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A Packet Classifier Based on Prefetching EVMDD (k) Machines

Hiroki NAKAHARA†a), Tsutomu SASAO††b), and Munehiro MATSUURA†††c), Members

SUMMARY A Decision Diagram Machine (DDM) is a special-purpose
processor that has special instructions to evaluate a decision diagram. Since
the DDM uses only a limited number of instructions, it is faster than the
general-purpose Micro Processor Unit (MPU). Also, the architecture for the
DDM is much simpler than that for an MPU. This paper presents a packet
classifier using a parallel EVMDD (k) machine. To reduce computation
time and code size, first, a set of rules for a packet classifier is partitioned
into groups. Then, the parallel EVMDD (k) machine evaluates them. To
further speed-up for the standard EVMDD (k) machine, we propose the
prefetching EVMDD (k) machine which reads both the index and the jump
address at the same time. The prefetching EVMDD (k) machine is 2.4 times
faster than the standard one using the same memory size. We implemented
a parallel prefetching EVMDD (k) machine consisting of 30 machines on
an FPGA, and compared it with the Intel’s Core i5 microprocessor running
at 1.7GHz. Our parallel machine is 15.1–77.5 times faster than the Core i5,
and it requires only 8.1–58.5 percents of the memory for the Core i5.
key words: many core, packet classification, decision diagram, multi-
valued logic

1. Introduction

1.1 Packet Classification

A packet classification [22] is a key technology in routers
and firewalls. A packet header includes a protocol number, a
source address, a destination address, and a port number [6].
The packet classifier performs a predefined action for a cor-
responding rule. Applications for the packet classifier in-
clude a firewall (FW), an access control list (ACL), and an
IP chain for an IP masquerading technique. The throughput
for the state-of-the-art packet classifier using an MPU is at
most hundreds mega bits per second [4], so it cannot keep
up with accelerated speed up of the Internet.

This paper proposes the parallel edge-valued multi-
valued decision diagram (EVMDD) machine that is a kind
of the decision diagram machine [1], [2], [24]. The decom-
posed packet classification tables are represented by mul-
tiple EVMDDs, and it evaluates them in a parallel. The
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EVMDD machine uses a single instruction to evaluate the
EVMDD. Thus, its architecture is simpler than that for the
MPU, and it has the dedicated branch instructions that are
extensively used in the packet classifier [18]. Thus, the par-
allel EVMDD machine is faster than the MPU.

1.2 Contributions of the Paper

This paper is the update version of the previous publica-
tion [13]. Contributions of the previous version were as fol-
lows:

1 Proposed the parallel EVMDD machine for the packet
classifier: A packet classification circuit based on an
EVMDD has been proposed [14]. Different users re-
quire systems with different performance. Thus, differ-
ent architecture should be used. For low-end users in-
cluding SOHO (small office and home office), the em-
bedded processors or the general purpose processors
are used. So, this paper proposed a special purpose pro-
cessor based on an EVMDD. Its parallel architecture
and the dedicated instruction is suitable for the packet
classification.

2 Obtained the parameters for an optimal EVMDD ma-
chine: Since the EVMDD evaluates 2k-valued vari-
ables, several size k of the EVMDD exists. This paper
obtained parameters for the an optimal EVMDD ma-
chine with respect to the memory size and the delay
time.

3 Compared with Intel’s Core i5 processor.

Additionally, this paper contributes as follows:

1 Applied the prefetching method to reduce a delay time:
In this paper, we applied the prefetching method to the
EVMDD (k) machine, which is smaller and faster than
the MTMDD (k) machine [13].

2 Analyze the delay time of the parallel prefetching
EVMDD (k) machine: The previous work only showed
that the parallel EVMDD (k) machine is faster than
the Intel’s Core i5 processor by means of experiments.
This paper analyzed the delay time for both the parallel
EVMDD (k) machine and the Intel’l Core i5 processor.

1.3 Organization of the Paper

The rest of the paper is organized as follows: Section 2 de-
fines the packet classifier; Section 3 introduces the standard
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EVMDD (k) machine; Section 4 proposes the prefetching
EVMDD (k) machine; Section 5 shows the realization of the
packet classifier using the parallel prefetching EVMDD (k)
machine; Section 6 compares the implemented machine
with the Intel’s Core i5; and Sect. 7 concludes the paper.

2. Packet Classifier

2.1 5-tuple Packet Classification

A packet classification table consists of a set of rules.
Each rule has five input fields: Source address (SA), desti-
nation address (DA), source port (SP), destination port (DP),
and protocol number (PRT). It also generates a rule num-
ber (Rule). A field has entries. In this paper, since we
consider a realization of the packet classifier for the Internet
Protocol version 4 (IPv4), we assume that SA and DA have
32 bits, DP and SP have 16 bits, and PRT has 8 bits. An
entry for SA or DA is specified by an IP address; that for SP
or DP is specified by a closed interval [x,y], where x and y
denote a port number such that x ≤ y; and that for PRT is
specified by a protocol number. SA and DA are detected by
a longest prefix match; SP and DP are detected by a range
match; and PRT is detected by an exact match. A packet
classifier detects matched rules using the packet classifica-
tion table. When two or more rules are matched, it selects
a rule having the highest priority. In this paper, we assume
that the rule with a larger number has a higher priority. Note
that, any packet matches a default rule whose rule number
is zero. Obviously, the default rule has the lowest priority.

Example 2.1: Table 1 shows an example of a packet classi-
fication table, where an asterisk ‘*’ in an entry matches both
0 and 1, while a dash ‘-’ in a field matches any pattern. In
Table 1, each field has only four bits, smaller than the actual
number of bits to simplify the example.

Consider the packet classification table shown in Ta-
ble 1. The packet header with S A = 0000, DA = 1010,
S P = 8, DP = 8, and PRT = TCP matches rule 3, rule 1,
and the default rule. Since the rule 3 has the highest priority,
the output is 3.

2.2 Decomposition of a Packet Classification Table

Let p be the number of rules. Since |XS A| = |XDA| = 32,
|XS P| = |XDP| = 16, and |XPRT | = 8, the direct mem-
ory realization requires 2104�log2(p + 1)� bits, which is too
large to implement by a single memory. We decompose
the packet classification table into field functions and a rule
function (Cartesian product method [21])†.

An entry of a rule can be represented by an interval
function [20]:

IN(R : A, B) =

{
1 (A ≤ R ≤ B)
0 (otherwise)

†In [21], Cartesian product was called “cross product”.

Table 1 An example of a packet classification table.

in out
SA DA SP DP PRT Rule

(Action)
1000 110* [1,8] [8,9] ICMP 4
00** 1*** [2,9] [6,8] TCP 3
010* 0010 [8,15] [7,14] UDP 2
0*** 10** [8,9] [4,11] TCP 1
**** **** [0,15] [0,15] - 0 (default)

Fig. 1 Realization of decomposed packet classification table by memo-
ries.

where R, A, and B are integers. Let xi ∈ {0, 1}, yi = ∗,
v = (x1, x2, . . . , xn, y1, y2, . . . , ym), and A =

∑n
i=1 xi2i−1. Any

entry for SA is represented by IN(RS A : A2m, (A + 1)2m −
1). Similarly, each entry for DA can be represented by an
interval function. Let b be the protocol number. Each entry
for PRT is represented by IN(RPRT : b, b).

As shown in Example 2.1, multiple rules may match
in a packet classification table. To resolve such a case, we
use a vectorized interval function. Let r be the number of
rules. A vectorized interval function is �H(R) =

∨r
i=1 �eiIN(R :

Ai, Bi), where �ei is a unit vector with r elements, and only
the i-th bit is one and the other bits are zeros.

For each value of �H(R), we assign a segment, which
is an interval or a set of intervals. Then, we define a field
function F(R) = Ii, which generates an unique integer in-
dex Ii corresponding to the i-th segment [Ci,Di] satisfying
Ci ≤ R ≤ Di. Note that, to distinguish from an inter-
val, we denote a segment consisting of an interval [C,D] as
[C : D]. Next, we define a rule function G : Y → R, where
Y = I1×I2×· · ·×Ik is the Cartesian product of sets of indices
generated by field functions. As shown in Fig. 1, the packet
classification table is decomposed into field functions and a
rule function, and they are realized by memories.

In general, we can assign an arbitrary index to a seg-
ment. In this paper, we assign indices to make an M1-
monotone increasing function [11] to reduce the amount
of memory. Let I be a set of integers including 0. An inte-
ger function f (X) : I → R such that 0 ≤ f (X+1)− f (X) ≤ 1
and f (0) = 0 is an M1-monotone increasing function on
I. That is, for an M1-monotone increasing function f (X),
f (0) = 0, and the increment of X by one increases the value
of f (X) at most by one.

Example 2.2: Figure 2 shows an example of segments for
SA and DP shown in Table 1. Note that, rules are repre-
sented by intervals.
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Fig. 2 An example of segment.

Fig. 3 Decomposition of a packet classification table into field functions
and the rule function.

Example 2.3: Figure 3 shows the decomposition of the
packet classification table shown in Table 1. As for the PRT
field, we assigned “0” to ICMP, “1” to TCP, and “2” to UDP.
Note that, we only show a part of the rule function due to the
space limitations.

3. Standard EVMDD (k) Machine

3.1 MTMDD (k)

In this part, we introduce the EVMDD (k) machine that is a
variant of the MTMDD (k) machine. First, we introduce the
MTMDD (k).

Definition 3.1: A Binary Decision Diagram (BDD) [3],
[10] is obtained by repeatedly applying of the Shannon ex-
pansions to a logic function f . Each non-terminal node la-
beled with a variable xi has two outgoing edges which in-
dicate nodes representing the cofactors of f with respect to
xi. A Multi-Terminal BDD (MTBDD) [5] is an extension
of a BDD and represents an integer-valued function. In the
MTBDD, the terminal nodes are labeled by integers.

Fig. 4 Reduction rules for an MTBDD.

Fig. 5 Representation of an integer function by an MTMDD (k).

Definition 3.2: Let X = (X1, X2, . . . , Xu) be a partition of
the input variables, and |Xi| be the number of inputs for
Xi. Xi is called a super variable. When the Shannon ex-
pansions are performed with respect to super variables Xi,
where |Xi| = k, all the non-terminal nodes have 2k edges.
In this case, we have a Multi-Terminal Multi-valued Deci-
sion Diagram (MTMDD(k)) [7]. Note that, an MTMDD(1)
means an MTBDD. The width of the MDD (k) at the
height k is the number of edges crossing the section of the
MDD (k) between super variables Xi+1 and Xi, where the
edges incident to the same node are counted as one.

Example 3.4: Figure 5 shows an MTMDD (2) and an
MTBDD representing the field function for SP shown in
Fig. 3. When the input is (x3, x2, x1, x0) = (1, 0, 1, 0), the
output is 5.

3.2 Standard EVMDD (k) Machine

In this paper, we propose the prefetching EVMDD (k)
machine, which is an improved version of the standard
EVMDD (k) machine [13]. In this part, first we intro-
duce the EVMDD (k). Then, we introduce the standard
EVMDD (k) machine.

Definition 3.3: An Edge-Valued Binary Decision Dia-
gram (EVBDD) [8], [9] is a variant of an MTBDD. An
EVBDD consists of one terminal node representing zero
and non-terminal nodes with weighted 1-edges, where the
weight has an integer value α. An EVBDD is obtained by
recursively applying the conversion shown in Fig. 6 to each
non-terminal node in an MTBDD. Note that, in the EVBDD,
0-edges have zero weights.
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Fig. 6 Reduction rule for an EVBDD.

Fig. 7 An example of EVMDD (2).

Fig. 8 Principle of reduction of nodes in an EVBDD.

Definition 3.4: An Edge-Valued MDD (k) (EVMDD (k))
[12] is a variant of the MDD (k), and represents a multi-
valued input integer valued function. It consists of one ter-
minal node representing zero and non-terminal nodes with
edges having integer weights, and 0-edges always have zero
weights.

Example 3.5: By applying the conversion rule shown
in Fig. 6 to the MTBDD shown in Fig. 5, we get the
EVMDD (2) shown in Fig. 7. Assume that the input is
(x3, x2, x1, x0) = (1, 0, 1, 0). When X1 = (1, 0), its edge
weight is 3. Next, when X0 = (1, 0), its edge weight is 2.
Thus, the sum of edge weights is 5. It is equal to the output
of the MTMDD (2) in Example 3.4.

Suppose that a subfunction f ′ is obtained by adding α
to a subfunction f . In an EVBDD, the number of nodes can
be reduced by sharing f and f ′ with α edge (Fig. 8). The
MTBDD can share only prefixes, while the EVBDD can
share both prefixes and postfixes. A packet classification ta-
ble can be represented by an M1-monotone increasing func-
tion. Thus, the packet classification table can be efficiently
represented by an EVBDD [14]. Since an EVMDD (k) has
a weight in an edge, we use a standard branch&output
instruction shown in Fig. 9.

Fig. 9 Standard branch&output instruction to evaluate EVMDD (k).

Fig. 10 EVMDD (k) machine.

A standard EVMDD (k) machine uses a standard
branch&output instruction only. Figure 10 shows the stan-
dard EVMDD (k) machine. In Fig. 10, The instruction
memory stores the instructions for an EVMDD (k); the In-
struction Register stores the instruction from the instruc-
tion memory; the Program Counter (PC) retains the ad-
dress for the instruction memory. The control circuit con-
trols the branch&output operation.

As shown in Fig. 9, the standard EVMDD (k) machine
has following two registers: The data register (DATA) re-
tains the output, and the flag register (FLAG) retains the
state to synchronize EVMDD (k) machines. Following the
value of the select field (SEL) consisting of two bits, values
of the DATA and SEL are updated.

SEL=00: DAT A← 0 (Clear DATA).
SEL=01: DAT A← Output.
SEL=10: FLAG ← 0 (Clear FLAG).
SEL=11: FLAG ← Output.

The execution of the indirect branch instruction and the
standard branch&output instruction are performed by the
following:

Algorithm 3.1: (branch&output instruction for the stan-
dard EVMDD (k) machine)

1. Execute the fetch mode.

1.1 Read the index corresponding to the IDX field
(Fig. 11 (a)).

1.2 Add it to the PC (Fig. 11 (b)).

2. Execute the jump&output mode.

2.1 Read the jump address corresponding to the PC.
2.2 Set the jump address to the PC, and output the out-

put value (Fig. 11 (c)).
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Fig. 11 Operation for the standard EVMDD (k) machine.

3. Terminate.

4. Prefetching EVMDD (k) Machine

In the standard EVMDD (k) machine shown in Fig. 10, to
perform a branch operation, first, it reads the correspond-
ing index. Then, it reads the jump address. Thus, the stan-
dard EVMDD (k) machine accesses the instruction memory
twice. In the reduced ordered decision diagram, the jump
address for the node and its corresponding index can be
read at the same time [16]. Figure 12 shows the prefetch-
ing branch&output instruction which stores the jump ad-
dress and its index in the same word. In this part, we
propose a prefetching EVMDD (k) machine that needs
to access the instruction memory only once. Thus, the
prefetching EVMDD (k) machine is faster than the standard
EVMDD (k) machine. The disadvantages for the prefetch-
ing EVMDD (k) machine are longer instruction words and
increase of the memory.

Figure 13 shows the prefetching EVMDD (k) machine.
In Fig. 13, the instruction memory, the instruction register,
the output register, and the PC are the same as the stan-
dard EVMDD (k) machine shown in Fig. 10. The prefetch-
ing EVMDD (k) machine uses the Prefetching Register
to store the prefetched index. As shown in Fig. 12, the

Fig. 12 Prefetching branch&output instruction.

Fig. 13 Prefetching EVMDD (k) machine.

prefetching EVMDD (k) machine reads the jump address,
the index, and the edge-value at the same time. It performs
the jump, the index fetch, and the output operations in par-
allel. The following algorithm shows the operation of the
prefetching EVMDD (k) machine.

Algorithm 4.2: Figure 14 shows the execution of the
prefetching branch&output instruction of the prefetching
EVMDD (k) machine.

1. Read the instruction memory specified by the PC
(Fig. 14 (a)).

2. Perform following operations in parallel.

2.1 The PC stores the indirect jump address which is
obtained by summing the prefetching index and
the jump address (Adr) (Fig. 14 (b)).

2.2 The prefetching register stores the jump ad-
dress (Fig. 14 (c)).

2.3 Read the output (V), then store it to the output reg-
ister specified by SEL (Fig. 14 (d)).

As shown in Algorithm 4.2, to evaluate a node for the
EVMDD (k), the prefetching EVMDD (k) machine needs to
access the instruction memory only once. On the other hand,
as shown in Algorithm 3.1, the standard EVMDD (k) ma-
chine needs to access the memory twice. The architecture
for the prefetching EVMDD (k) is simpler than the stan-
dard one, since the selector for the indirect branch for the
prefetching one is not necessary. Therefore, the prefetching
one is faster than the standard one.
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Fig. 14 Operations of the prefetching EVMDD (k) machine.

5. Packet Classifier Using Parallel EVMDD (k) Ma-
chine

5.1 Parallel EVMDD (k) Machine

As shown in Sect. 2, a packet classification table is de-
composed into five field functions and a rule function.
These functions are represented by EVMDDs (k). Fig-
ure 15 shows a parallel EVMDD (k) machine consist-
ing of six EVMDD (k) machines. The packet header is
broadcasted to the inputs of these EVMDD machines by
the Primary Input Bus. To synchronize six machines,
FLAG registers are connected to the Global FLAG Regis-
ter (GFLAG) through bitwise AND gates, and the GFLAG
value is broadcasted to the inputs of the EVMDD (k) ma-
chines by the FLAG Bus. Also, DATA registers are send to

Fig. 15 Parallel EVMDD (k) machine.

other EVMDD (k) machine by the Primary Output Bus.

5.2 Partition Rule

The number of nodes in the EVMDD (k) is approximately
proportional to the number of segments [18]. The number of
segments for a field function is O(p), where p denotes the
number of distinct entries. However, that for the rule func-
tion is O(p5). We partition the rule into groups. Since the
number of inputs for each group tends to be smaller than
that for the whole rules, EVMDD machies for groups is
more suitable for parallel computing than that for whole the
rules. To partition rules into groups of uniform sizes, this
paper proposes the partition method based on the sizes of
segments as follows:

Definition 5.5: Let [x, y] (x ≤ y) be a segment. Then, y −
x + 1 is the size of the segment.

Since the PRT field has only a constant entry, we par-
tition each field into two groups excluding the PRT field.
As shown in Fig. 2, when a field has both a large-size and
a small-size segments, the number of segments increases.
Thus, we partition the field based on the sizes of segments.
To show the size of a segment, we use a binary variable ri.
Let n be the number of bits to represent a segment [x, y]. Let
ri = 0 for y−x ≤ 2n−1, and ri = 1 for y−x > 2n−1. A group of
rules is represented by G(r0, r1, r2, r3). As shown in Fig. 16,
we assign r0 to the SA field; r1 to the DA field; r2 to the SP
field; and r3 to the DP field.

Algorithm 5.3: (Partition into groups)
1. Partition the rules into groups G(r0, r1, r2, r3) based on

Fig. 16.
2. Sort G(r0, r1, r2, r3) in the descending order of the number

of groups.
3. Merge G1(r0, r1, r2, r3) and G2(r′0, r

′
1, r
′
2, r
′
3) those have

small number of groups, then generate a group G′.
4. Decompose G′, then represent them by EVMDDs (k).
5. If the number of inputs of an EVMDD (k) for the rule

function in G′ is smaller than the total number of inputs of
EVMDDs (k) for the rule functions in G1 and G2, then go to
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Fig. 16 Partition rule based on the sizes of segments.

Fig. 17 Overall architecture.

Step 3.
6. Terminate.

5.3 Overall Architecture

Figure 17 shows an overall architecture consisting of par-
allel EVMDD (k) machines. To synchronize all the
EVMDD (k) machines, the GFLAG register is connected to
all the EVMDD (k) machines. The packet header is broad-
casted to each EVMDD (k) machine. The output of the
EVMDD (k) machine is send to the priority encoder to gen-
erate the highest rule number.

6. Experimental Results

6.1 Implementation of Parallel EVMDD (k) Machine

We implemented the parallel EVMDD (k) machine on the
Avanet Corp. Zedboard (FPGA: Xilinx Inc. Zynq-7020).
We used Xilinx Inc. PlanAhead version 14.2 as the synthe-
sis tool. To implement a packet filter, first, we used Class-
Bench [23] to generate a pseudo packet filter consisting of

Fig. 18 Comparision of memory sizes [KB].

Fig. 19 Comparison of delay times [nsec].

1,000 rules. Then, we loaded the program code for gen-
erated EVMDDs (k) into the parallel EVMDD (k) machine.
To reduce the number of nodes for the EVMDD (k), we used
the sifting algorithm [19]. As for the parallel machine based
on the standard EVMDD (k), the maximum clock frequency
was 295.10 MHz, while as for that based on the prefetching
EVMDD (k), it was 354.14 MHz.

6.2 Comparison with Standard EVMDD (k)

We compared the parallel EVMDD machine (k) based on
the standard machine with that based on the prefetching one.
Figure 18 compares the memory size [KB] for different sizes
k of the super variable. As for k > 1, the parallel prefetching
EVMDD (k) consumes 1.29 times more memory than the
parallel standard EVMDD (k). Figure 19 compares the de-
lay time [nsec] for different sizes k of the super variable. As
for the same k, the parallel prefetching EVMDD (k) machine
is 2.4 times faster than the parallel standard EVMDD (k)
machine. The prefetching EVMDD (k) machine uses only a
single instruction, while the standard one uses two instruc-
tions. The architecture of the prefetching machine is simpler
than the standard one. Thus, the critical path of the prefetch-
ing machine is shorter than the standard one. Also, to eval-
uate a node of the EVMDD (k), the prefetching machine ac-
cesses the instruction memory only once, while the standard
one accesses twice. Implementation results showed that, as
for the clock frequency, the prefetching machine is 1.2 times
higher than the standard one. As shown in Figs. 18 and 19,
the memory size and the delay time have a trade-off with
respect to k. Let A be the area (memory size, in this paper),
and T be the delay time. Figure 20 compares the area-delay
product (AT 2). Figure 20 shows that the parallel prefetch-
ing EVMDD (4) efficiently utilizes the memory size and the
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Fig. 20 Comparison of area-delay products (AT 2).

Table 2 Comparison with Intel’s Core i5.

Parallel EVMDD (4) Core i5 Ratio
Machine (PBM) (Ci5/PBM)

Rule #Grp Time Mem Time Mem Time Mem
[nsec] [KB] [nsec] [KB]

acl1 3 62 115 2938 247 47.4 2.1
acl2 3 62 132 2846 523 45.9 4.0
acl3 3 62 100 2990 355 48.2 3.6
acl4 3 62 119 2940 383 47.4 3.2
acl5 1 62 85 948 333 15.3 3.9
fw1 4 62 34 3806 160 61.4 4.7
fw2 3 62 306 2787 523 45.0 1.7
fw3 4 62 28 3732 248 60.2 8.9
fw4 4 62 27 3742 348 60.4 12.9
fw5 5 62 63 4808 197 77.5 3.1
ipc1 5 62 137 4724 365 76.2 2.7
ipc2 1 62 12 934 149 15.1 12.4

delay time. Although the parallel prefetching EVMDD (4)
machine consumes 1.2 times larger memory than the paral-
lel standard EVMDD (4) machine, the prefetching one is 2.4
times faster than the standard one. Therefore, the prefetch-
ing machine has a smaller area-delay product than the stan-
dard one.

6.3 Comparison with Intel’s Core i5 Processor

We compared the delay time and code size for the paral-
lel EVMDD (4) machine with the Intel’s general-purpose
processor Core i5. We implemented the parallel prefetch-
ing EVMDD (4) machine on the Xilinx Zynq-FPGA.
It consumed 7,120 look-up tables (LUTs) and 62 block
RAMs (BRAMs). Its maximum clock frequency was
354.14 MHz. We used an Intel’s Core i5 (2.6GHz at turbo
boost mode, Shared cache 3 [MB]), and OS: MacOS X
10.7.5. In the general-purpose processor, the code for the
BDD is simpler and can be implemented faster than that for
the EVMDD (4) [17]. So, the Core i5 emulates BDDs in-
stead of EVMDDs (4). We generated the execution code
by gcc compiler with optimization option -O3. To obtain
the execution time for a test vector, we generated random
packet headers, and obtained the average time excluding
the time for the reading and writing packet headers. Ta-
ble 2 compares the parallel EVMDD (4) machine with the
Core i5 processor with respect to the memory size and the
delay time, where Rule denotes the name of packet classi-
fier; #Grp denotes the number of groups obtained by Algo-
rithm 5.3; Time denotes the delay time for a test vector; and

Fig. 21 Speedup ratios for experimental and estimated values.

Mem denotes the memory size. Table 2 shows that, as for
the performance, the parallel EVMDD (4) machine is 15.1–
77.5 times faster than the Core i5, and as for the memory
size, the parallel EVMDD (4) machine requires only 8.1–
58.5 percent of the memory of the Core i5.

6.4 Discussion

We analyze the delay time for both the EVMDD (4) machine
and the Core i5. The delay time T for the packet classifier
using the decision diagram is estimated by

T = IPN × T PI × PL × g,

where IPN (instructions per a node) denotes the number of
instructions to evaluate a node; T PI (time per an instruction)
denotes execution time of an instruction; PL (path length)
denotes the path length of decision diagram; and g denotes
the number of groups obtained by Algorithm 5.3.

As for the parallel EVMDD (4) machine running at
354.14 MHz, IPNEV = 1, T PIEV =

1
354.14 × 10−6, and

PLEV =
nrule

4 , where nrule denotes the maximum number of
inputs for a rule function. Since the parallel EVMDD (4)
machine evaluates all the groups in parallel, gEV = 1. As
for the Core i5 running at 2.6 GHz, IPNCi5 = 3, T PICi5 =

1
2.6 ×10−9, PLCi5 = nall, and gCi5 = #Grp, where nall denotes
the total path length of EVMDDs, and #Grp is the number
of groups shown in Table 2. Although T PICi5 is shorter than
T PIEV , PLCi5×gCi5 is longer than PLEV ×gEV . In the packet
classifier, PL×g becomes a dominant of the delay time. Fig-
ure 21 compares the experimental values with the estimated
values with respect to the delay time ratio (Core i5 per the
parallel EVMDD (4) machine). From Fig. 21, we can es-
timate the delay time. As shown in Table 2, the parallel
EVMDD (4) machine evaluates the packet classification ta-
ble much faster than a CPU using its small g and PL.

7. Conclusion

This paper showed the packet classifier based on the par-
allel prefetching EVMDD (k) machine. First, to represent
the packet classification table compactly, rules are parti-
tioned into groups. Then, each group is decomposed into
five field functions and a rule function. Next, each func-
tion is represented by an EVMDD (k), and it is converted
to branch&output instructions. The parallel prefetching
EVMDD (k) machine efficiently evaluates the codes for
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the packet classification. We selected k = 4 for super
variable experimentally. We implemented 30 prefetching
EVMDD (4) machines on an FPGA, and compared these
machines with Intel’s Core i5@2.6 GHz microprocessor. As
for the performance, the parallel prefetching EVMDD (4)
machine is 15.1–77.5 times faster than the Core i5, and as
for the memory size, the parallel prefetching EVMDD (4)
machine requires 8.1–58.5 percent of the memory of the
Core i5. We also analyzed the delay time between the paral-
lel prefetching EVMDD (4) machine and the Intel’s Core i5.

The future work is to apply our parallel machine
to other decision diagrams (binary moment decision dia-
grams (BMDs), ∗BMDs, factored edge-valued decision dia-
grams, etc.).
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