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Target Classification Using Features Based on Fractional Fourier

Transform

SUMMARY  This letter describe target classification from the synthe-
sized active sonar returns from targets. A fractional Fourier transform is ap-
plied to the sonar returns to extract shape variation in the fractional Fourier
domain depending on the highlight points and aspects of the target. With
the proposed features, four different targets are classified using two neural
network classifiers.

key words: target, recognition, active sonar, pattern recognition, LFM,
highlight model, fractional Fourier transform

1. Introduction

Various approaches to process active sonar signals are un-
der study, but there are many problems to be considered.
The sonar signals are distorted by the underwater environ-
ment, and the temporal and spectral characteristics of active
sonar signals change in accordance with the aspect of the
target even though they come from the same one. In addi-
tion, since it is difficult to collect real data for research, most
researchers focus on experimentally generated data such as
sonar returns from submerged elastic cylindrical shaped tar-
gets in a water tank or lake [1]-[3]. An alternative approach
is to use sonar signals synthesized for certain target con-
dition. In that case conventional echo highlight model [4]
could be used because of its simplicity.

This letter presents a method for classifying the tar-
get using the synthesized active sonar returns. Active sonar
returns from targets are synthesized based on the ray trac-
ing algorithm for 3D highlight models. To extract the fea-
tures, a fractional Fourier transform (FrFT) is applied to
sonar returns. With the FrFT-based features, four different
targets are classified using two neural network classifiers.
To prove the effectiveness of FrFT-based features, we com-
pare the performance of the proposed method with conven-
tional Fourier transform (FT) using same feature extraction
method.
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2. Synthesis of Active Sonar Returns

For the synthesis of active sonar returns, an underwater en-
vironment with direct reflections from the target and indi-
rect reflections from sea level and sea bottom was assumed.
Figure 1 shows the relationship between target model and
source/receiver sensor on x-y coordinate. In Fig. 1, target
lies in the x-axis direction and 6 is the angle between target
and source/receiver sensor. The depth of water was set to
300 m. The source and receiver were located at the same
position in the water, i.e. monostatic mode as shown Fig. 1,
and an unknown target was at 50m below sea level. We
adopted the sound velocity profile to calculate the sound ve-
locity at a certain depth of water. Four targets with different
shapes were modeled using a 3D highlight model, and ac-
tive sonar returns from each target depending on the target
aspects were synthesized using a tracing method consider-
ing the sound velocity profile [5].

Figure 2 shows highlighted models of the four targets
designed for the synthesis of sonar returns. All the targets
have several highlights lying mainly in the horizontal line.
Each highlight is assumed to reflect the acoustic wave in all
directions. All echo components can be considered a sum-
mation of an individual echo from certain equivalent scat-
tering points. The underwater target can be characterized
by the highlights distributed within a spatial target structure.
Underwater acoustic wave is then propagated over being at-
tenuated and bent by sound velocity. We can obtain the syn-
thesized signal by summing traced signals from each high-
light at the receiver position.
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Fig.1 Relationship between target model and source/receiver on x-y co-
ordinate.
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Fig.2 3D highlight models of targets for synthesis of active sonar sig-
nals. (a) Type 1 (b) Type 2 (c) Type 3 (d) Type 4.

3. Feature Extraction Based on Fractional Fourier
Transform

3.1 Fractional Fourier Transform

Namias first introduced fractional Fourier Transform in the
field of quantum mechanics to solve some classes of differ-
ential equations in 1980 [6]. Later, Ozaktas introduced an
algorithm for digital calculation of FrFT [7]. Since then, a
number of applications of FrFT have been developed [8]—
[10].

The FrFT is a generalization of the conventional
Fourier transform and has a history in mathematical physics
and digital signal processing. Basically, it is considered a
one-parameter subclass of the linear canonical transforms.
This parameter is called the fractional order of the trans-
form, which is denoted by a. The FrFT relies on a parame-
ter @ and can be interpreted as a rotation by an angle in the
time-frequency plane. If @ = 0, the FrFT corresponds to
an identity operator, and when @ = 1, it becomes a Fourier
transform. The o™ order FrFT of a signal s(f) can be ob-
tained by

2

Fo(u) = /1 - icot % f_O:O exp iﬂ(cot(%)u

—ZCYC( 7 )uv+cot( ) 2)] s()dv (1)

where u and v define the axes of the fractional domain.

The potential of FrFT lies in its ability of FrFT to pro-
cess chirp like signals better than the conventional Fourier
transform. If the frequency of a signal varies with time
such as LFM signal, we can obtain the optimal transform
result with an optimal transform order «,,, which is max-
imally compressed with smallest bandwidth [8]. The opti-
mum transform order «,,, can be defined as

_1( f2IN
Aopt = —%tan 1(%) )

where a is the chirp rate, f; is the sampling frequency, and
N is the total number of time samples.
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Fig.3  Result of the FrFT of the target Type 1 at 0°.

3.2 Feature Extraction Process

A simple LFM signal at the transmitter can be defined as

s(t) = Acos [27rt(fc + gt)] 3)

where B is the bandwidth and £ is the center frequency.
The signal received from the highlight model can be
expressed as

r(t) = S {Ancos [t = Ta)(fe + Bt = 7))
+ ¢n]) )

where N is the number of highlight points, A,, is the ampli-
tude, 7, is the time delay, and ¢,, is the phase component of
scattered signals from each highlight point, respectively.

An active sonar return is obtained by summing multiple
time-overlapped LEM signals reflected from the highlighted
points of a target. The FrFT of order, «,,;, was performed
on the signal received from the highlight model. The ap-
plication of the FrFT with an optimal order to the multiple
time-overlapped LFM signals compresses the signals maxi-
mally in the FrFT domain, where multiple LFM signals are
represented by multiple peaks [11]. Figure 3 shows the re-
sult of the FrFT of the target Type 1 at aspect angle of 0°. As
shown in Fig. 3, backscattered multiple LFM signals from
each highlight points of the target Type 1 are represented by
multiple peaks.

Time delays, which vary depending on the aspect angle
of the target, determine the distances among the peaks. Mul-
tiple peak positions in the FrFT domain were determined
by different time delays from each highlight point to the re-
ceiver. Therefore, the main bandwidth of the signal received
in the FrFT domain also depends on the time delays of mul-
tiple LFM signals.

The main idea to classify the target is reflecting the
shape variation of the peak positions depending on the high-
light points of the target. The best way to achieve accurate
shape variation is the use of entire FrFT coefficients as a
feature vector. However, the entire FrFT coeflicients contain
too much redundant and irrelevant information, this can lead
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Fig.4  Feature extraction process in FrFT domain.

to decrease of discrimination capability. Therefore, to re-
flect shape variation properly, the feature vector is obtained
by dividing the FrFT domain into 100 equal bands and cal-
culating the energy for each band. This process produces
100 FrFT based features which reflect the characteristics of
shape change adequately and possess discrimination capa-
bility. Figure 4 illustrates the feature extraction process.

4. Experimental Results

In the synthesis of active sonar signals, the sampling fre-
quency and LFM pulse duration was set to 31.25 kHz and
50ms, respectively. The center frequency and bandwidth
of the LFM signal were 7 kHz, and 400 Hz, respectively.
The signals synthesized by summing the signals traced from
each highlight model depending on aspect angle of the target
were then obtained. In this study, 1440 active sonar returns
were generated from four highlight models by varying its
aspect from O to 359° in 1° increments.

Figure 5 and 6 show the features extracted from four
different targets at aspect angle of 45° in the FrFT and con-
ventional FT domain through the feature extraction process
of Fig. 4, respectively. Features extracted from four different
targets have different shapes in FrFT domain depending on
target type. On the other hand, features extracted in FT do-
main show relatively similar shapes, compare to the features
extracted in FrFT domain in Fig. 5.

To validate the effectiveness of the proposed method,
the classification test was carried out. In this experiment,
backpropagation neural network (BPNN)[12] and proba-
bilistic neural network (PNN)[13] were selected. BPNN
and PNN have been employed efficiently as pattern classi-
fiers in numerous applications.

PNN has 3 layers of neurons. The input layer con-
tains 100 neurons: one for each of the 100 input features
of a feature vector. These are fan-out neurons that branch at
each feature input neurons to all neurons in the hidden layer
so that each hidden neuron receives the complete input fea-
ture vector. The hidden neurons are collected into groups:
one group for each of the four target classes. In case of
BPNN, we used 100-24-4 structure, with 100 input neurons,
24 hidden-layer neurons, and four outputs. The stopping
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Fig.5 Features extracted from four different targets at aspect angle of
45° in the FrFT domain.
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Fig.6  Features extracted from four different targets at aspect angle of
45° in the FT domain.

criterion used is as follows: the training is stopped either
when the average error is reduced to 0.001 or if a maximum
of 10,000 epochs is reached.

Among a total 1440 data set, 360 samples were used
to train the neural networks and the remaining 1080 sam-
ples were used to test the classification performance. We
also compared the performance of proposed method with
conventional FT using same feature extraction method. Fea-
tures in the FT domain were obtained by dividing the Fourier
spectrum into 100 equal bands and calculating the energy for
each band.

Table 1 lists the experimental results. PNN shows
slightly better recognition rate than BPNN. Because of the
asymmetric highlight model structure, Type 2 and 4 showed
slightly lower recognition rates than Type 1 and 3. How-
ever, there were no distinct differences in recognition rate
depending on the highlight types and aspect angles.

In conventional FT domain, individual LFM signals
overlap with same bandwidth and center frequency not
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Table 1  Result of recognition experiment.
BPNN PNN
FT FrFT FT FrFT
Type 1 68.98% 89.17% 69.44% 90.56%
Type 2 67.69% 86.67% 68.06% 87.69%
Type 3 66.67% 87.78% 67.31% 88.80%
Type 4 67.87% 86.67% 68.80% 87.96%
Total 67.80% 87.57% 68.40% 88.75%

reflecting time delay information from each highlight point
to the receiver. Therefore, features extracted from each tar-
gets in FT domain show similar shapes depending on target
type as shown in Fig.6. On the other hands, features ex-
tracted from each targets in FrFT domain reflect the time
delay information. And, time information changes spectral
shape in FrFT domain depending on target type. This is the
main advantage of FrFT-based features and directly related
to recognition performance. From Table 1 it is clear that
proposed FrFT-based features outperforms conventional FT-
based features in all cases.

5. Conclusion

This letter has described a feature extraction, using FrFT-
based features and synthesized active sonar returns, for tar-
get classification. A fractional Fourier transform is applied
to the sonar returns to extract the shape variation in FrFT
domain which depends on the highlight points and aspects
of the target. With the FrFT-based features, four differ-
ent targets were classified using two neural network classi-
fiers. Using the FrFT-based features, we could obtain a bet-
ter recognition rate, approximately 20%, than conventional
FT-based features. Though the synthesized active sonar sig-
nals are in very limited conditions because we assumed very
simple target models and environment, simulation results
have shown that the given target classification scheme us-
ing FrFT-based features is appropriate for active sonar target
classification.
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