2 ⊕ x1

�

Definition 1: An n-input n-output logic function F is
called reversible if F is bijective. �

Definition 2: A k-bit Toffoli gate has (k − 1) control lines
x1, x2, . . . , xk−1 and one target line xk, and realizes the re-
versible logic function [xk ⊕ x1x2 · · · xk−1/xk]; the target line
maps xk to xk ⊕ x1x2 · · · xk−1 and the other lines pass the sig-
nals unaltered. The function of the 1-bit Toffoli, referred to
as NOT, is [x1 ⊕ 1/x1]. �

Example 2: The Toffoli gates (a), (b), (c), and (d) in Fig. 1
realize [x1 ⊕ 1/x1], [x2 ⊕ x1/x2], [x3 ⊕ x1x2/x3], and [x4 ⊕
x1x2x3/x4], respectively. �

To discuss a lower bound for reversible functions, we
regard a Toffoli gate as a function rather than a device, here-
after.

Definition 3: A reversible logic circuit is denoted by the
sequence of Toffoli gates G1G2 . . .Gm, where m is called
the gate count (GC) of the circuit. The reversible function
realized by the circuit is the composition of gates Gm◦Gm−1◦
· · · ◦G1. �

Example 3: Figure 2 shows a reversible logic circuit with
four gates, which is represented by G1G2G3G4 = [x1 ⊕
x2x3/x1][x2⊕1/x2][x3⊕x1x2/x3][x1⊕x3/x1]. The reversible
function F realized by the circuit is the composition of these
gates, i.e., G4 ◦G3 ◦G2 ◦G1 = [x1⊕ x3/x1]◦ [x3⊕ x1x2/x3]◦
[x2 ⊕ 1/x2] ◦ [x1 ⊕ x2x3/x1] = [x1 ⊕ x3/x1] ◦ [x3 ⊕ x1x2/x3] ◦
[x1 ⊕ x2x3/x1, x2 ⊕ 1/x2] = [x1 ⊕ x3/x1] ◦ [x1 ⊕ x2x3/x1,
x2⊕1/x2, x3⊕x1x2⊕x1/x3] = [x2x3⊕x3⊕x1x2/x1, x2⊕1/x2,
x3⊕x1x2⊕x1/x3]. This F can be represented by another com-
position of three gates as [x1⊕x2x3/x1]◦[x3⊕x1x2/x3]◦[x2⊕
1/x2]. This means that F can also be realized by the three-
gate reversible circuit [x2⊕1/x2][x3⊕x1x2/x3][x1⊕x2x3/x1],
which is shown in Fig. 3. �

HIRAYAMA et al.: A LOWER BOUND ON THE GATE COUNT OF TOFFOLI-BASED REVERSIBLE LOGIC CIRCUITS
2255

Fig. 3 Example of reversible logic circuit with three gates.

For a given reversible function F, the synthesis of re-
versible logic circuits can be seen as the problem of obtain-
ing a sequence of Toffoli gates G1 . . .Gm−1Gm that satisfies
F = Gm ◦ Gm−1 ◦ · · · ◦ G1. As we have seen in Example 3,
there are a number of possible reversible logic circuits that
realize a given F. The GC of the resulting circuit varies
with the synthesizers. As a theoretical research, we discuss
a lower bound on the minimum GC of the circuits of a given
function F.

In order to discuss the lower bounds, we define a com-
plexity measure σ(F) of a reversible function F, and briefly
refer to the previous lower bound [19].

Definition 4: The number of product terms of the PPRM
of a logic function f is denoted by τ(f). We define σi(f) =
τ(xi ⊕ f), where xi is a variable. Let F be a reversible func-
tion with n variables. σ(F) is defined as follows.

σ(F) =
∑

1≤i≤n

σi(xi ◦ F)

�

Example 4: For the reversible function F = [x2x3 ⊕ x3 ⊕
x1x2/x1, x2 ⊕ 1/x2, x3 ⊕ x1x2 ⊕ x1/x3], which was given in
Example 3 (Fig. 2), σ1(x1◦F) = τ(x1⊕x2x3⊕x3⊕x1x2) = 4,
σ2(x2 ◦F) = τ(x2⊕ x2⊕1) = 1, and σ3(x3 ◦F) = τ(x3⊕ x3⊕
x1x2 ⊕ x1) = 2. Thus, σ(F) is 7. If F is an identity function,
e.g., F = [x1/x1, x2/x2, x3/x3], then σ(F) = 0. �

Definition 5: Among all reversible circuits that realize a
reversible function F, those with the exact minimum GC are
called the minimum circuits of F. The GC of a minimum
circuit of F is called the GC of F and denoted by γ(F). �

Theorem 1 (Lower Bound Theorem [19]): For any revers-
ible function F, the inequality 2γ(F) − 1 ≥ σ(F), i.e.,

γ(F) ≥ 	log2(σ(F) + 1)
,
holds. �

Example 5: For the reversible function F = [x2 ⊕ x1x3 ⊕
x2x3/x1, 1⊕x1⊕x3⊕x1x2⊕x1x3⊕x2x3/x2, x3⊕1⊕x2⊕x1x2⊕
x1x3 ⊕ x2x3/x3], σ(F) = 16 holds. From the lower bound
theorem, 	log(σ(F) + 1)
 = 	log 17
 = 5 or more gates are
required in the reversible circuits to realize F. Meanwhile,
F can be represented by the composition of five gates: [x2 ⊕
x3/x2] ◦ [x3 ⊕ x1x2/x3] ◦ [x1 ⊕ x2x3/x1] ◦ [x2 ⊕ x1/x2] ◦ [x3 ⊕
1/x3]. This means that the upper bound is also 5. Therefore,
we can conclude γ(F) = 5 and the above result is exact
minimum. Like this, lower bounds may be used to guarantee
the minimality of the results from a logic synthesizer. �

3. A New Lower Bound on the Gate Count of the Re-
versible Circuits

We propose a new lower bound based on the numerical cal-
culation while Theorem 1 is an analytic lower bound. The-
orem 1 uses σ(F), which is a scalar information obtained
from the reversible function F. However, it is more natu-
ral to consider the lower bound with a collection of multiple
information since F has multiple outputs. Therefore, we
discuss a lower bound utilizing the vector operations.

Definition 6: The exclusive-or set of two sets Q1 and Q2 is
denoted by Q1⊕Q2, i.e., Q1⊕Q2 = (Q1∪Q2)−(Q1∩Q2) �

Definition 7: PPRM(f) denotes the set of product terms of
the PPRM of the logic function f . A product term p is said
to appear in the PPRM of f if p ∈ PPRM(f). We say that f
is independent of a variable x if no product terms that have
the literal x appear in the PPRM of f . �

To argue lower bounds, we briefly review some essen-
tial properties of PPRMs. Properties 2 and 3 will be used
to prove Lemma 1. Since these properties are well-known
basics of PPRMs, their detailed proofs are omitted.

Property 1: For any logic functions f and g, PPRM(f ⊕
g) = PPRM(f) ⊕ PPRM(g). �

From Property 1, we have the following.

Property 2: For any logic functions f and g, τ(f ⊕ g) ≤
τ(f) + τ(g) �

If logic functions f and g are independent of a variable
x, PPRM(x f) ∩ PPRM(g) = ∅ holds. Hence, we have the
following from Property 1.

Property 3: If logic functions f and g are independent of
a variable x, τ(x f ⊕ g) = τ(x f) + τ(g). �

In this paper, we use boldface for representing arith-
metic functions that produce a vector like Φ in Definition 8.

Definition 8: Suppose that S is a vector of non-negative
integers [s1, s2, . . . , sn], and k is an integer with 1 ≤ k ≤ n.
We define Φ(S, k) as the vector [r1, r2, . . . , rn] such that

ri =

{ 	 si−1
2
 if i = k
	 si

2
 otherwise.

�

Note that rk = 	 sk−1
2
 = 0 holds if sk = 0. This means

that the resulting r1, r2, . . . , rn are always non negative.

Example 6: Let S = [2, 1, 4]. Φ(S, 1) = [2−1
2
, 	 1

2
, 	 4
2
] =

[1, 1, 2], Φ(S, 2) = [2
2
, 	 1−1

2
, 	 4
2
] = [1, 0, 2], Φ(S, 3) =

[2
2
, 	 1

2
, 	 4−1
2
] = [1, 1, 2]. �

Φ is an important operator utilizing the vector informa-
tion of the reversible function, and therefore is used many
times throughout this paper. Φ(S, k) nearly halves the ele-
ments of S. By applying the operation Φ with proper in-
dices k recursively to the resulting vector, the vector can be

2256
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

[0, 0, . . . , 0] finally. Since counting the minimum depth of
such recursion is a key process of our lower bound, we give
the definition of the process as σ-lb.

Definition 9: Let S be a vector of non-negative integers
and n be the length of S. σ-lb(S) is defined recursively with
Φ as follows.

σ-lb(S) =

⎧⎪⎪⎨⎪⎪⎩
0 if S = 0
1 + min

1≤i≤n
{σ-lb(Φ(S, i))} otherwise,

where 0 denotes [0, 0, . . . , 0]. �

We have the following property directly from the above
definition.

Property 4: Let S be a vector of non-negative integers and
n be the length of S. For any i (1 ≤ i ≤ n), σ-lb(S) ≤
1 + σ-lb(Φ(S, i)). �

Definition 10: For two vectors S1 = [a1, a2, . . . , an] and
S2 = [b1, b2, . . . , bn], we say S1 ≥ S2 if ai ≥ bi for all i
(1 ≤ i ≤ n). �

Property 5: Let S1 and S2 be vectors of non-negative in-
tegers with the same length. If S1 ≥ S2, then σ-lb(S1) ≥
σ-lb(S2). �

The proof of Property 5 is omitted since it can be easily done
by the mathematical induction.

Definition 11: Let F be a reversible function with n vari-
ables. Λ(F) denotes the vector [σ1(x1 ◦ F), σ2(x2 ◦ F),
. . . , σn(xn ◦ F)]. �

Lemma 1: For an arbitrary reversible function F and an
arbitrary Toffoli gate G = [xk⊕p/xk], Λ(F) ≥ Φ(Λ(F◦G), k)
holds. �

Proof. From the definition of Φ, the lemma is proved if we
have two inequalities: 2σk(xk ◦ F) ≥ σk(xk ◦ F ◦G) − 1 for
the variable xk used in the Toffoli gate G = [xk ⊕ p/xk], and
2σi(xi ◦ F) ≥ σi(xi ◦ F ◦ G) for any variable xi except xk.
We prove these inequalities below.

(Case for xk) Let f denote xk ◦ F. By using the posi-
tive Davio expansion [20], the logic function f can be rep-
resented in the form of f = xk f2 ⊕ f0, where the subfunc-
tions f2 and f0 are independent of the variable xk. Since
σk(f ◦ G) = σk((p ⊕ xk) f2 ⊕ f0) = σk(p f2 ⊕ xk f2 ⊕ f0) =
τ(xk⊕p f2⊕xk f2⊕ f0), we show that 2σk(f)+1 ≥ σk(f ◦G) =
τ(xk ⊕ p f2 ⊕ xk f2 ⊕ f0).
τ(xk f2) = τ(f2) ≥ τ(p f2) since f2 is independent of xk,

and τ(f0) ≤ 2τ(f0) since τ is non negative. From Property 3,
τ(xk⊕ xk f2⊕ f0) = τ(xk(1⊕ f2)⊕ f0) = τ(xk(1⊕ f2))+τ(f0) =
τ(xk ⊕ xk f2) + τ(f0). From these formulae and Property 2,
we have the following.

σk(f ◦G)

= τ(xk ⊕ p f2 ⊕ xk f2 ⊕ f0)

≤ τ(xk ⊕ xk f2) + τ(p f2) + τ(f0)

≤ τ(xk ⊕ xk f2) + τ(xk f2) + τ(f0)

= τ(xk ⊕ xk f2) + τ(xk ⊕ xk ⊕ xk f2) + τ(f0)

≤ τ(xk ⊕ xk f2) + τ(xk) + τ(xk ⊕ xk f2) + τ(f0)

= 2τ(xk ⊕ xk f2) + 1 + τ(f0)

≤ 2τ(xk ⊕ xk f2) + 1 + 2τ(f0)

= 2(τ(xk ⊕ xk f2) + τ(f0)) + 1

= 2τ(xk ⊕ xk f2 ⊕ f0) + 1

= 2τ(xk ⊕ f) + 1

= 2σk(f) + 1

Thus, we have 2σk(f) + 1 ≥ σk(f ◦G).
(Case for xi � xk) Let h denote xi ◦ F, where xi �

xk, and let h = xkh2 ⊕ h0 be the positive Davio expansion
of h with the variable xk. The subfunctions h2 and h0 are
independent of xk. Since σi(h◦G) = τ(xi ⊕ ph2 ⊕ xkh2 ⊕h0),
we show that 2σi(h) ≥ σi(h ◦G) = τ(xi ⊕ ph2 ⊕ xkh2 ⊕ h0).

As well as in the preceding case, τ(xkh2) ≥ τ(ph2),
τ(xi ⊕ h0) ≤ 2τ(xi ⊕ h0), and τ(xi ⊕ h0 ⊕ xkh2) = τ(xi ⊕ h0) +
τ(xkh2) holds. From these formulae and Property 2, we have
the following.

σi(h ◦G)

= τ(xi ⊕ ph2 ⊕ xkh2 ⊕ h0)

≤ τ(xi ⊕ h0) + τ(ph2) + τ(xkh2)

≤ τ(xi ⊕ h0) + τ(xkh2) + τ(xkh2)

= τ(xi ⊕ h0) + 2τ(xkh2)

≤ 2τ(xi ⊕ h0) + 2τ(xkh2)

= 2(τ(xi ⊕ h0) + τ(xkh2))

= 2τ(xi ⊕ h0 ⊕ xkh2)

= 2τ(xi ⊕ h)

= 2σi(h)

Thus, we have 2σi(h) ≥ σi(h ◦G). �

Lemma 2: For an arbitrary reversible function F and an
arbitrary Toffoli gate G, σ-lb(Λ(F)) ≥ σ-lb(Λ(F ◦ G)) − 1
holds. �

Proof. Let G = [xk ⊕ p/xk]. From Property 4,

σ-lb(Φ(Λ(F ◦G), k)) ≥ σ-lb(Λ(F ◦G)) − 1. (1)

Since Λ(F) ≥ Φ(Λ(F ◦G), k) holds from Lemma 1, we have
the following from Property 5.

σ-lb(Λ(F)) ≥ σ-lb(Φ(Λ(F ◦G), k)) (2)

From the inequalities (1) and (2), we have σ-lb(Λ(F)) ≥
σ-lb(Φ(Λ(F ◦G), k)) ≥ σ-lb(Λ(F ◦G)) − 1. �

By using Lemma 2, we have a new lower bound on
γ(F).

Theorem 2 (Lower Bound Theorem): For any reversible
function F,

γ(F) ≥ σ-lb(Λ(F))

HIRAYAMA et al.: A LOWER BOUND ON THE GATE COUNT OF TOFFOLI-BASED REVERSIBLE LOGIC CIRCUITS
2257

holds. �

Proof. The proof is by the mathematical induction on γ(F).
If γ(F) = 0, F is the identity function. Then, Λ(F) = 0.
From the definition of σ-lb, σ-lb(0) = 0. Thus, the base
case was proved.

Assume that the theorem holds for any reversible func-
tions Fm such that γ(Fm) = m (m ≥ 0). Using this assump-
tion, we prove the theorem for γ(F) = m + 1. From the
induction hypothesis,

γ(Fm) ≥ σ-lb(Λ(Fm)). (3)

For any F with γ(F) = m + 1, there exist some reversible
function Fm with γ(Fm) = m and some Toffoli gate G, and
F can be written by the composition of Fm and G as F =
Fm ◦G. From the inequality (3) and Lemma 2,

γ(F) = m + 1

= γ(Fm) + 1

≥ σ-lb(Λ(Fm)) + 1

≥ (σ-lb(Λ(Fm ◦G)) − 1) + 1

= σ-lb(Λ(Fm ◦G))

= σ-lb(Λ(F)).

Thus, the inductive step was proved. �

Theorem 2 shows that the lower bound on γ(F) can be
obtained by calculating σ-lb(Λ(F)) by calling σ-lb recur-
sively according to Definition 9. Although the lower bound
σ-lb(Λ(F)) requires a complex computation, the bound is
better than the previous 	log(σ(F) + 1)
 as we will see in
Sect. 4. The efficient calculation of σ-lb will be discussed in
Sect. 5.

Example 7: For the reversible function F = [x1 ⊕ x2 ⊕
x3/x1, x2 ⊕ x1x2 ⊕ x1x3/x2, x3 ⊕ x1x2 ⊕ x2x3/x3], we have
Λ(F) = [2, 2, 2] and σ(F) = 6. Theorem 1 produces
	log(σ(F) + 1)
 = 	log 7
 = 3 while Theorem 2 does
σ-lb(Λ(F)) = 4, which is a better lower bound. �

As well as GC, quantum cost (QC) [13], [17] is a major
cost metric of the circuit complexity. A trivial lower bound
on QC can be obtained from σ-lb(Λ(F)) by considering the
least QC of gates. Since every gate in the general Toffoli
library has at least 1 quantum cost, the GC of a circuit can
be seen as a lower bound on the QC of the circuit. Con-
sequently, σ-lb(Λ(F)) is also a lower bound on QC of the
circuit of F.

4. Theoretical Comparison of Lower Bounds

This section shows that the proposed lower bound
σ-lb(Λ(F)) is better than the previous one 	log(σ(F) + 1)
.
Specifically we prove σ-lb(Λ(F)) ≥ 	log(σ(F) + 1)
 for any
F.

Definition 12: For an integer vector S with length n, S[i]
denotes the i-th element of S. The total sum of the elements

∑
1≤i≤n S[i] is simply denoted by

∑
S.

Definition 13: Suppose that S is a vector of non-negative
integers [s1, s2, . . . , sn], and k is an index (1 ≤ k ≤ n). We
define Ψ(S, k) as the vector [r1, r2, . . . , rn] such that

ri =

{
2si + 1 if i = k
2si otherwise.

�

Ψ(S, k) doubles almost all elements of S. Therefore,
Ψ is the inverse operation of Φ; Φ(Ψ(S, k), k) = S holds for
any S and k. Meanwhile Ψ(Φ(S, k), k) ≥ S holds since Φ
uses the ceiling function. From this property, we have the
following lemma.

Lemma 3: For an arbitrary vector of non-negative inte-
gers S and an arbitrary index k,

∑
Ψ(Φ(S, k), k) = 1 +

2
∑
Φ(S, k) ≥ ∑S holds. �

Proof. From the definition of Ψ ,
∑
Ψ(S′, k) = 1 + 2

∑
S′

holds for any S′. By replacing S′ with Φ(S, k), we have∑
Ψ(Φ(S, k), k) = 1 + 2

∑
Φ(S, k). On the other hand,∑

Ψ(Φ(S, k), k) ≥ ∑S holds from Ψ(Φ(S, k), k) ≥ S. Thus
we have the lemma. �

Lemma 4: For an arbitrary vector of non-negative integers
S, 2σ-lb(S) ≥ 1 +

∑
S. �

Proof. The proof is by the mathematical induction on
σ-lb(S). If σ-lb(S) = 0, 2σ-lb(S) = 1. From σ-lb(S) = 0,
S = 0, therefore

∑
S = 0 holds. Then, 1 +

∑
S = 1. Thus,

the base case was proved.
Assume that the lemma holds for any vector of non-

negative integers Sm such that σ-lb(Sm) ≤ m. Using this
assumption, we prove the lemma for σ-lb(S) = 1+m. From
the induction hypothesis,

2σ-lb(Sm) ≥ 1 +
∑

Sm. (4)

Since σ-lb(S) = 1 + m, S � 0 holds. Then, we have
σ-lb(S) = 1 + min1≤i≤n{σ-lb(Φ(S, i))} from the definition
of σ-lb, and hence min1≤i≤n{σ-lb(Φ(S, i))} = m. Then,
there exists some index k such that min1≤i≤n{σ-lb(Φ(S, i))} =
σ-lb(Φ(S, k)) = m. From this equation, Eq. (4), and
Lemma 3,

2σ-lb(S) = 21+m

= 21+σ-lb(Φ(S,k)) = 2 · 2σ-lb(Φ(S,k))

≥ 2(1 +
∑
Φ(S, k)) = 2 + 2

∑
Φ(S, k)

≥ 1 +
∑

S.

Thus, the inductive step was proved. �

By replacing S with Λ(F) in Lemma 4, we have the
following theorem.

Theorem 3: For any reversible function F, the inequality
2σ-lb(Λ(F)) ≥ ∑Λ(F) + 1 = σ(F) + 1, i.e.,

σ-lb(Λ(F)) ≥ 	log2(σ(F) + 1)

2258
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

holds. �

Theorem 3 guarantees that the proposed lower bound
σ-lb(Λ(F)) is not smaller than the previous 	log(σ(F)+ 1)
.

5. Fast Calculation of the Lower Bound

This section discusses the fast calculation of σ-lb by making
changes in the algorithm incrementally.

5.1 SigmaLB1

SigmaLB1 in Fig. 4 is a naive algorithm for σ-lb(S) that
uses depth-first search. SigmaLB1 only calls the helper
procedure helper(S, 0) on the line 17, and helper actually
computes Φ(S, i) by calling itself recursively. From Defini-
tion 9, σ-lb(S) counts the minimum depth of recursion. In
helper, the argument c is the counter to record the depth
of recursion, which is incremented by a recursive call as
helper(Φ(S, i), c+1) on the line 12. As a result, helper(S, c)
obtains σ-lb(S) + c. The current minimum depth is stored
in min, which is updated if a smaller result is obtained by
helper. Since searching for a result bigger than min is a
waste, the line 4 limits the searching depth up to min. As
the output of SigmaLB1, min is returned finally.

To avoid the infinite recursive calls, the recursion is
done only if Φ(S, i) � S. It is clear that a recursion for
Φ(S, i) = S (S � 0) does not result in σ-lb(S), i.e., for the
index k such that Φ(S, k) = S, min1≤i≤n{σ-lb(Φ(S, i))} �
σ-lb(Φ(S, k)) holds. The proof is by contradiction. By
assuming σ-lb(Φ(S, k)) = min1≤i≤n{σ-lb(Φ(S, i))} for the
index k such that Φ(S, k) = S, we have σ-lb(S) =
min1≤i≤n{σ-lb(Φ(S, i))}, which contradicts Definition 9.

5.2 SigmaLB2

SigmaLB2 in Fig. 5 is a revised version of SigmaLB1, in
which the condition for recursion has been changed from
“Φ(S, i) � S” to “S[i] is odd.” In the search for the mini-
mum depth, recursions for the even S[i] can be omitted be-
cause σ-lb(Φ(S, i)) for such i does not become smaller as
shown in the lemma below.

Lemma 5: Let S be a vector of non-negative integers and
k be an index. If S[k] is even, σ-lb(Φ(S, k)) ≥ σ-lb(Φ(S, i))
holds for any index i. �

Proof. Let Sk and Si denote Φ(S, k) and Φ(S, i), respec-
tively. From Definition 8, Sk[k] = 	(S[k]− 1)/2
. Since S[k]
is even from the assumption of the lemma, Sk[k] = 	(S[k] −
1)/2
 = 	S[k]/2
. Meanwhile Si[k] = 	S[k]/2
 holds from
the definition. Hence we have Sk[k] = Si[k] for index k.
Similarly Sk[i] = 	S[i]/2
 ≥ 	(S[i] − 1)/2
 = Si[i] for index
i. For other indices j (j � k, j � i), Sk[j] = 	S[j]/2
 = Si[j].
From these comparisons, Sk ≥ Si holds. Thus, we have
σ-lb(Sk) ≥ σ-lb(Si) from Property 5. �

From Lemma 5, if all elements in S are even, σ-lb(Φ(S, i))
will be the same for all indices i.

1: function SigmaLB1(S): Integer � Input: S is a vector of
non-negative integers.

2: Var min: Integer;
3: procedure helper(S, c) � Input: S is a vector and c is an

integer.
� Side Effect: Updating min.

4: if c ≥ min then return ;
5: end if
6: if S = 0 then
7: min← c;
8: return ;
9: end if

10: for i← 1 to n do
11: if Φ(S, i) � S then
12: helper(Φ(S, i), c + 1);
13: end if
14: end for
15: end procedure
16: min← a large integer;
17: helper(S, 0);
18: return min;
19: end function

Fig. 4 SigmaLB1: a naive algorithm for σ-lb(S).

1: function SigmaLB2(S): Integer � Input: S is a vector of
non-negative integers.

2: Var min: Integer;
3: procedure helper(S, c) � Input: S is a vector and c is an

integer.
� Side Effect: Updating min.

4: if c + 	log(
∑

S + 1)
 ≥ min then return ;
5: end if
6: if S = 0 then
7: min← c;
8: return ;
9: end if

10: if (all elements of S are even) then
11: helper(Φ(S, 1), c + 1);
12: else
13: for i← 1 to n do
14: if (S[i] is odd) then
15: helper(Φ(S, i), c + 1);
16: end if
17: end for
18: end if
19: end procedure
20: min← a large integer;
21: helper(S, 0);
22: return min;
23: end function

Fig. 5 SigmaLB2: a revised algorithm for σ-lb(S).

Corollary 1: Let S be a vector of non-negative integers.
If all elements in S are even, σ-lb(Φ(S, i)) = σ-lb(Φ(S, j))
holds for an arbitrary pair of indices i and j. �

In the special case where all elements in S are even,
Corollary 1 guarantees that calling helper for just one index,
e.g., Φ(S, 1), is enough like the lines 10–11 in Fig. 5. The
statement “If S[i] is odd,Φ(S, i) � S” is true for any S and i,
but its converse is not true in general. Therefore, SigmaLB2
requires fewer recursive calls than SigmaLB1. That is why
SigmaLB2 is faster.

HIRAYAMA et al.: A LOWER BOUND ON THE GATE COUNT OF TOFFOLI-BASED REVERSIBLE LOGIC CIRCUITS
2259

In addition, 	log(
∑

S+1)
 can be used as a lower bound
on σ-lb(S) since σ-lb(S) ≥ 	log(

∑
S + 1)
 from Lemma 4.

By pruning recursive calls by evaluating 	log(
∑

S + 1)
, we
can make the algorithm faster. This idea is implemented as
the line 4 in SigmaLB2.

5.3 SigmaLB3

During the execution of the algorithm, the branched recur-
sion may process the same pairs of S and c many times. For
avoiding such cases, memory cache is a useful technique.
To reduce the cache memory consumption, we introduce an
equivalent relation on the set S of all vectors of non-negative
integers with length n.

Definition 14: Let S and S′ be vectors of non-negative in-
tegers with the same length n, and π be a permutation of
the set {1, 2, . . . , n}. If there exists a permutation π such that
S[π(i)] = S′[i] for all i (1 ≤ i ≤ n), then S is P-equivalent
to S′, which is denoted by S ∼ S′. The sorted vector of S in
ascending order is represented by rep(S), and is called the
representative vector of S. �

Note that S ∼ rep(S) for any vector S.

Property 6: Let S and S′ be vectors of non-negative inte-
gers. If S ∼ S′, then σ-lb(S) = σ-lb(S′). �

Recall that helper(S, c) is a procedure that computes
the minimum depth of recursion, which results inσ-lb(S)+c.
Consider another helper(S′, c′) such that S ∼ S′ and c ≥ c′.
Since σ-lb(S) = σ-lb(S′) from Property 6, σ-lb(S) + c ≥
σ-lb(S′) + c′ holds. In such a case, helper(S, c) cannot
be smaller than helper(S′, c′). Consequently, the computa-
tion of helper(S, c) can be pruned away if helper(S′, c′) like
above has been computed before. Based on this idea, Sig-
maLB2 is modified into SigmaLB3 to store the past results
of helper to a hash table ht. Helper in SigmaLB3 can re-
duce the recursion when the cache in ht hits. To reduce the
memory usage, SigmaLB3 stores the representative vector
rep(S), instead of individual vectors S.

On the line 11, ‘ht[rep(S)] = ∅’ represents the condi-
tion that the value for the key rep(S) in ht is empty; mean-
ing that no vectors P-equivalent to S have been computed
yet. The line 11 checks ht and determines whether another
helper(S′, c′) such that S ∼ S′ and c ≥ c′ has already been
computed. If so, the condition of the if statement evaluates
to false, and then the rest of the process, the lines 12–21, is
skipped. Otherwise those lines are processed. To memorize
the result of helper(S, c), the line 21 registers the key rep(S)
and the value c to the hash table ht.

5.4 Computation Time

To test the time efficiency, we implemented SigmaLB1,
SigmaLB2, and SigmaLB3 in Common Lisp (SBCL), and
computed σ-lb(Λ(F)) for all (40,320) 3-variable functions
and 50,000 randomly-generated n-variable functions, where

1: function SigmaLB3(S): Integer � Input: S is a vector of
non-negative integers.

2: Var min: Integer;
3: Var ht: Hash Table;
4: procedure helper(S, c) � Input: S is a vector and c is an

integer.
� Side Effect: Updating min.

5: if c + 	log(
∑

S + 1)
 ≥ min then return ;
6: end if
7: if S = 0 then
8: min← c;
9: return ;

10: end if
11: if ht[rep(S)] = ∅ or c < ht[rep(S)] then
12: if (all elements of S are even) then
13: helper(Φ(S, 1), c + 1);
14: else
15: for i← 1 to n do
16: if (S[i] is odd) then
17: helper(Φ(S, i), c + 1);
18: end if
19: end for
20: end if
21: ht[rep(S)]← c;
22: end if
23: end procedure
24: min← a large integer;
25: helper(S, 0);
26: return min;
27: end function

Fig. 6 SigmaLB3: a fast algorithm for σ-lb(S).

Table 1 Average computation time [ms] for σ-lb(Λ(F)).

n SigmaLB1 SigmaLB2 SigmaLB3
3 0.022 0.0055 0.0083
4 0.84 0.024 0.020
5 57.09 0.31 0.062
6 5396.30 6.66 0.15
7 − 243.15 0.29
8 − 7020.24 0.54
9 − − 0.94

10 − − 1.57

n = 4, 5, . . . , 10. The programs were executed on a com-
puter with Ubuntu 12.04LTS / Core i7-3820 CPU (3.6GHz).
Table 1 shows the average computation time in millisec-
onds per function. The signs ‘−’ in the table mean that we
could not get the results within 10,000[ms] per function and
gave up the computation. Among the three proposed algo-
rithms, only SigmaLB3 obtained the lower bounds for func-
tions with 9 or more variables in a practical computation
time.

6. Experimental Results

To make an experimental comparison between the two lower
bounds σ-lb(Λ(F)) and 	log(σ(F)+ 1)
, we computed them
for all (40,320) 3-variable functions and 50,000 randomly-
generated n-variable functions, where n = 4, 5, . . . , 10,
exactly the same as in Table 1. The averages of lower
bounds for those functions are given in Table 2. Not only

2260
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.9 SEPTEMBER 2014

Table 3 Distribution of functions over the difference between two lower bounds.

Diff. n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
0 32,021(79.4%) 27.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1 8,299(20.6%) 72.1% 94.2% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0 0.0% 5.8% 97.4% 0.0% 0.0% 0.0% 0.0%
3 0 0.0% 0.0% 2.6% 98.7% 43.3% 0.0% 0.0%
4 0 0.0% 0.0% 0.0% 1.3% 56.7% 99.7% 0.0%
5 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 99.8%
6 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2%

Total 40,320 (100%) 100% 100% 100% 100% 100% 100% 100%

Table 2 Average of lower bounds.

n 	log(σ(F) + 1)
 σ-lb(Λ(F))
3 3.88 4.09
4 5.36 6.08
5 6.99 8.05
6 8.00 10.03
7 9.00 12.01
8 10.44 14.01
9 12.00 16.00

10 13.00 18.00

Table 4 Distribution of 3-variable functions over the difference between
the minimum gate count and the lower bound.

Number of functions
Diff. γ(F) − 	log(σ(F) + 1)
 γ(F) − σ-lb(Λ(F))

0 1,462 2,049
1 9,026 12,055
2 19,043 19,189
3 10,251 6,823
4 538 204

Total 40,320 40,320

σ-lb(Λ(F)) is larger than 	log(σ(F) + 1)
, but the difference
between the two bounds increases with the number of vari-
ables.

Table 3 shows the distribution of functions over
the difference between two lower bounds, σ-lb(Λ(F)) −
	log(σ(F) + 1)
, for 0, 1, . . . , 6. Table 3 also shows that the
difference increases with n.

To check how much the difference between the min-
imum GC and the lower bound is, we experimented on
all 40,320 3-variable functions since the minimum GCs,
γ(F), for those functions can be easily obtained by the
exhaustive enumeration [18]. We calculated the difference
γ(F) − σ-lb(Λ(F)) for every function F and counted the
number of functions for specified differences. We also per-
formed the same experiments for γ(F) − 	log(σ(F) + 1)
.
The results are shown in Table 4. The number of func-
tions whose lower bounds are equal to γ(F) is 1,462 for
	log(σ(F) + 1)
 while 2,049 for σ-lb(Λ(F)).

Table 5 shows the lower bounds for reversible bench-
marks from the Reversible Logic Synthesis Benchmarks
Page [21]. We added no extra lines (ancilla or garbage
bits) to these benchmarks in our experiments. In the ta-
ble, ‘UB’ is the known upper bound on GC for each bench-
mark; the one marked with ‘*’ has been confirmed as ex-
act minimum, and the one marked with ‘†’ was synthesized
with the NOT-CNOT-Toffoli (NCT) library instead of gen-

Table 5 Upper and lower bounds for benchmark functions.

Name n 	log(σ(F) + 1)
 σ-lb(Λ(F)) UB [21]
3 17 3 4 4 6∗
4 49 4 6 7 12†
4b15g 1 4 5 6 15∗
4b15g 2 4 6 7 15∗
4b15g 3 4 5 6 15∗
4b15g 4 4 5 6 15∗
4b15g 5 4 6 6 15∗
cycle10 2 12 5 10 19
ham3 3 4 4 5∗
ham7 7 6 8 21
ham15 15 7 17 70
hwb4 4 6 7 11†
hwb5 5 7 9 24
hwb6 6 8 11 42
mod5adder 6 7 7 15
nth prime3 inc 3 3 4 4∗
nth prime4 inc 4 5 6 11∗
nth prime5 inc 5 7 8 25
nth prime6 inc 6 8 9 55

eral Toffoli. It should be noted that our lower bounds for
the general Toffoli library are also lower bounds for the
NCT library. σ-lb(Λ(F)) produced better lower bounds than
	log(σ(F) + 1)
 in many cases; the bounds have been im-
proved particularly for benchmarks with relatively larger n
like cycle10 2 and ham15. Although the lower bounds in
Table 5 still differ significantly from the corresponding up-
per bounds, the improved results are valuable as the theoret-
ical information in the field of reversible logic synthesis.

7. Conclusion

We proposed a new lower bound on the gate count for re-
versible functions, based on the vector information of the
functions. The operation of halving the vector elements are
utilized for calculating the bound. By introducing an opera-
tion of doubling the vector elements, we proved that the pro-
posed bound is always better than or equal to the previous
one. We experimented on randomly-generated reversible
functions and reversible benchmarks, and have confirmed
that the proposed bound is larger than the previous one in
almost all cases.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 2450005.

HIRAYAMA et al.: A LOWER BOUND ON THE GATE COUNT OF TOFFOLI-BASED REVERSIBLE LOGIC CIRCUITS
2261

References

[1] P. Gupta, A. Agrawal, and N.K. Jha, “An algorithm for synthesis of
reversible logic circuits,” IEEE Trans. Comput.-Aided. Des. Integr.
Circuits Syst., vol.25, no.11, pp.2317–2330, Nov. 2006.

[2] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules
for designing CNOT-based quantum circuits,” Proc. 39th DAC,
pp.419–424, USA, 2002.

[3] D. Maslov, G. Dueck, and D. Miller, “Toffoli network synthesis with
templates,” IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst.,
vol.24, no.6, pp.807–817, June 2005.

[4] D. Miller and G. Dueck, “Spectral techniques for reversible logic
synthesis,” Proc. Reed-Muller 2003 Workshop, pp.56–62, Trier,
Germany, March 2003.

[5] M. Nielsen and I. Chuang, Quantum Computation and Quantum In-
formation, Cambridge University Press, 2000.

[6] G. Dueck, D. Maslov, and D. Miller, “Transformation-based syn-
thesis of networks of Toffoli/Fredkin gates,” Proc. Canadian Confer-
ence on Electrical and Computer Engineering, vol.1, pp.211–214,
May 2003.

[7] P. Kerntopf, “A new heuristic algorithm for reversible logic synthe-
sis,” Proc. 41st DAC, pp.834–837, 2004.

[8] D. Maslov, G. Dueck, and D. Miller, “Synthesis of Fredkin-Toffoli
reversible networks,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol.13, no.6, pp.765–769, June 2005.

[9] D. Maslov and G. Dueck, “Reversible cascades with minimal
garbage,” IEEE Trans. Comput.-Aided. Des. Integr. Circuits Syst.,
vol.23, no.11, pp.1497–1509, Nov. 2004.

[10] L. Storme, A. De Vos, and G. Jacobs, “Group theoretical aspects of
reversible logic gates,” J. Universal Computer Science, vol.5, no.5,
pp.307–321, 1999.

[11] H. Thapliyal and N. Ranganathan, “Design of reversible sequential
circuits optimizing quantum cost, delay and garbage outputs,” ACM
J. Emerging Technologies in Computing Systems, vol.6, no.4, article
14, Dec. 2010.

[12] H. Thapliyal and N. Ranganathan, “Design of efficient reversible
logic based binary and BCD adder circuits,” ACM J. Emerging Tech-
nologies in Computing Systems, vol.9, no.3, pp.17:1–17:31, Oct.
2013.

[13] M. Saeedi and I.L. Markov, “Synthesis and optimization of re-
versible circuits - A survey,” ACM Comput. Surv., vol.45, no.2, ar-
ticle 21, Feb. 2013.

[14] O. Golubitsky, S.M. Falconer, and D. Maslov, “Synthesis of the op-
timal 4-bit reversible circuits,” Proc. 47th DAC, pp.653–656, USA,
June 2010.

[15] M. Szyprowski and P. Kerntopf, “Reducing quantum cost in
reversible Toffoli circuits,” Proc. Reed-Muller 2011 Workshop,
pp.127–136, Tuusula, Finland, May 2011.

[16] N.M. Nayeem and J.E. Rice, “Improved ESOP-based synthesis of
reversible logic,” Proc. Reed-Muller 2011 Workshop, pp.57–62,
Tuusula, Finland, May 2011.

[17] M. Saeedi, M.S. Zamani, M. Sedighi, and Z. Sasanian, “Reversible
circuit synthesis using a cycle-based approach,” ACM J. Emerging
Technologies in Computing Systems, vol.6, no.4, article 13, Dec.
2010.

[18] V.V. Shende, A.K. Prasad, I.L. Markov, and J.P. Hayes, “Synthesis of
reversible logic circuits,” IEEE Trans. Comput.-Aided. Des. Integr.
Circuits Syst., vol.22, no.6, pp.710–722, June 2003.

[19] M. Higashiohno, T. Hirayama, and Y. Nishitani, “A lower bound
on the number of Toffoli gates in reversible logic circuits,” IEICE
Trans. Fundamentals (Japanese Edition), vol.J92-A, no.4, pp.263–
266, April 2009.

[20] M. Davio, J.P. Deschamps, and A. Thayse, Discrete and Switching
Functions, McGraw-Hill International, 1978.

[21] D. Maslov, “Reversible logic synthesis benchmarks,” http://
webhome.cs.uvic.ca/˜dmaslov/

[22] M. Szyprowski and P. Kerntopf, “Estimating the quality of complex-
ity measures in heuristics for reversible logic synthesis,” Proc. IEEE
Congress on Evolutionary Computation, pp.1–8, Barcelona, Spain,
July 2010.

[23] O. Golubitsky and D. Maslov, “A study of optimal 4-bit reversible
Toffoli circuits and their synthesis,” IEEE Trans. Comput., vol.61,
no.9, pp.1341–1353, Sept. 2012.

Takashi Hirayama received his B.E., M.E.,
and Ph.D. degrees in computer science from
Gunma University in 1994, 1996, and 1999, re-
spectively. From 1999 to 2001 he was a re-
search assistant in the Department of Electri-
cal and Electronics Engineering, Ashikaga In-
stitute of Technology. He is currently a lec-
turer in the Department of Electrical Engineer-
ing and Computer Science, Faculty of Engineer-
ing, Iwate University. His research interests in-
clude high level and logic synthesis and design

for testability of VLSIs.

Hayato Sugawara received his B.E. de-
gree from Iwate University, Morioka, Japan, in
2013. He is currently working toward his M.E.
degree at Iwate University. His research inter-
ests include reversible logic synthesis and opti-
mization algorithms.

Katsuhisa Yamanaka received his B.E.,
M.E., and Ph.D. degrees in computer science
from Gunma University in 2003, 2005 and 2007,
respectively. He is an assistant professor of the
Department of Electrical Engineering and Com-
puter Science, Faculty of Engineering, Iwate
University. His research interests include com-
binatorial algorithms and graph algorithms.

Yasuaki Nishitani received his B.E. de-
gree in electrical engineering, M.E. and Ph.D.
degrees in computer science from Tohoku Uni-
versity in 1975, 1977, and 1984, respectively. In
1981 he joined the Software Product Engineer-
ing Laboratory at the NEC Corporation. From
1987 to 2000 he was an associate professor in
the Department of Computer Science, Gunma
University. Since 2000 he has been a profes-
sor in the Department of Electrical Engineering
and Computer Science, Faculty of Engineering,

Iwate University. His current research interests include switching theory,
software engineering, and distributed algorithms.

