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SUMMARY Reversible logic is becoming more and more popular due
to the fact that many novel technologies such as quantum computing, low
power CMOS circuit design or quantum optical computing are becoming
more and more realistic. In quantum computing, reversible computing is
the main venue for the realization and design of classical functions and cir-
cuits. We present a new approach to synthesis of reversible circuits using
Kronecker Functional Lattice Diagrams (KFLD). Unlike many of contem-
porary algorithms for synthesis of reversible functions that use n×n Toffoli
gates, our method synthesizes functions using 3 × 3 Toffoli gates, Feyn-
man gates and NOT gates. This reduces the quantum cost of the designed
circuit but adds additional ancilla bits. The resulting circuits are always
regular in a 4-neighbor model and all connections are predictable. Conse-
quently resulting circuits can be directly mapped in to a quantum device
such as quantum FPGA [14]. This is a significant advantage of our method,
as it allows us to design optimum circuits for a given quantum technology.
key words: reversible circuits synthesis, kronecker lattices, quantum com-
puting

1. Introduction

The synthesis of reversible (permutative) circuits is an im-
portant problem in quantum computing because reversible
circuits are an important component in various quantum al-
gorithms. Reversible circuits appear as oracles in Grover
algorithm [7], as modulo arithmetic part in Shor algo-
rithm [23], as components in Deutsch-Jozsa algorithm [4] as
well as in parts of quantum simulation algorithms [9] such as
the many-body problem. While the Grover and Shor algo-
rithms are two of the most famous quantum algorithms, the
simulation of many-body systems is one of the most impor-
tant quantum mechanical problems to be solved. Thus the
design of circuits with small gate count for these algorithms
and problems is crucial in the development of a competitive
full-scale quantum computer.

Currently some of the well known algorithms are
based on function transformation approaches [10], [15],
[16], ESOP transformation [6] or representation transforma-
tion [25]. Most of these algorithms however generate the
final circuit containing n × n Toffoli gates (n input bits and
n output bits). This is quite problematic because in quan-
tum technology such gates do not exist; they have to be de-
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signed from 3×3 Toffoli gates, CNOT gates and NOT gates.
Consequently circuits containing such large gates are post
processed, large gates are decomposed into small reversible
primitives and only then the circuit is transformed into truly
quantum gates and is minimized. Using post-processing to
reduce the cost of the circuits is however problematic be-
cause such minimization can lead to highly non optimal cir-
cuits: designing circuits directly from smaller Toffoli gates
permits to minimize the circuit in such places that cannot
be attained when synthesizing circuits using arbitrary large
Toffoli gates.

In this paper we provide an extended study of the syn-
thesis of reversible circuits using Kronecker Functional Lat-
tice Diagrams (KFLD) method that was originally proposed
in [22]. The main contributions of this paper are:

1. We provide details on the decompositions used in the
KFLD algorithm as well as details on the algorithm it-
self.

2. We improve the algorithm proposed in [22] by optimiz-
ing the KFLDs by two optimization algorithms.

3. We show that the KFLD method is superior to other
state-of-art algorithms by providing a set of new up-
dated benchmark results.

This paper is organized as follows. Section 2 pro-
vides background on Kronecker Functional Lattice Dia-
grams (KFLDs). Section 3 presents method for creating a
Kronecker Functional Lattice Diagram using positive Davio
gate as a basic building block. Section 4 shows method to
convert Kronecker Functional Lattice Diagram into a quan-
tum circuit consisting of 3 × 3 Toffoli gates, Feynman gates
and NOT gates. Section 5 presents two optimization meth-
ods for the KFLDs. Experimental results are given in Sect. 6
and finally Sect. 7 concludes the paper and discusses future
work.

2. Background

A decision diagram (DD) for an arbitrary logic function of
n variables f (x1, . . . , xn) is a rooted directed acyclic graph
(DAG) G = (V, E) with two types of nodes, terminal nodes
and non-terminal nodes. A non-terminal node is labeled
with Boolean variable xn and has two child nodes, low(v) ∈
V and high(v) ∈ V . A terminal node has no child nodes
and is labeled with logic 0(1). The edge e ∈ E from a node
to a low(high) child presents assignment of variable xn to
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Fig. 1 The Enumeration of cells of the Akers array [2]. Lattice is only a
part of Akers array, starting from top left corner.

logic 0(1). A Decision Diagram is f ree if each variable is
encountered at most once in each path in the DD from the
root to a terminal node. A DD is ordered if it is free and
the variables are encountered in the same order on each path
from the root node to a terminal node.

Expanding an arbitrary logic function of n vari-
ables f (x1, . . . , xn) using positive Davio expansion, negative
Davio expansion or Shannon expansion [5], [8] as shown be-
low in Eqs. (1), (2) and (3) respectively, results in a Kro-
necker Decision Diagram.

f = x1( f0 ⊕ f1) ⊕ f0 (1)

f = x1( f0 ⊕ f1) ⊕ f0 (2)

f = x1 f0 ⊕ x1 f1 (3)

Kronecker Decision Diagrams were extended to Kro-
necker Lattice Diagrams (KLDs) in [20]. A Lattice Diagram
uses a regular structure to represent relations between the in-
dividual logic components. The regular structure is specified
by a diagonal matrix where every entry of the matrix L[i, j]
is a node (Fig. 1). For every node L[i, j], L[i+1, j] (L[i, j+1])
is the left (right) predecessor; L[i, j − 1] (L[i − 1, j]) is the
left (right) successor and L[i+ 1, j− 1] (L[i+ 1, j− 1]) is the
left(right) neighbor.

Definition 1 (Lattice Diagram). (LD) for a single output
functions is represented by a Matrix L in which,

1. The root node of the diagram is L[1, 1] corresponds to
the output of the lattice.

2. Non-zero entries L[i, j] realize a logic function of the
expansion variable and of the right and left predeces-
sors.

3. Every terminal node has no logical predecessor and
every non-terminal node has one or two logical prede-
cessors and successors.

4. Every node without the right successor is an output
node.

5. Every non-output (leaf) node provides its output to one
or both of its successors hence creating connections in
a regular manner to its successors in the upper level.

6. For every leaf node there exists a logic path to the out-
put.

7. All other entries that do not represent logic nodes in
the matrix have value 0 and can be eliminated from the
network of logic circuit.

Fig. 2 Comparison of required ancilla bits in a OBDD (a) and in a OK-
FLD (b).

Definition 2 (Ordered Lattice Diagram). An Ordered Lat-
tice Diagram is a Lattice Diagram in which there is at most
one variable on a diagonal.

Definition 3 (Ordered Kronecker Functional Lattice Dia-
gram). (OKFLD) is an ordered LD over Xn together with
a uniquely determined decomposition type di (Eqs. (1) - (3))
assigned to each variable xi, (i ∈ {1, . . . , n}). The function
fG : Bn → B represented by an OKFLD, G, over Xn is de-
fined as:

1. If G consists of a single node labeled with 0(1), then G
is an OKFLD for f = 0( f = 1).

2. If G has a root v with label xi, then G is an OKFLD for

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi flow(v) ⊕ xi fhigh(v) : di is Shannon (S)

flow(v) ⊕ xi fhigh(v) : di is positive Davio (pD)

flow(v) ⊕ xi fhigh(v) : di is negative Davio (nD)

(4)

Where flow(v)( fhigh(v)) are the functions represented by the
OKFLD rooted low(v)(high(v)).

Further details on different instances of Lattice Dia-
grams can be found in [18]–[20].

The main advantage of OKFLD over OBDD (Ordered
binary decision diagrams) is in the ability to reduce the num-
ber of ancilla bits. As reported in [25] the OBDD based
synthesis of reversible circuits requires one ancilla bit per
node of BDD. The OKFLD analyzed in [22] showed that
due to the usage of the positive Davio expansion and the
Lattice structure requires however only one ancilla bit per
layer of OKFLD (Fig. 2)! Also in OBDD each node uses
Shannon expansion, the various different OKFLDs permits
to replace each node by different expansion and thus sim-
plify even more the internal circuit wiring.

In this paper we concentrate on KFLDs that use only
positive Davio for node expansion. Consequently from now
on all references to OKFLD, expansions or rules of sim-
plification are intended for OKFLDs that use only positive
Davio expansion.
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3. Creating a Kronecker Functional Lattice Diagram
(KFLD)

A KFLD is created by performing a level-by-level expan-
sion of the function represented by the root node. The root
node is expanded first using the pD expansion to create two
child nodes. Next for all nodes at the same level, cofactors
of the nodes are created again using pD expansion. Join-
ing operations are performed on some cofactors (geometric
neighbors) to create a combined node. The non-joined co-
factors are converted to nodes.

Figure 3 shows positive Davio joining operations that
can be performed on any two cofactor-nodes y and z of geo-
metric neighbor nodes r and s when both cofactors are non-
constant. Unlike OBDDs and OKFDDs, the joining opera-
tions in OKFLDs can also be applied on the non-isomorphic
nodes. The process of node expansion and joining operation
are continued until all nodes terminate with constant values.

On geometric neighbor nodes with isomorphic
cofactor-nodes the joining operation result in simple nodes
where the expansion variable is not propagated to the next
levels. This is shown in Fig. 4.

Fig. 3 Positive Davio (pD, pD) joining rules used for joining non-
isomorphic nodes in KFLDs.

Fig. 4 Positive Davio (pD, pD) joining rules used for joining isomorphic
nodes in KFLDs.

Fig. 5 KFLD created with Positive Davio gate for function f = 1 ⊕ ad ⊕
bd ⊕ abd ⊕ ac ⊕ bc ⊕ cd ⊕ bdc.

Example 1 (Creating KFLD). Let a function be defined by
a Positive Polarity Reed Muller form shown in Eq. (5).

f = 1 ⊕ ad ⊕ bd ⊕ abd ⊕ ac ⊕ bc ⊕ cd ⊕ bdc (5)

The creation of the KFLD uses the following steps:

1. Variable c is selected for expansion of the root node in
the first level to create second level nodes.

• The left node resulting from the pD expansion is
thus fc̄ = 1 ⊕ ad ⊕ bd ⊕ abd

• The right node resulting from pD expansion is
given by fc ⊕ fc̄ = a ⊕ b ⊕ d ⊕ bd with fc =
1 ⊕ ad ⊕ abd ⊕ a ⊕ b ⊕ d

2. For the second level of expansions the variable d is se-
lected.

• The right co-factor of the node fc̄ = 1⊕ ad ⊕ bd ⊕
abd is given by a ⊕ b ⊕ ab.

• The left co-factor of the node a ⊕ b ⊕ d ⊕ bd with
respect to variable d is a ⊕ b.

3. The joining operation on this cofactor is computed as
shown in Eq. (3)

d(a ⊕ b ⊕ ab) ⊕ d̄(a ⊕ b)

= da ⊕ bd ⊕ dab ⊕ d̄a ⊕ d̄b (6)

= a ⊕ b ⊕ abd

Which is the left node on the third level in Fig. 3. The KFLD
is completed by applying similar steps to all nodes. and the
final KFLD is shown in Fig. 5.

4. The KFLD Algorithm for Reversible Circuits

4.1 Logic Expansion Mapping

The KFLD nodes can be expanded using three expansions
(Eqs. (1) - (3)). Each of the expansions can be mapped di-
rectly to a particular reversible gate. In this paper we only
use the positive Davio expansion and Davio expansion can
be directly mapped to a Toffoli gate:

• Positive Davio Cell. It is mapped directly to a Toffoli
gate as shown in Fig. 6. The inputs a and b of the pos-
itive Davio gate in Fig. 6 act as control qubits of the
Toffoli gate and input c acts as a target qubit of the Tof-
foli gate.

Fig. 6 Representation of the positive Davio cell as a Toffoli gate and its
reversible counterpart.
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4.2 Lattice2QA Algorithm

Inputs to the algorithm are synthesized KFLD (Sect. 3) and
functional output (root node) node of the KFLD. The output
of the algorithm is a reversible logic circuit that consists of
a cascade of Toffoli gates. The quantum circuit is created
by, forming layers of cascades of gates. Every node in the
KFLD is transformed into one of the three gates the Toffoli,
the 2-qubit Feynman gates or the 1-qubit NOT gates which
is the unique characteristic of our method. The nodes termi-
nating with constant values are transformed to a Feynman
gate, a NOT gate or a wire.

The algorithm starts by performing a preorder traversal
of the KFLD to find every output of the quantum circuit. The
building of the queue Q uses a recursive function shown in
the pseudo code 1.

Algorithm 1 The recursive function used to find all output
nodes
1: function next(i, j)
2: if L[i, j] == 0||L[i, j] == 1||L[i, j] ∈ V then
3: Q← {}
4: else
5: QL←next(i + 1, j)
6: QR←next(i, j + 1)
7: Q← cat(QL,QR)
8: V ← L[i, j]
9: if E(L[i, j], L[i − 1, j]) == 0 then

10: Q← cat(L[i, j],Q)
11: end if
12: end if
13: return Q
14: end function

The algorithm traverses the lattice starting from the
root node L[1, 1] top-down and from left to right. The al-
gorithm maintains a list of previously visited nodes V and
recursively populates the queue Q. Each visited node is first
checked whether it is a constant or if it has already been
visited (line 2). For any non visited and non constant node
the algorithm first searches the left predecessor and then the
right predecessor (lines 5 and 6). The resulting queues from
left and right predecessors are concatenated (line 7) and the
current node is added to the list of visited nodes V (line 8).
Finally in lines 9 and 10 the current node is checked if it has
the right successor and if not it is added to the queue Q.

Example 2. Consider the KFLD shown in the Fig. 5 with
the functional output f representing the root node. For con-
venience all nodes of the KFLD are labeled as shown in the
Fig. 5 (square blocks). Using the recursive algorithm from
the pseudo code 1 the obtained queue of output nodes is
Q = {N[1, 1],N[2, 3],N[2, 4],N[1, 2],N[1, 3],N[1, 4]}

Each node is then transformed to one particular gate
depending on its predecessors and successors. If any of the
predecessors is constant the Node will be transformed into
a Feynman gate otherwise the node is transformed into a

Fig. 7 Quantum circuit for the positive Davio Lattice from Fig. 5.

Toffoli gate. A Toffoli gate in the circuit receives one con-
trol input from the variable that was used in expansion and
another control input from the output of the gate one layer
above. This rule is invariably true for all Toffoli gates in the
created circuit. The Feynman gates in the circuit receive in-
put from the variable used for expansion of the same node.
Using these transformation rules, a layer of cascade of re-
versible gates is created by traversing left for every output
node in the queue Q.

Example 3. • N[1, 1]: as the right predecessor N[1,2]
is not constant the 3 × 3 Toffoli gate is used. The out-
put of N[2, 1], the output of N[1, 2] and the expansion
variable c represent the target and the two control bits
respectively. This is shown as the rightmost gate in
Fig. 7 (bottom layer).

• N[2, 1]: as the left predecessor is constant 1, no fur-
ther node needs to be explored by traversing left and
constant 1 will act as the target input for a Toffoli gate.
The two control inputs of N[2, 1] are the expansion
variable d and the output signal of the node N[2,2].
The node N[2, 1] represents the second gate in the bot-
tom layer in Fig. 7. This completes the bottom layer of
the quantum circuit represented by the KFLD of Fig. 5.

• Other layers of cascade of Toffoli gates are completed
in a similar fashion in order to complete the final cir-
cuit. The final quantum circuit is shown in Fig. 7.

Observe that each gate is either a 3-qubit Toffoli gate
or a 2-qubit Feynman gate and thus Toffoli gates with many
inputs characteristic to most contemporary algorithms [1],
[15] are entirely avoided.

5. Quantum Circuit Optimization by Creating Effi-
cient KFLD

As was illustrated in Sect. 3 (Figs. 3 and 4) the merging of
geometric non-isomorphic neighbor nodes reintroduces into
the lattice variables used in nodes expansion. This causes
repetition of variables in the subsequent stages, which in-
crease number of nodes and size of the KFLDs. The repeti-
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Fig. 8 Flipped positive davio node.

Fig. 9 Representation of six symmetries.

tion of variables in KFLDs is greatly influenced by the order
of used expansion variables in the creation of the KFLDs;
different order of expansion variables will create different
number of isomorphic nodes on each level and will result in
KFLD with different number of levels.

Hence an efficient selection of variable order is essen-
tial to create optimum KFLD and respective quantum cir-
cuit. In this paper we explore two distinct methods that min-
imize variable repetition by searching for optimum variable
order selection.

Moreover notice that the variable repetition converges
(any function can be represented by a KFLD with a finite
number of levels) because the reintroduced expansion vari-
ables can be in the worst case used to expand the nodes into
constant values (Fig. 5 variable d).

5.1 Adjacent Isomorphic Nodes Replacement

One of the simplest heuristics for variable ordering intro-
duced in [17], [21] is to replace adjacent isomorphic (sym-
metric function) nodes by a single node. The best vari-
able order allows to merge the largest amount of isomorphic
nodes. Additionally to increase the probability of having
adjacent isomorphic nodes, a flip Davio operation (Fig. 8) is
performed†.

For any pair of variables xi and x j there are four cofac-
tors, f xix j, f x′i x j, f xix′j, f x′i x

′
j. The function is symmetric

in these two variables if any two of the four cofactors are
equivalent. Symmetry in variables can be used by negation
of any one of the variables. Symmetry created by negation
of any one variable is called skewed-symmetry. For clarity
we show in Fig. 9 the six possible symmetries introduced in
[24]. These symmetry rules are used in creating optimum
KFLD and to minimize the quantum cost of the circuit.

To search for geometric symmetries we use the window
permutation algorithm [21]. This algorithm proceeds by se-

†Similar to the flip Shannon operation for PSBDD presented in
[24].

Fig. 10 Example of a window permutation algorithm.

Fig. 11 Example of a sifting algorithm.

lecting a level (and repeated for every level) i in the KFLD
and exhaustively searching all k! permutations of the k ad-
jacent variables starting at level i. This is done by selecting
k!−1 pair wise exchanges followed by up to k(k!−1)/2 pair
wise exchanges to restore the best permutation obtained dur-
ing the process. Figure 10 shows the variable permutations
which are explored when applying a window of size k = 3
starting at variable b. Total five permutations are explored
with four adjacent variable swaps, then three additional vari-
able swaps are used to restore the best permutation. The
window permutation algorithm is practical for functions up
to five variables.

5.2 Sifting Algorithm

To optimize further the KFLD the Sifting algorithm pre-
sented in [21] and originally intended for the OBDD min-
imization was also used. Th sifting algorithm searches for
the best position of a variable by moving one variable from
level to level while keeping all other variables on a fixed po-
sition. For each variable in the KFLD, one selected variable
is swapped with its successor until becoming the next to last
variable. Applying this to other variables, the best variable
order is stored and the variables are placed in their respec-
tive optimal position. An example of Sifting algorithm is
shown in Fig. 11.

6. Experimental Results

Two programs were created and are used for the experi-
mentation. The program Lattices creates KFLD for a given
Boolean function, and the Lattice2QA creates a quantum cir-
cuit from a KFLD. The programs are implemented in C++
and the experiments were done on a Intel 2.4GHz Core2
Duo processor with 2GB of memory.

To evaluate the performance of our approach we com-
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pared the result with four different algorithms respectively
introduced in [1], [15], [25] and [16]. The reason for select-
ing these four algorithms is the similarity of the approach
in the case of [25], the latest algorithm and the top of the
state of art [16] and two well known algorithms [15] and [1].
The different algorithms do not always use the same bench-
mark functions for evaluations the results are presented in
two distinct tables.

Table 1 shows comparison of results between the
KFLD and the method from [16] and Table 2 compares our
KFLD with algorithms from [1], [15] and [25]. The evalua-
tion counts the number of gates used to built the circuit and
the quantum costs of the reversible gates are computed using
the method used in the contemporary CAD algorithms [11],
[12], [15].

Table 1 shows the name of the function benchmark, the
number of gates (G) and the quantum cost (C) for the algo-
rithm from [16] and the number of gates and the quantum
cost for the KFLD in columns one, two, three, four and five
respectively.

The column one in Table 2 shows the name of the
benchmark function, column two (P.I.) shows total num-
ber of real inputs and column three (G.I.) depicts number

Table 2 Comparison of the results of synthesis algorithms.

Benchmarks #F.I #G.I CPU #G [15] C [15] #G [1] C [1] #G [25] C [25] # G.SS C.SS G.R C.R
pprm1 4 4 <0.01 NA NA NA NA NA NA 9 33 14 46
pprm2 10 6 0.50 NA NA NA NA NA NA 51 223 100 419
pprm3 15 12 0.50 NA NA NA NA NA NA 23 510 43 1005
xnor5 5 1 <0.01 NA NA NA NA NA NA 5 5 8 8

Cycle17 3 20 10 40.1 48 6057 NA NA NA NA 920 4160 1820 8220
5bitadder 10 5 <0.01 29 55 NA NA NA NA 29 55 29 55
8bitadder 16 8 0.10 122 322 NA NA NA NA 122 322 122 322

nthPrime3inc 3 4 <0.01 4 6 NA NA NA NA 4 6 7 9
nthPrime4inc 4 5 <0.01 12 58 NA NA NA NA 16 48 28 76
nthPrime5inc 5 5 0.22 26 78 NA NA NA NA 25 83 45 143
nthPrime6inc 6 6 0.36 55 667 NA NA NA NA 148 586 290 1142

2to5 5 4 0.12 15 107 20 100 NA NA 30 106 55 181
rd32 3 1 <0.01 4 8 4 8 NA NA 4 8 6 10
3 17 3 1 <0.01 6 12 6 14 NA NA 8 15 13 20

5mod5 5 1 <0.01 10 90 11 91 NA NA 14 58 23 91
ham3 3 0 <0.01 5 7 5 9 NA NA 3 7 5 9
xor20 20 0 <0.01 19 19 19 19 NA NA 19 19 37 37

Graycode6 6 5 <0.01 5 5 5 5 NA NA 5 5 9 9
Graycode10 10 9 <0.01 9 9 9 9 NA NA 9 9 17 17
Graycode20 20 19 <0.01 19 19 19 19 NA NA 19 19 37 37

4 49 4 4 0.04 16 52 13 61 NA NA 16 52 28 84
hwb4 4 4 <0.01 17 36 15 35 NA NA 12 28 20 36
6sym 11 4 0.37 20 62 NA NA 29 69 17 69 28 108
9sym 15 5 0.40 28 94 NA NA 62 153 21 94 37 143

Cycle10 2 12 6 27.9 19 1198 NA NA 78 164 171 831 330 1602
ham15 15 9 0.10 109 206 NA NA 153 246 46 190 77 306
hwb5 5 5 1.2 24 104 NA NA 88 205 24 96 43 167
hwb6 6 6 2.0 42 140 NA NA 159 375 32 128 54 226
hwb7 7 6 0.10 35 203 NA NA 281 653 49 185 90 335
rd84 8 7 <0.01 28 98 NA NA 104 304 20 68 37 121

ham15 15 9 0.10 109 206 NA NA 153 246 46 190 77 306
Decode24 4 2 <0.01 NA NA 11 31 11 23 10 30 18 40

Alu 5 2 <0.01 NA NA 18 114 9 22 5 17 8 24
ham7 7 5 0.10 23 81 24 68 61 107 22 58 37 81

4mod5 4 1 <0.01 5 13 5 13 8 18 6 18 9 23
rd53 5 5 <0.01 16 75 13 116 34 75 11 39 17 53
xor5 5 0 <0.01 4 4 4 4 8 8 4 4 7 7

of ancilla bits added to the final circuit created by Lat-
tice2QA. Run time for the algorithm is marked on column
four (CPU). For each compared algorithm two columns (G)

Table 1 Comparison of the results with algorithm from [16].

Fu.
Algo. [16] KFLD

#G C #G C
5xp1 58 786 123 379

cu 28 781 248 872
dc1 31 127 45 129
dc2 51 1084 365 813

ham7 37 67 22 58
decode 89 399 124 364

f2 14 112 31 91
root 48 1811 398 1398
sqr6 54 583 78 367
wim 23 139 30 84
z4ml 34 489 79 331
inc 75 892 158 758

misex1 42 332 127 621
mlp4 80 2496 509 2028
bw 287 637 168 504
apla 72 1683 605 2001

cm42a 42 161 37 121
c7552 89 399 136 424
dk17 34 1014 388 1228
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Table 3 Summary of the evaluation results.

Algo. Min Max Avg TAvg RAvg RTAvg
[15] −187% 52% 25.3% 9.6% 0.03% −47.5%
[1] −38.14% 85% 32.8% 12.5% 0.11% −36.1%
[25] −407% 77.8% 43.1% 2.48% 0.45% −62.04%
[16] −87% 51.8% 25.3% 9.6%

Mean 31.7% 8.5% 0.19% −48.54%

and (C) shows respectively the number of gates (G) in the
circuit and the quantum cost (C) in each of the three algo-
rithms evaluated [1], [15], [25] are presented in columns five
to ten. Finally, columns 13 and 14 shows the result of our
algorithm when using both the symmetry as well as sifting
optimization. Finally the two last columns show the number
of gates and the quantum cost when the garbage/variable
lines are restored to initial value.

The results of evaluations are summarized in Table 3.
First column indicates the algorithm of comparison. The
second column shows the worst case, i.e. the case where
KFLD performed worst from all tested benchmark. The
negative percent means how much more costly the circuit
obtained by the KFLD was. The third column shows the
best case of cost decrease. Column four shows the average
of quantum cost when only benchmark functions for which
KFLD obtained better (less costly) quantum circuits have
been obtained. The fifth column shows the average of the
improvement of the quantum cost using benchmark func-
tions where the algorithm has been tested. Finally the two
last columns show the average over only the best circuit and
the average over all tested benchmark functions when the
KFLD was using the variable qubit restoration. All positive
percentages shows that KFLD was able to improve the cost
of the tested function benchmarks.

As can be seen our algorithm was able to improve
the cost of synthesized benchmarks when compared to all
four algorithms on average by 8.5% and on the benchmarks
where our algorithm generated less costly circuits the aver-
age cost improvement was 31.7%.

Notice that the results of the KFLD with garbage/
variable bit restoration show quite negative scores; this is
a natural consequence because none of the algorithms eval-
uated do not use the bit variable restoration. However, in
order to design circuits that can be potentially used in quan-
tum algorithms the variable bits must be restored and thus
the provided results indicate an estimate on the real cost and
size of circuits with such requirements.

7. Conclusions

We proposed a new approach to synthesize reversible and
quantum circuits based on mapping the Kronecker Func-
tional Lattice Diagram directly to a quantum circuit. When
quantum technology such as Ion Trap [3] is used, minimiz-
ing the quantum cost is what really counts, not the gate
cost [13] and consequently our method is more efficient.
Moreover, the circuit created by our tool is always regu-
lar and can be mapped to an array of Ion trap [14] realized

quantum gates. It can be also mapped with some modifi-
cation to a one-dimensional array, satisfying the so-called
LNNM (Linear Nearest Neighbor Model). This is a subject
of further research of our group.

As future work several topics are to be studied. The
variable ordering problem, the reduction of ancilla bits
added during the creation of KLFD, extension to novel lay-
outs of quantum technologies and the study of the usage of
other expansions in the nodes of the KFLD. Moreover the
study of more general form of KFLDs using negative con-
trols as well as KFLDs with different nodes expansions are
also to be considered.
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