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An Interleaved Otsu Segmentation for MR Images with Intensity
Inhomogeneity
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SUMMARY The MR image segmentation is always a challenging
problem because of the intensity inhomogeneity. Many existing methods
don’t reach their expected segmentations; besides their implementations are
usually complicated. Therefore, we originally interleave the extended Otsu
segmentation with bias field estimation in an energy minimization. Via our
proposed method, the optimal segmentation and bias field estimation are
achieved simultaneously throughout the reciprocal iteration. The results of
our method not only satisfy the required classification via its applications
in the synthetic and the real images, but also demonstrate that our method
is superior to the baseline methods in accordance with the performance
analysis of JS metrics.
key words: intensity inhomogeneity, bias field estimation, Otsu segmenta-
tion, energy minimization

1. Introduction

Since magnetic resonance imaging (MRI) has been a cru-
cial visualization tool for clinical diagnosis, a great deal
of attention has been paid to the MR image segmentation.
Therefore, various methods, e.g., thresholding, region grow-
ing, statistical models, boundary-based methods [10] and
clustering-based methods, have been proposed and applied
in the MR image segmentation in recent years. However, the
intrinsic imaging issues, e.g., bias field and noise, are chal-
lenging enough for the automatic MR image segmentation,
which often cause the severe tissue misclassifications [8].
Additionally, it is the intensity inhomogeneity, namely bias
filed, that results in many difficulties in medical image anal-
ysis such as registration and segmentation.

There are two kinds of the existing bias field correc-
tion methods, i.e., prospective methods [2] and retrospective
methods [5]. The former can correct the intensity inhomo-
geneity caused by the MR scanners. On the other hand, the
latter mainly rely on the information of the MR image itself,
where the useful information on anatomy and intensity in-
homogeneity is integrated. For most of the retrospective, the
final bias correction and tissue segmentation are sensitive to
the estimation initialization.

Consequently, we use a new interleaved method which
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combines the extended Otsu segmentation with bias field es-
timation in an energy minimization. There is no voting strat-
egy in the proposed method in contrast with the interleaved
KNN one [11]. So the time consumption of our method is
less than the one of interleaved KNN method. In light of
the applications in the real and the synthetic MR images,
the proposed method greatly decreases or eliminates the
misclassifications compared with the two baseline methods,
unified segmentation and FANTASM. Furthermore, experi-
mental results also demonstrate the accuracy and effective-
ness according to the performance analysis of JS metrics.

The remainder of this letter are organized as follows: In
Sect. 2, we explain the MR image model and the interleaved
framework for the Otsu segmentation and bias field estima-
tion. The experimental results and quantitative evaluations
are subsequently shown in Sect. 3. Finally, the conclusion is
made in Sect. 4.

2. Method

2.1 MR Image Model

According to an MR image model [6], [8], an MR image
with bias field can be modeled as

I(x) = b(x)J(x) + n(x) (1)

where I(x) is the observed image, b(x) the bias field, J(x)
the intrinsic image, and n(x) additive noise.

In general, we assume that the above model has the
following properties:
(A1) The bias field varies slowly in the image domain, de-
noted as Ω.
(A2) The voxels with the same physical property can be con-
sidered as a constant in the same tissue region.

Given the assumption (A1), the bias field can be ap-
proximated by a linear combination of basis functions. Let
g1(x), · · · , gM(x) be the set of basis functions defined in the
image domain. The bias field can be defined as:

b(x) =
M∑

i=1

wigi(x) = wT g(x) (2)

where g(x) = (g1(x), · · · , gM(x))T is the vector form of basis
functions, w = (w1, · · · , wM)T is the coefficient vector for
the basis functions, and M is the number of basis functions
employed in this work.
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According to the assumption (A2), a piece constant
map is approximate to the intrinsic image, which takes a
constant value ci in the i-th tissue region Ωi. The regions
{Ωi}Ni=1 make up the partition of the image domain in the

sense of
N⋃

i=1
Ωi = Ω and Ωi ∩Ω j = ∅ for i � j. Thus,

J(x) = cT u(x) (3)

where c = (c1, · · · , cN)T is the constant vector, and the mem-
bership function vector u(x) = (u1(x), · · · , uN(x))T has the
following properties

ui(x) =

{
1, x ∈ Ωi

0, else
(4)

and

N∑
i=1

ui(x) = 1. (5)

2.2 Extended Otsu Method

Since the major focus of this work is to identify white matter
(WM), gray matter (GM) and cerebrospinal fluid (CSF) in
the normal brain MR image after skull stripping, we present
an extended Otsu segmentation to perform the tissue clas-
sification, which is a thresholding method [1] that could as-
sign voxels to three classes.

Let 0, 1, 2, · · · , L − 1 denote the L distinct intensity lev-
els in an image of V voxels, and ni notates the number of
voxels with intensity i. Then, the normalized histogram has
components pi = ni/V . Provided that the two thresholds t1,
t2 are selected to threshold the input image into three classes,
C1, C2 and C3. The probability P1 that a voxel is assigned to

class C1 is based on the sum P1 =
t1∑

i=0
pi. Similarly, the prob-

ability of class C2 and C3 occurring are P2(t1, t2) =
t2∑

i=t1+1
pi

and P3(t1, t2) =
L−1∑

i=t2+1
pi, respectively. Then the mean inten-

sity value of voxels threshold to class C j is

mj(t1, t2) =
1

P1(t1, t2)

∑
i∈C j

ipi (6)

and the average intensity of the entire image

mG =

L−1∑
i=0

ipi (7)

In order to evaluate the “goodness” of the thresholds
t1, t2, we define the interclass variance

σ2
B(t1, t2) =

3∑
i=1

Pi(mi − mG)2 (8)

and the optimal thresholds are the value, t�1 and t�2 , that max-
imizes σ2

B(t1, t2):

σ2
B(t�1 , t

�
2 ) = max

0≤t1≤t2≤L−1
σ2

B(t1, t2) (9)

2.3 The Interleaved Iteration between Otsu Segmentation
and Bias Field Estimation

To seek the optimal intrinsic image and bias field, the inter-
leaved iteration includes two reciprocal iterative processes,
viz, a more accurate tissue segmentation could enhance a
better estimated bias field and vice versa.

Optimization of u(x) and c
Given a segmentation result Ithresholding obtained from

the extended Otsu method, we can optimize the membership
functions u(x) and constants c as

ûi(x) =

{
1, Ithresholding(x) = i
0, else

, i = 1, · · · ,N (10)

and

ĉi =

∑
x∈Ω

I(x)ui(x)
∑

x∈Ω
ui(x)

i = 1, · · · ,N. (11)

Optimization of w
An energy minimization framework [8] is introduced to

optimize w. Firstly, an energy is defined as

F(u, c,w) =
∑
x∈Ω

∣∣∣I(x) − (wT g(x))(cT u(x))
∣∣∣2 (12)

By fixing u and c, we can partially differentiate F(u, c,w)
with respect to the variable w:

∂F(u, c,w)
∂w

= 0 (13)

Hence,

ŵ = (
∑
x∈Ω

g(x)g(x)T(cT u(x))2)−1(
∑
x∈Ω

I(x)g(x)(cT u(x)))

(14)

Bias field correction
Motivated by the bias field estimation from the opti-

mization of w, the bias corrected image Îc can be given by

Îc(x) =
I(x)

ŵT g(x)
. (15)

2.4 Implementation

The entire procedure of the proposed method is described as
below

Step1. Initialize Ic = I;
Step2. Apply the extended Otsu method on Ic to get

Ithresholding, and calculate û(x) and ĉ according to Eq. (10)
and Eq. (11);

Step3. Update w in accordance with Eq. (14);
Step4. Obtain the bias corrected image Îc according to

Eq. (15);
Step5. Check the converge criterion. If the converge
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has been reached, stop the iteration; otherwise, update Ic to
Îc and go to step 2.

3. Results

The proposed method is applied to the synthetic and the real
images with intensity inhomogeneity. The real images are
acquired from 3T scans, whose size is 192 × 256 × 160
voxels, with a voxel size of 0.9375 × 0.9375 × 1 mm. The
synthetic images were generated from a famous simulation
brain database—BrainWeb [3] whose size is 181×217×181
voxels, with a voxel size of 1 × 1 × 1 mm.

3.1 Experimental Results

We first compare the proposed method with the non-
interleaved Otsu method through their applications in the
synthetic and the real images in Fig. 1, which shows indi-
vidually the synthetic image and its results in the top row,
and the real image and its results in the bottom row. It can
be seen that there are serious misclassifications of the non-
interleaved Otsu method, whereas the results of our method
are consistent with the brain anatomy.

Secondly, the results of our method for the synthetic
and the real images are shown in Fig. 2. The top and the
second row show the results of synthetic images, while the
third and the bottom row show the results of real images. As
shown in this figure, the segmentation results are consistent
with the brain anatomy, and the intensities within each tissue
are homogeneous in the bias corrected images.

We further compare our method with three methods-
the unified segmentation [9] and FANTASM [5] and the in-
terleaved KNN method. Unified segmentation and FAN-
TASM are two baseline-methods. Figure 3 and Fig. 4 show
the comparison of the synthetic and the real images, respec-
tively. The original images, the segmentation results, esti-
mated bias fields and bias corrected images are shown from
left to right, respectively. In view of the two group figures,
the segmentation results from our method is nearly similar
to the interleaved KNN method, and higher agreement with
the brain anatomy than FANTASM and the unified segmen-
tation.

Fig. 1 The comparisons of our method with the non-interleaved Otsu
method. The original images, the results of the proposed method and the
non-interleaved Otsu method are shown from left to right, respectively.

3.2 Quality Evaluation

To further evaluate the performances of our method, Jaccard
similarity (JS) [7] and coefficient of variation (CV) [4] are
introduced below.

JS is defined as the ratio of the intersection of two re-
gions to their union.

Fig. 2 The results of our method on the synthetic and the real images.
The segmentation results, the estimated bias fields and the bias corrected
images are shown in the second, third and right column, respectively.

Fig. 3 Comparisons for the synthetic image shown in the left column.
The segmentation results, estimated bias fields and bias corrected images
are shown in the second, third and right column, respectively. The results of
FANTASM, the unified segmentation,the interleaved KNN method and our
method are shown in the top, second, third and bottom row, respectively.
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Fig. 4 Comparisons for the real image shown in the left column. The
segmentation results, estimated bias fields and bias corrected images are
shown in the second, third and right column, respectively. The results of
FANTASM, the unified segmentation,the interleaved KNN method and our
method are shown in the top, second, third and bottom row, respectively.

(a) JS values for GM (b) JS values for WM

Fig. 5 The comparisons of JS index.

JS (Ω1,Ω2) =
|Ω1 ∩Ω2|
|Ω1 ∪Ω2| (16)

where Ω1 is the segmented region by the algorithm, and Ω2

is given by the ground truth. The closer the JS value is to 1,
the more accurate the segmentation is.

20 synthetic images with different levels of intensity in-
homogeneity and noises are used to evaluate the segmenta-
tion accuracy. The comparison of JS value for GM and WM
are shown in Fig. 5. Thence, our method has better perfor-
mances than the two baseline methods in terms of JS value.
However, the interleaved KNN method is a little better than
our method.

The definition of CV is the ratio of standard deviation
δ to mean value μ under the same selected tissue class

CV(Ω) =
δ(Ω)
μ(Ω)

(17)

The smaller CV value indicates the better bias field cor-
rection. We tested CV value on 20 synthetic images and 12
3T real images. The comparisons of CV index are shown in
Fig. 6. In consideration of Fig. 6, our method has an overall
better performance of bias correction than the two baseline
methods. The interleaved KNN method has a similar result

(a) CV values for GM of
synthetic images

(b) CV values for WM of
synthetic images

(c) CV values for GM of
real images

(d) CV values for WM of
real images

Fig. 6 The comparisons of CV index.

to ours.

4. Conclusion

In this letter, we have offered an interleaved Otsu method
to segment the MR image with bias field, which combines
the extended Otsu segmentation and bias field estimation in
an energy minimization. During the interleaved iteration,
the segmentations of our method achieve the expected clas-
sifications of MR images with intensity inhomogeneity in
most cases, excluding the MR images severely corrupted by
noise. Based on the results of our method’s applications in
the real and the synthetic images with bias field, the com-
parisons are exemplified that our method is more accurate
and more effective than the others in view of JS metrics.
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