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A Taylor Based Localization Algorithm for Wireless Sensor
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SUMMARY More recently, there has been a growing interest in the
study of wireless sensor network (WSN) technologies for Interest of Things
(IoT). To improve the positioning accuracy of mobile station under the non-
line-of-sight (NLOS) environment, a localization algorithm based on the
single-hidden layer feedforward network (SLFN) using extreme learning
machine (ELM) for WSN is proposed in this paper. Optimal reduction in
the time difference of arrival (TDOA) measurement error is achieved using
SLFN optimized by ELM. Compared with those traditional learning algo-
rithms, ELM has its unique feature of a higher generalization capability at a
much faster learning speed. After utilizing the ELM by randomly assigning
the parameters of hidden nodes in the SLFN, the competitive performance
can be obtained on the optimization task for TDOA measurement error.
Then, based on that result, Taylor algorithm is implemented to deal with
the position problem of mobile station. Experimental results show that the
effect of NLOS propagation is reduced based on our proposed algorithm by
introducing the ELM into Taylor algorithm. Moreover, in the simulation,
the proposed approach, called Taylor-ELM, provides better performance
compared with some traditional algorithms, such as least squares, Taylor,
backpropagation neural network based Taylor, and Chan positioning meth-
ods.
key words: wireless sensor network, time difference of arrival, extreme
learning machine, non-line-of-sight

1. Introduction

As a new method used to obtain and process information,
wireless sensor network (WSN) is one of the most impor-
tant technologies in the 21st century. Specially, it plays an
important role in the research and development of Internet of
Things (IoT). From the application side, WSN has demon-
strated many successful applications across a wide range of
domains, such as target tracking, space exploration, envi-
ronment monitoring, and so on [1], [2]. WSN is composed
of large number of sensor nodes which have a tiny physi-
cal structure, low power consumption, and low price. These
nodes have the capabilities of communication, sensing, and
computing [3]. In the practical applications of WSN, the lo-
calization techniques play an important role. Sometimes,
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WSN is unavailable without knowing the location of moni-
toring information [4]. Generally speaking, the manned lo-
calization is a complicated process and might be influenced
by multiple factors, e.g., the power, the cost, the circum-
stance, and so on. Therefore recent years have witnessed a
growing interest in the study of node positioning technolo-
gies in WSN.

The performance requirements of localization for WSN
include expansibility, accuracy, reliability, and low energy
consumption. Among the available localization algorithms,
the time difference of arrival (TDOA) algorithm has been a
long-term focus, because it does not require strict time syn-
chronization between the mobile station (MS) and base sta-
tion (BS) [5]. There are some typical implementation meth-
ods for TDOA localization, e.g., Taylor series expansion al-
gorithm [6], Chan algorithm [7], and least squares (LS) al-
gorithm [8]. Chan algorithm has good accuracy when the
TDOA measurement error is small and it is an ideal zero-
mean Gaussian random variable. However when the TDOA
measurement error is large in the non-line-of-sight (NLOS)
environment, the performance of Chan algorithm will be
severely affected. LS algorithm does not need to take the
statistical property of errors under NLOS environment into
consideration, thus the positioning accuracy of this algo-
rithm is better than Chan algorithm [9]. Meanwhile Tay-
lor series expansion algorithm should know an initial esti-
mate close to real position to guarantee convergence of this
algorithm and the performance of this algorithm is better
than Chan algorithm and LS algorithm under NLOS envi-
ronment [10]. But the positioning accuracy of Taylor algo-
rithm in NLOS environment is much weaker than that in
line-of-sight (LOS) environment. In order to reduce NLOS
error of the TDOA measurements, several geo-location al-
gorithms based on neural network (NN) have been presented
due to the fast adaptability and approximation capabilities
of NN. For instance, a location algorithm based on back-
propagation (BP) NN was proposed to optimize the NLOS
errors in [11]. The conventional BP NN learning algorithm
is a first-order steepest decent method, and it iteratively ad-
justs the linkweights to minimize the differences between
the outputs of the NN and the desired outputs [12]. Never-
theless, the convergence speed is relatively slow and it could
fall into local minimum. Then a kind of modified NN, i.e.,
radial basis function (RBF) NN was used to improve the
positioning accuracy [13], but RBF NN need trivial human
intervene [14]. In view of this, the purpose of this paper is
to obtain high quality solutions to reduce the NLOS error of
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TDOA measurements, based on a proposed single-hidden
layer feedforward network (SLFN) using extreme learning
machine (ELM) which provides a higher generalization ca-
pability at a much faster learning speed and with least hu-
man intervene.

Specifically, the SLFN based on ELM learning algo-
rithm is used to approximate the nonlinear continuous ratio-
nal function to reduce NLOS errors. Here ELM is a very
simple learning algorithm with a faster learning speed com-
pared with many learning algorithms, and it tends to reach
the solutions straightforward without facing such trivial is-
sues like local minima, improper learning rate, overfitting,
poor computational scalability, and so on [15]. More re-
cently, there has been a tremendous surge of interest in the
study of ELM, since it overcomes some challenges faced by
other computational intelligence techniques. The essence
of this paper is to develop SLFN using ELM to correct
NLOS errors of the TDOA measurement. Finally, with the
solutions obtained by using the above approach, the loca-
tion result is achieved via Taylor series expansion algorithm.
This algorithm can achieve a higher positioning accuracy in
NLOS environment with extremely fast speed.

This paper is organized as follows. The TDOA mea-
surement error model and SLFN using ELM is presented in
Sect. 2. A Taylor based localization algorithm using ELM
is proposed in Sect. 3. Simulation results and discussions
are presented in Sect. 4. Finally, conclusions are given in
Sect. 5.

2. Model Description

2.1 TDOA Measurement Error Model

In real environment, TDOA measurement error can be
caused by multipath, NLOS, multiple access interference,
and the precision of testing equipment [16].

There are N BSs, namely, BS 1, BS 2, · · ·, BS N . A
TDOA measurement consists of the true value, the addi-
tional delay error caused by NLOS, and the systematic mea-
surement error, defined as follows [17]:

T DOAi1=TOAi − TOA1

=T DOA∗i1 + ηi1 + τNLOS i1 , i = 2, 3, · · · ,N (1)

where TOAi is the measurement of time on arrival (TOA)
between the MS and the BS i, T DOA∗i1 is the true distance
difference between BS i and BS 1, ηi1 is the systematic mea-
surement error between BS i and BS 1 and ηi1 is a zero-mean
Gaussian distribution with standard deviation σηi1 , τNLOS i1

represents the NLOS bias between BS i and BS 1 and these
τNLOS i1 are mutually exclusive.

In different signal path, the NLOS error may follow ex-
ponential distribution, uniform distribution or delta distribu-
tion. This paper takes exponential distribution for example
and its probability density function is designed as:

f (τNLOS ) =

{ 1
τRMS

exp(− τNLOS

τRMS
), τNLOS > 0

0, τNLOS � 0
(2)

Table 1 Some parameters in different channels.

Environment T1 (μs) ε σξ (dB)
Downtown 1.0 0.5 4
Urban 0.4 0.5 4
Suburb 0.3 0.5 4
Rural 0.1 0.5 4
Mountain 0.1 0.5 4

Fig. 1 The SLFN model based on ELM used to reduce the TDOA mea-
surement errors.

where τRMS is the root mean square (RMS) of delay spread
(μs), and it can be given as:

τRMS = T1dεi ξ (3)

where T1 (μs) is the medians of τRMS when di equals 1 km,
di (km) is the distance between MS and BS i, ε is a constant
ranging from 0.5 to 1, ξ is a zero-mean logarithmic normal
distribution with standard deviation σξ ranging from 4 dB to
6 dB [18]. Under different signal path some parameters are
listed in Table 1.

2.2 SLFN Based on ELM

Figure 1 shows a SLFN model based on ELM, which is used
to reduce errors of TDOA measurements provided by BSs.
This NN architecture is composed of three parts, i.e., input
layer, hidden layer, and output layer.

In the input layer of Fig. 1, the input vector includes m
TDOA measurements obtained from m + 1 BSs, and it can
be expressed as follows:

x j =
[
T DOAj

21,T DOAj
31, · · · ,T DOAj

m+1,1

]
. (4)

The output is the corrected TDOA values, and it can be ex-
pressed as follows:

o j =
[
r j

21, r
j
31, · · · , r j

n+1,1

]
. (5)

ELM is proposed to speed up the learning pro-
cess of SLFN. Specifically, ELM does not only achieve
smaller training error but also the smallest norm of output
weight [19]. Let m and n be the number of input nodes
and output nodes, respectively. There are K arbitrary dis-
tinct samples (x j, t j), where x j = [x j1, x j2, · · · x jm]T ∈ Rm,
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t j = [t j1, t j2, · · · , t jn]T ∈ Rn, and j = 1, · · · ,K. The standard
SLFN with L hidden neurons can be modeled in the form of:

L∑
i=1

βiG(wi, bi, x j) = o j, j = 1, 2, · · · ,K (6)

where βi = [βi1, βi2, · · · , βin]T is the weight vector con-
necting the i-th hidden node and the output nodes, wi =

[wi1, wi2, · · · , wim]T is the weight vector connecting the i-th
hidden node and the input nodes, bi is the threshold of the i-
th hidden nodes, G(wi, bi, x j) is the output of the i-th hidden
node in terms of x j, o j is the actual output of this NN with
input x j [20].

For SLFN with additive hidden nodes in which the ac-
tivation function is g(x), the G(wi, bi, x j) is given as follows:

G(wi, bi, x j) = g(wi · x j + bi). (7)

The above SLFN with L hidden nodes is designed to
approximate these K samples with zero error, which means
that the cost function E =

∑K
j=1 ‖ o j − t j ‖= 0, then existing

wi, bi, and βi such that:

L∑
i=1

βiG(wi, bi, x j) = t j, j = 1, 2, · · · ,K. (8)

The above equation can be rewritten compactly as:

Hβ = T (9)

where

H(w1, · · · , wL, b1, · · · , bL, x1, · · · , xK)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G(w1, b1, x1) · · · G(wL, bL, x1, )

... · · · ...
G(w1, b1, xK) · · · G(wL, bL, xK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
K×L

,

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
βT

1
...
βT

L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
L×n

, T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tT
1
...

tT
K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
K×n

.

Here, H is called the hidden layer output matrix of this NN,
the i-th column of H is the output of the i-th hidden node
with respect to inputs x1, · · · , xK .

With these notations, Huang et al. proposed a theorem
in [15], which stated that under the condition that activation
function g : R→ R is infinitely differentiable in any interval,
for any wi and bi randomly chosen from any intervals of Rm

and R, ||HK×LβL×n−TK×n|| < ε, where ε is any small positive
value.

Thus, unlike the most common understanding that all
the parameters of SLFNs need to be adjusted, the input
weight wi and hidden layer biases bi can be randomly as-
signed and remain unchanged once assigned. For fixed wi

and bi, the training task for a SLFN is simply equivalent
to finding a least-squares solution β̂ of the above system
Hβ = T :

‖ H(w1, · · · , wL, b1, · · · , bL, x1, · · · , xK)β̂ − T ‖=
min
β
‖H(w1, · · · , wL, b1, · · · , bL, x1, · · · , xK)β − T ‖ . (10)

The unique smallest norm least-squared solution of the
above linear system is:

β̂ = H†T, (11)

where H† is the Moore-Penrose generalized inverse of ma-
trix H [21].

The proposed solution in the ELM algorithm, i.e., β̂ =
H†T , has the following important properties [22]:

(1) It is one of the least-squares solutions to equation
Hβ=T , which means that the smallest training error can be
reached. However, most of the learning algorithm like the
gradient-based learning such as BP can not reach the mini-
mum training error due to local minimum or finite training
iteration;

(2) It has the smallest norm among all the least squares
solutions of the Hβ=T ;

(3) The minimum norm least squares solution is unique
and it is β̂ = H†T .

Then ELM algorithm can be summarized as follows:
Give a training set {(x j, t j)|x j ∈ Rm, t j ∈ Rn, j =

1, · · · ,K}, the number of hidden node L, and activation func-
tion g(x).

(1) Randomly assign input weight vector wi and bias
bi, i = 1, 2, · · · , L.

(2) Calculate the hidden layer output matrix H based
on Eq. (9).

(3) Calculate the output weight β = H†T .
In summary, the implementation can be described as

Algorithm 1.

Algorithm 1 ELM algorithm
1: give the input of testing set: test input;
2: randomly generate a matrix w with L rows and m columns;
3: randomly generate a matrix b with L rows;
4: give an input vectors of training set: x;
5: H = G(w, b, x);
6: β = H†T ;
7: H test = G(w, b, test input);
8: o test = H test × β;
9: output the result o test;

3. Taylor Algorithm Based on SLFN Using ELM

3.1 Taylor Series Expansion Algorithm

Assuming that the fixed position of BS i (1 � i � N) is
(xi, yi), and the position of MS is (x, y), the distance between
MS and BS i can be defined as:

ri = cti =
√

(xi − x)2 + (yi − y)2

=

√
x2

i + y
2
i − 2xix − 2yiy + x2 + y2

(12)

where c is the wave propagation velocity, ti is the TOA mea-
surement of BS i.
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Let ri1 be the distance difference between BS i and BS 1,
then it can be designed as:

ri1= c(ti − t1) = ri − r1

=
√

(xi−x)2 + (yi−y)2 −√(x1−x)2 + (y1−y)2 (13)

where i = 2, 3, · · · ,N.
The above Eq. (13) is a nonlinear equation related to

(x, y) of MS. Usually it should be translated into linear equa-
tion, and then the result is obtained. Taylor series expansion
algorithm is a representative algorithm with good position-
ing performance [23]. It is a recursive algorithm requiring
an initial estimated location. It will gradually converge to
the estimated position by getting the partial least squares so-
lution of the TDOA measurement errors in every recursive
procedure.

The first order of Taylor series expansion in (xa, ya) of
function f can be designed as follows:

f (xa + δx, ya + δy)
= f (xa, ya) + δx

∂ f (xa,ya)
∂x + δy

∂ f (xa,ya)
∂y

+ T
(14)

where T is the remainder of the Taylor series expansion,
(xa + δx, ya + δy) is the neighborhood of point (xa, ya).

Substituting Eq. (13) into the initial estimated location
(x0, y0), we get the first order of Taylor series expansion in
the form of [24]:

ψ = h −Gδ. (15)

In the above equation, ψ is the error vector, and

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R21 − r2 + r1

R31 − r3 + r1
...

RN1 − rN + r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, δ =

[
Δx
Δy

]
,

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1−x0
r1
− x2−x0

r2

y1−y0

r1
− y2−y0

r2
x1−x0

r1
− x3−x0

r3

y1−y0

r1
− y3−y0

r3

...
...

x1−x0
r1
− xN−x0

rN

y1−y0

r1
− yN−y0

rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ri (1 � i � N) appeared in above G and h is the
distance between initial estimated location (x0, y0) and BS i,
and it can be obtained by setting x = x0 and y = y0 in
Eq. (12), Ri1 (1 � i � N) in above h are the TDOA measure-
ments provided by the BSs.

The result of δ in Eq. (15) can be obtained by using
weighted least squares (WLS) algorithm:

δ =

[
Δx
Δy

]
= (GT Q−1G)−1GT Q−1h (16)

where Q is the covariance matrix of the TDOA measure-
ments.

In the next recursion process, we assume that x0 = x0+

Δx, y0 = y0 + Δy, respectively. Repeating the above process
until Δx and Δy are small enough [25], and the following

threshold ε could be met:

|Δx| + |Δy| < ε. (17)

Then, the position (x0, y0) is the estimated location of MS.

3.2 Taylor Algorithm Based on SLFN Using ELM

Taylor algorithm has a high accuracy in LOS environment.
However, the performance will be greatly affected under
NLOS environment. This paper uses SLFN based on ELM
to reduce the NLOS error of TDOA measurement, and the
estimate position of MS can be obtained via Taylor algo-
rithm. The proposed method can effectively improve the
positioning accuracy. The detailed steps are as follows:

(1) It is assumed that D groups of TDOA measure-
ments, i.e., a j (1 � j � D), are obtained in NLOS en-
vironment. Then SLFN based on ELM is constructed and
trained. Here, the target sample vectors of the network, i.e.,
z j (1 � j � D), are the TDOA values that does not contain
the NLOS error, which can be obtained based on the actual
distances from each MS to all the BSs.

(2) Reduce the NLOS error of TDOA measurement via
the trained SLFN using ELM.

(3) Use Taylor algorithm with modified TDOA values
to estimate the location of MS.

The implementation can be also described as Algo-
rithm 2. Specifically, we call it algorithm Taylor-ELM.

Algorithm 2 Taylor-ELM algorithm
Input:

The TDOA measurements provided by N BSs under NLOS environ-
ment, i.e., T DOA21,T DOA31, · · · ,T DOAN1;

Output:
The estimated location of MS: EP;

1: give a training set Ξ = {(a j, z j)|1 � j � D} that will be trained based
on SLFN using ELM described in Algorithm 1;

2: β=H†(w1, · · · , wL, b1, · · · , bL, a1, · · · , aD)T, T = [z1, · · · , zD]T ;
3: y test = [R21, · · · ,RN1] = H(w1, · · · , wL, b1, · · · , bL, x test)β, x test =

[T DOA21, · · · ,T DOAN1]T ;
4: set initial estimated position: IEP;
5: repeat
6: for 1 � i � N do
7: Ri = distance ((xi, yi) , IEP);
8: end for
9: for 2 � i � N do

10: h(i − 1) = Ri1 − (Ri − R1);
11: end for
12: δ = (δ1, δ2)T = (GT Q−1G)−1GT Q−1hT ;
13: EP = IEP + δT ;
14: IEP = EP;
15: until (δ1 + δ2 < ε)

4. Simulation Results and Discussion

4.1 Experimental Setup

To evaluate the performance of the proposed Taylor algo-
rithm using SLFN and ELM, we provide a simulation im-
plementation of this algorithm. Moreover, the simulation
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Fig. 2 Distribution of BSs and MSs.

comparisons are also implemented between the proposed
method and other traditional algorithms in different ser-
vice radius, channel environments, and the number of BSs.
Those algorithms compared in this simulation include Chan
algorithm, LS algorithm, Taylor series expansion algorithm,
and BP based Taylor algorithm (namely, Taylor-BP). Here,
instead of using SLFN with ELM in our proposed algorithm
Taylor-ELM, Taylor algorithm is implemented based on tra-
ditional BP NN in the above algorithm Taylor-BP.

In this simulation, a standard distribution of seven cell
BSs of cellular structure with regular hexagon is used, and
the service base station BS 1 is located in the center of the
community. These seven BSs are scattered on the points
of (0, 0), (−3R/2,

√
3R/2), (−3R/2,−√3R/2), (0,−√3R),

(3R/2,−√3R/2), (3R/2,
√

3R/2), (0,
√

3R), where R is the
service radius. Figure 2 shows the distribution of these BSs,
and MSs are located in the shadow zone.

We randomly generate 2000 MSs as the target loca-
tions. Then we use the TDOA measurement error model
mentioned in Sect. 2 to simulate the TDOA measurements
under NLOS environment. We divide these analog TDOA
measurements into two parts, half are used for NN training
in algorithm Taylor-ELM and Taylor-BP, the other half are
used for performance evaluation. We assume that the radius
of the community is 1000 m, and it will change while com-
paring the performance of these five algorithms in different
community radius. The systematic measurement error ηi1 is
a zero-mean Gaussian distribution with standard deviation
σηi1 = 30 m.

4.2 Simulation Results

The simulation results are shown in Fig. 3-7. Figure 3 shows
the positioning accuracy of these algorithms under differ-
ent service radius in urban environment. It is clear that as
the community radius increases, the root mean square er-
ror (RMSE) of these five algorithms increases. With the
increase of cell radius, the distance between MS and BSs
is growing which leads to the increase of NLOS errors. In

Fig. 3 The comparison of RMSE in different service radius.

Fig. 4 The comparison of RMSE under different channel environments.

these five algorithms, the performance of Chan algorithm
is worst, and the LS and Taylor algorithm are better than
it. These three algorithms just take systematic measurement
error into consideration, so their performances under NLOS
environment are very poor. NN can correct the NLOS er-
ror of TDOA measurement, and SLFN using ELM has a
higher generalization capability than BP NN. In so doing,
the performance of algorithm Taylor-ELM is superior to that
of Taylor-BP.

In Fig. 4 and Fig. 5, with the deterioration of the chan-
nel environment and the increase of NLOS errors, the esti-
mation error of location is gradually increasing and the pro-
portion of error within 125 m (i.e., the probability that po-
sitioning error is less than 125 m) is gradually decreasing.
Here the channel environment is described by T1 (μs) de-
fined in Table 1. The performances of Taylor-BP and Taylor-
ELM are both superior to Taylor, Chan, and LS algorithms.
However the location precision of Chan and LS algorithms
has a large decline with the degeneration of the environment.
Compared with Taylor-BP, Taylor-ELM is more effective,
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Fig. 5 The comparison of proportion of error within 125 m under differ-
ent environments.

Fig. 6 The comparison of RMSE in different number of BSs.

which is due to that the solution of the ELM can not only
have the minimum training error, but also have the small-
est norm of weights, which make ELM tend to have a better
generalization performance than traditional gradient-based
learning algorithms like BP. Taylor-ELM can achieve sat-
isfying positioning accuracy by effectively suppressing the
influence caused by NLOS errors.

Figure 6 shows the RMSE of those five algorithms (i.e.,
Taylor-ELM, Taylor-BP, Taylor, Chan, LS algorithms) in
NLOS environment (T1 = 0.4) and the Taylor algorithm in
LOS environment under different number of BSs. It is clear
that in LOS environment, Taylor algorithm (Taylor-LOS) re-
sults an accurate position estimate, but in NLOS environ-
ment, its performance degrades greatly. After the correc-
tion of the NLOS error through the NN, the accuracy of
the position estimate is improved, i.e, the Taylor-ELM and
Taylor-BP algorithms can suppress the effect of NLOS error
on position estimate. From the figure, we can also know that
as the number of BSs increases, the positioning accuracies
of these five algorithms are considerably improved. Taylor-

Fig. 7 The comparison of time with different samples.

ELM and Taylor-BP are not sensitive to the number of BSs,
and the Taylor-ELM is slightly better than Taylor-BP.

From Fig. 3 to Fig. 6, it shows that the positioning ac-
curacy of Taylor-ELM is higher than Taylor-BP and other
algorithms in the same conditions. Figure 7 shows that the
training time of Taylor-ELM is much shorter than that of
Taylor-BP with the increase of size of training set. The
reason is that the gradient-based learning is very time-
consuming, while the learning time of ELM is just spent
on solving a linear equation, which leads that the learning
speed of ELM is extremely fast. Therefore, it is obvious
that algorithm Taylor-ELM can enhance the accuracy, and it
also reduces energy consumption that is a key factor for the
practical applications of WSN.

5. Conclusion

This paper proposes a novel scheme to enhance the posi-
tioning accuracy of mobile station under NLOS environ-
ment. The proposed scheme is designed based on a SLFN
architecture optimized by ELM learning algorithm. And this
scheme uses Taylor algorithm to locate the positions of MSs.
The key idea of our approach is to reduce the NLOS error
of the TDOA measurement with the help of the high gen-
eralization performance, and fast adaptability and nonlinear
approximation capabilities of ELM. ELM does not require
any parameter tuning, and the initial weights do not affect
the prediction performance. The simulation shows that the
proposed algorithm can reduce the influence of NLOS error
on positioning accuracy to some extent, and its performance
is better than that of Taylor-BP, Taylor, Chan, and LS posi-
tioning algorithms. Especially, the learning speed of ELM
is extremely faster than classic gradient-based learning al-
gorithms like BP. Therefor, combining ELM based SLFN
with Taylor algorithm can not only greatly enhance the accu-
racy of positioning, but also increase the positioning speed,
which is a key factor in practice for WSN.



2658
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.10 OCTOBER 2014

Acknowledgments

This research was jointly supported by the National Natu-
ral Science Foundation of China under Grants 61174103,
61174069, and 61004021, the Fundamental Research Funds
for Central Universities under Grant FRF-TP-11-002B, and
2012 Ladder Plan Project of Beijing Key Laboratory of
Knowledge Engineering for Materials Science under Grant
Z121101002812005.

References

[1] J.W. Branch, C. Giannella, B. Szymanski, R. Wolff, and H.
Kargupta, “In-network outlier detection in wireless sensor net-
works,” Knowl. Inf. Syst., vol.34, no.1, pp.23–54, 2013.

[2] M.J. Chae M J, H.S. Yoo, J.Y. Kim, and M.Y. Cho, “Development
of a wireless sensor network system for suspension bridge health
monitoring,” Autom. Constr., vol.21, pp.237–252, 2012.

[3] Y.L. Lai and J. Cheng J, “A 2.45-GHz RFID wireless-sensor-
network location tracking system,” Proc. Int. Symp. Consum. Elec-
tron., pp.133–134, Hsinchu, Taiwan, 2013.

[4] Z. Su, F. Shang, and R. Wang, “A wireless sensor network location
algorithm based on simulated annealing,” Proc. Int. Conf. Biomed.
Eng. Informatics, pp.1–5, Tianjin, China, 2009.

[5] B.P. Qu, G. Shao, and Z.R. Jing, “An improved TDOA location algo-
rithm in LOS environment,” Proc. Int. Conf. Intelligent Hum.-Mach.
Syst. Cybern., vol.1, pp.70–73, Nanchang, China, 2012.

[6] C.S. Chen, Y.C. Lin, W.H. Liu, and H.N. Shou, “Improved Taylor-
series expansion for MS location estimation,” Appl. Mech. Mater.,
vol.52–54, pp.1777–1782, 2011.

[7] T.C. Yang, L. Jin, and J. Cheng, “An improvement CHAN algorithm
based on TOA position,” Acta Electr. Sin., vol.37, no.4, pp.819–822,
2009.

[8] K. Yang, J. An, X. Bu, and G. Sun, “Constrained total least-squares
location algorithm using time-difference-of-arrival measurements,”
IEEE Trans. Veh. Technol., vol.59, no.3, pp.1558–1562, 2010.

[9] M. Laaraiedh, S. Avrillon, and B. Uguen, “Overcoming singularities
in TDoA based location estimation using total least square,” Proc.
Int. Conf. Signals, Circuits Syst., Medenine, pp.1–4, Tunisia, 2009.

[10] L.F. Peng, Q.Z. Huang, and Y.S. Lin, “A cooperative localization
method based on conjugate gradient and Taylor series expansion
algorithms,” Proc. Int. Conf. Comput. Sci. Netw. Technol., vol.2,
pp.1108–1112, Harbin, China, 2011.

[11] Y. Mao and K. Zhou, “A location and tracking algorithm based on
BP neural network with NLOS propagation,” Proc. Int. Conf. Cyber-
Enabled Distrib. Comput. Knowl. Discov., pp.396–399, Zhangijajie,
China, 2009.

[12] S. Zhu, J. Cai, M. Du, and P. Chen, “Application of BP neural net-
work in fast location of fault dictionary,” Proc. Int. Conf. Electron.,
Commun. Control, pp.1333–1336, Ningbo, China, 2011.

[13] F. Liu, “An improved RBF network for predicting location in mobile
network,” Proc. Int. Conf. Nat. Comput., vol.3, pp.345–348, Tian-
jian, China, 2009.

[14] Y. Lu, N. Sundararajan, and P. Saratchandran, “Performance eval-
uation of a sequential minimal radial basis function (RBF) neural
network learning algorithm,” IEEE Trans. Neural Netw., vol.9, no.2,
pp.308–318, 1998.

[15] G.B. Huang, Q.Y. Zhu, and C.K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol.70, no.1–3, pp.489–
501, 2006.

[16] C. Kang, H. Lee, and C. Oh, “NLOS Signal detection algorithm for
TDOA method in wireless sensor network,” Proc. Int. Conf. Adv.
Commun. Technol., Phoenix Park, Korea, vol.1, pp.901–904, 2009.

[17] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in

TDOA mobile location,” Proc. IEEE Global Telecommun. Conf.,
vol.1, pp.680–684, San Antonio, United States, 2001.

[18] H. Jiang, J. Xu, and Z. Li, “NLOS Mitigation Method for TDOA
Measurement,” Proc. Int. Conf. Intelligent Inf. Hiding Multimedia
Signal Process., pp.196–199, Darmstadt, Germany, 2010.

[19] L. Ghouti, T.R. Sheltami, and K.S. Alutaibi, “Mobility prediction in
mobile ad hoc networks using extreme learning machines,” Procedia
Comput. Sci., vol.19, pp.305–312, 2013.

[20] H.J. Rong and G.S. Zhao, “Direct adaptive neural control of non-
linear systems with extreme learning machine,” Neural Comput. &
Applic., vol.22, no.3–4, pp.577–586, 2013.

[21] G.B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans.
Syst. Man Cybern. B, Cybern., vol.42, no.2, pp.513–529, 2012.

[22] G.B. Huang, Q.Y. Zhu, and C.K. Siew, “Extreme learning machine:
a new learning scheme of feedforward neural networks,” Proc. IEEE
Int. Conf. Neural. Netw., vol.2, pp.985–990, Budapest, Hungary,
2004.

[23] Y. Hu, D. Ma, and T. Tian, “Node self-positioning in wireless
sensor networks using graded estimation and Taylor-series algo-
rithm,” Proc. World Congr. Intelligent Control Autom., pp.6711–
6714, Chongqing, China, 2008.

[24] M. Soltanian, A.M. Pezeshk, A. Mahdavi, and M. Dallali, “A new it-
erative position finding algorithm based on Taylor series expansion,”
Proc. Iran. Conf. Electr. Eng., pp.1–4, Tehran, Iran, 2011.

[25] J.Y. Xiong, W. Wang, and Z.L. Zhu, “A new TDOA location tech-
nique based on Taylor series expansion in cellular networks,” PD-
CAT Proc. Parallel Distrib. Comput. Appl. Technol., pp.378–381,
Chengdu, China, 2003.

Xiong Luo was born in 1976. He received
his Ph.D. degree from Central South University,
Changsha, China, in 2004. From 2005 to 2006,
he was with the Department of Computer Sci-
ence and Technology, Tsinghua University, as a
Postdoctoral Fellow. From 2012 to 2013, he was
with the School of Electrical, Computer and En-
ergy Engineering, Arizona State University, as a
Visiting Scholar. He currently works as an As-
sociate Professor in the School of Computer and
Communication Engineering, University of Sci-

ence and Technology Beijing. He has published more than 50 papers on
international journals, national journals, and conferences in recent years.
His research interests include computational intelligence, intelligent con-
trol, machine learning and its application, and Internet of Things.

Xiaohui Chang was born in 1991. She
is currently working toward the Master’s degree
at the School of Computer and Communication
Engineering, University of Science and Tech-
nology Beijing, China. Her research interests in-
clude wireless sensor network analysis and com-
putational intelligence.



LUO et al.: A TAYLOR BASED LOCALIZATION ALGORITHM FOR WIRELESS SENSOR NETWORK USING EXTREME LEARNING MACHINE
2659

Hong Liu was born in 1985. is cur-
rently working toward the Ph.D. degree at the
School of Electronic and Information Engineer-
ing, Beihang University, China. Her research in-
terests include protocol optimization and design
for Internet of Things, and wireless sensor net-
work analysis. She is a member of the IEICE
(no.1086693).


