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Learning Convolutional Domain-Robust Representations for
Cross-View Face Recognition

Xue CHEN†a), Chunheng WANG†, Baihua XIAO†, Nonmembers, and Song GAO†, Member

SUMMARY This paper proposes to obtain high-level, domain-robust
representations for cross-view face recognition. Specially, we introduce
Convolutional Deep Belief Networks (CDBN) as the feature learning
model, and an CDBN based interpolating path between the source and tar-
get views is built to model the correlation of cross-view data. The promis-
ing results outperform other state-of-the-art methods.
key words: cross-view, face recognition, convolutional deep belief net-
works, domain-robust

1. Introduction

Automatic face recognition systems can achieve high per-
formance under frontal view. However, in real scenarios,
face images are generally captured under various views,
which degrades the performance severely. The difficulty for
cross-view face recognition is that the view varies in 3D
space, while the image captures only 2D appearances. As
the view changes, different visible parts of face appear in
the images. This leads to a special phenomenon that faces
of different identities with similar views are more similar
than that of the same identity under different views. The
difference brought by variant views could be larger than that
caused by identity changes, making cross-view face recog-
nition problem very difficult.

To address this problem, one popular family of
statistic-based learning methods aim at seeking view-
specific transforms and then project the samples into a com-
mon subspace. Typically, Lin et al. [1] proposed Common
Discriminant Feature Extraction (CDEF) to transform sam-
ples of different modalities to the common feature space.
Sharma et al. [2] and Li et al. [3] introduced Partial Least
Squares (PLS) and Canonical Correlation Analysis (CCA)
to maximize the intra-individual correlation of varying-
view faces in the mapping space. Moreover, extensions
of such pairwise methods are also developed for multi-
view problems, such as Multi-view Discriminant Analysis
(MvDA) [4], and Multi-view CCA [5].

However, there are some limitations for methods
above. One limitation is that they pursue linear transforms
to construct the projection space, which often severely limits
the capacity of representations. The other limitation is that
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they learn the view-specific transform based on single-view
data, neglecting the correlation information of cross-view
data. For these limitations, many approaches have been de-
veloped. Typically, deep networks have achieved tremen-
dous success on many learning tasks for the ability of learn-
ing powerful non-linear representations. Deep Belief Net-
works [6] and Convolutional Deep Belief Networks [7] are
two popular models to construct such deep learning archi-
tectures. On the other hand, to draw the statistical connec-
tions between cross-view data, the domain adaptation meth-
ods have shown promising results by exploring a virtual in-
terpolating path between views. For example, Li et al. [8]
modeled each virtual view as a linear transformation of the
descriptor, and representations built upon the virtual path
aimed at bridging the source and target views. Chopra
et al. [9] proposed a deep-model based interpolating path to
learn predictive representations by exploiting the distribu-
tion shift information between domains (hereafter referred
to as DLID). Specially, the basic deep sub-model in DLID
is composed of four components cascaded together, namely
Filtering (F), Rectification (R), Normalization (N), Pooling
(P), abbreviated as F-R-N-P [10].

In this paper, we propose a novel feature learning
method to obtain high-level, domain-robust representations
for cross-view face recognition. It combines ideas from both
of the previous approaches. The architecture of our model is
illustrated in Fig. 1. First, we introduce Convolutional Deep
Belief Networks (CDBN) as the transform model to learn

Fig. 1 (a) The interpolating path between the source and target views.
Each intermediate dataset {Dl : a/b} is created by sampling a% of the
source data and b% of the target data. An CDBN is trained on each dataset
Dl. (b) For cross-view data {ys, yt}, {ŷls, ŷlt} is the non-linear feature from
model CDBNl. We apply discriminant analysis on the path feature {Ŷs, Ŷt}.
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hierarchical non-linear representations of the inputs. Spe-
cially, CDBN scales to realistic image sizes and captures the
spatial correlation of images effectively. Second, to model
the correlation of cross-view data, we define an interpolat-
ing path by sampling intermediate datasets along the distri-
bution shift between the source and target data. An CDBN
is trained on each intermediate dataset. All the outputs from
the CDBNs are concatenated as a path feature for the input,
which is highly rich to model the source to target transition
information. Finally, the discriminant analysis is applied on
the resulting features in order to gain more discriminative
power and be suitable for cross-view recognition task.

The rest of the paper is organized as follows. Section 2
gives the details of the proposed method. Section 3 demon-
strates that our experimental results are more accurate than
state-of-art methods on CMU Multi-PIE dataset. Finally, in
Sect. 4 we conclude the paper.

2. Methods

2.1 Convolutional Deep Belief Networks

For computer vision problems, convolutional networks
seem a natural choice to capture high-level hierarchical rep-
resentations of images. In this paper, we adopt Convolu-
tional Restricted Boltzmann Machine (CRBM) [7] as the
basic sub-model, and construct CDBN as the deep convo-
lutional model by stacking CRBMs hierarchically. Spe-
cially, CRBM is a probabilistic generative model which is
optimized to maximize the likelihood of the training data.
From the probabilistic modeling perspective, feature learn-
ing based on CRBM is to recover a set of latent hidden
variables that describe the distribution of the observed data.
Based on this, applying CRBM for face feature learning can
effectively explore the latent explanatory factors of varia-
tions on face images (eg, pose variations and identity vari-
ations) and further model the characteristics of face data
accurately [11], [12]. Following, we describe the CRBM
model and the construction of CDBN by CRBMs in detail.

The basic CRBM consists of two layers: a visible layer
V and a hidden layer H. The visible layer is an NV × NV

array of binary units. The hidden layer consists of K groups
of NH × NH arrays of binary units. Each of the K groups is
associated with a NW ×NW filter (NW = NV −NH+1); the fil-
ter weights Wk are shared across all the hidden units within
the group. In addition, each hidden group has a bias bk and
all visible units share a single bias c. To make the CRBM
more scalable and incorporate local translation invariance, a
probabilistic max-pooling layer P is generally added as the
last layer, where a C × C block of hidden units are shrunk
to a pooling node by computing the maximum [7], [12]. An
illustration of CRBM is shown in Fig. 2.

To deal with real-value data, our CRBM model uses
gaussian units for visible variables and binary units for hid-
den variables. The energy function is defined as:

P(v, h) =
1
Z

exp(−E(v, h)) (1)

Fig. 2 Schematic diagram of CRBM. The visible unites vi, j in layer V are
convolved with the filter Wk to be the hidden units hk

i, j in layer H. Further,

the C × C block of hidden units hk
i, j in layer H are shrunk to the pooling

nodes pk
α in layer P. For illustration, we set K = 4 and C = 2.
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where Bα refers to a C ×C pooling block of hidden units hk
i, j

connecting a pooling node pk
α. Under the energy function,

the conditional distributions P(vi, j = 1|h) and P(hk
i, j = 1|v)

are easy to compute. The CRBM can be trained like the
standard RBM using the contrastive divergence (CD) algo-
rithm [7], [13]. After training a CRBM, the hidden (pool-
ing) activations are used as input to further train a next layer
CRBM. Finally, an CDBN is constructed by stacking these
pre-trained CRBMs hierarchically. Specially, by setting the
visible layer V of the energy function in Eq. (2) as realis-
tic image sizes, we can train CRBMs and further construct
CDBN on full-sized images easily.

Typically, by performing hierarchical (bottom-up and
top-down) inference over full-sized face images, CRBM
learns semantically meaningful visual features such as
edges, face parts at different hierarchies by exploiting the
implicit structure of face images [7]. A diagram of the hi-
erarchical feature architecture in CDBN is shown in Fig. 3.
These low-level to high-level visual features are combined
to describe the face characteristics in a hierarchical and com-
plementary way. In addition, the spatial correlation of dif-
ferent face parts (eg, the relative positions of eye and nose,
or nose and mouth) is very important for describing the fine
face characteristics. As shown in the red boxes of Fig. 3,
some high-level features learned from CDBN characterize
neighbouring parts of faces (eg, eye and nose, or nose and
mouth), and hence capture the spatial information of these
face parts potentially. From these points, CDBN is just ap-
propriate for modeling the characteristics of face images.

2.2 CDBN Based Interpolating Path

Exploring a potential transition path between the source and
target data is a popular way to model the correlation infor-
mation of cross-domain data. In this paper, we introduce a
different notion of interpolating path, by sampling interme-
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Fig. 3 The hierarchical face feature architecture in CDBN. Each sub-
image on the top is the visualization of the filter weight learned. The low-
hierarchy (Layer 1) CRBM learns edge-like features; the high-hierarchy
(Layer 2) CRBM learns part-like visual features. Specially, the filters in
the red boxes characterize neighbouring face parts (eg, eye and nose, or
nose and mouth).

diate datasets along the distribution shift between the source
and target data. Moreover, we train an CDBN for each
dataset on the path. The resulting representation based on
the CDBN path is highly rich in containing the source to
target path information and robust to the variations caused
by domain changes.

Assume the dataset of the source domain S as DS , and
the dataset of the target domain T as DT . Starting with DS ,
we generate intermediate datasets, where for each succes-
sive dataset we gradually increase the proportion of sam-
ples randomly drawn from DT , and decrease the samples
drawn from DS , as shown in Fig. 1 (a). In particular, let
l ∈ [1, . . . , L] be an index over the L datasets we generate.
Then we have D1 = DS , DL = DT . For l ∈ [2, . . . , L − 1],
datasets Dl and Dl+1 are created in a way so that the pro-
portion of samples from DT in Dl is less than in Dl+1. Each
of these datasets can be thought of as a single point on a
particular kind of interpolating path between S and T .

Next, we train an CDBN for each intermediate
dataset Dl on the path in an unsupervised way, as de-
scribed in Sect. 2.1. In this way, an optimized CDBN
path [CDBN1,CDBN2, . . . ,CDBNL] is built to connect the
source and target domains. Actually, each basic CDBNl

model on the path can be considered as a deep nonlinear
feature extractor FWl . For an one-layer CDBN model, a fast
bottom-up inference of the hidden layer H in group k condi-
tioned on the visible layer V is computed as:

I(hk
i, j) = bk + (W̃k ∗v v)i, j, (3)

P(hk
i, j = 1|v) =

exp(I(hk
i, j))

1 +
∑

(i′, j′)∈Bα exp(I(hk
i′, j′ ))
, (4)

where W̃k is the 2-d filter matrix Wk flipped vertically and
horizontally, and ∗v denotes valid convolution. The sub-
sampled activation probabilities P(hk

i, j = 1|v) act as the fea-
ture for layer H. In this setup, for a M-layer CDBNl, the
nonlinear feature extractor FWl can be denoted as Wl =

{W1
l , . . . ,W

M
l }, where Wm

l is the filter parameter of the mth

layer. Through a series of nonlinear filtering operations in
the hidden layers, the CDBN transforms the original input
to a convolutional, high-level representation.

Note that for an input yi, each of the feature extrac-

tors FWl generates the representation ŷl
i = FWl (yi), attuned

to capturing salient information particular to the interme-
diate dataset Dl it is trained on. Considering the CDBNs
corresponding to all points on the interpolating path, an in-
put image is further represented by concatenating all of the
outputs from the feature extractors together. Detailedly, the
path feature Ŷi for the input yi is computed as:

Ŷi = [FW1 (yi), FW2 (yi), . . . , FWL (yi)] (5)

= [ŷ1
i , ŷ

2
i , . . . , ŷ

L
i ].

This new path representation incorporates the smooth distri-
bution shift recovered in the interpolating CDBN path into
the signal space. It brings the source and target data into a
domain-robust feature space, where the sample differences
caused by domain changes are reduced.

2.3 Discriminant Analysis on Path Feature

Since CDBN is trained in an unsupervised mode, the repre-
sentation learned above is independent of tasks. In order to
identify features with good discrimination and suitable for
cross-view recognition, we develop a discriminant analysis
framework on the path feature. Specially, the deep convo-
lutional models project face images into a high-dimensional
feature space, where samples are liable to be linearly sepa-
rable [11]. Based on this, we form the discriminant training
by learning linear transforms on the convolutional path fea-
ture, aiming at obtaining good discrimination in the map-
ping space. The learning objective is formulated by com-
pelling faces from different domains towards that of the
same identity, which effectively enhances the discrimination
of the fine individual faces in the linear mapping space.

Assume T = {Xi ∈ X
⋃

Yi ∈ Y}, 1 ≤ i ≤ C be the path
feature set containing C identities. X = {X1, X2, . . . , XC}
is the source data, where Xi = {xi,k ∈ RdS }NXi

k=1 denotes the
feature of the ith person, and NXi is the sample number.
Y = {Y1,Y2, . . . ,YC} holds the corresponding target features
set Yi = {yi, j ∈ RdT }NYi

j=1 for each person i in X. dS and dT

are the feature dimensions. The linear transforms for the
source and target views are denoted as FS ∈ Rd′×dS and
FT ∈ Rd′×dT , where d′ is the mapping dimension. To en-
hance the discrimination, we use the intra-class compact-
ness regularization as the objective function:

J(θS , θT ) =
1
N

C∑

i=1

NXi∑

j=1

NYi∑

k=1

||FS xi, j − FTyi,k ||2. (6)

where N is the number of sample pairs. We solve this prob-
lem with a simply matrix derivation. Let X = [X1, . . . , XC]
collect the source data of all the person, where Xi =

[xi,1, . . . , xi,NXi
] ∈ RdS×NXi is the feature of person i. Simi-

lar denotations are used for the target feature matrix Y. In
addition, we set:

X̄i = [x̄i,1, .., x̄i,NXi
], x̄i, j = [xi, j, .., xi, j] ∈ RdS×NYi , (7)

Ȳi = [Yi, ..,Yi] ∈ RdT×(NYi×NXi ). (8)
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Then, we cast the function in Eq. (6) into a simplified form:

min
Fs,Ft

J =
1
N
||FS X̄ − FT Ȳ ||2F , (9)

where ||.||2F stands for the Frobenius norm. The gradient
descend algorithm is used for optimization, where the gra-
dients {∂J/∂FS , ∂J/∂FT } are easy to compute. Using the
denotations above, the complexity of gradient computation
costs O(d′D2NX̄), where d′ is the mapping dimension, D is
the feature dimension and NX̄ =

∑C
i=1 NXi NYi . NXi and NYi

are the ith-class sample numbers in the source set and target
set respectively. C is the total class number of the training
set. Besides, it just needs dozens of iterations before the up-
dating converges experimentally. From this, the optimiza-
tion of linear transforms in Eq. (9) is very computationally
efficient on a limited training set.

The proposed CDBN path model appears to be similar
with DLID [9], because they both learn a deep-model based
interpolating path between cross-domain data. However,
they have several significant differences in the aspects of
model structure and training strategy. Specially, the CDBN
path shows superiority over DLID as follows: 1) Holding
simpler sub-model structure and pre-training framework.
CRBM joints the filtering and pooling in a unified frame-
work and is pre-trained by CD algorithm [13] to directly
optimize the filter parameters, while the F-R-N-P model in
DLID cascades four separate components together and per-
forms pre-training in a sparse-coding framework which opti-
mizes a series of parameters of the filters, coding dictionary
and coefficients alternately [10]. 2) Learning high-level vi-
sual features. CRBM learns semantically meaningful fea-
tures such as edges and face parts by taking advantage of
the implicit structure of face images, while the F-R-N-P in
DLID is trained on randomly selected image patches and
generally learns edges and inapparent structures [14]. 3)
Developing more simple and efficient discriminant training
strategy. The CDBN path learns discriminant linear trans-
forms for the convolutional path features to explicitly en-
hance the discrimination of samples in the mapping space,
while DLID supervised fine-tunes all the nonlinear convolu-
tional models on the interpolating path where the number of
parameters to be adjusted is rather large relative to the train-
ing set and the resulting models are very likely to overfit on
a limited training set.

3. Experiment

3.1 Dataset and Experiment Setting

CMU Multi-PIE [15] dataset contains 337 subjects, recorded
under various poses, illumination and expressions. Fol-
lowing the setting in [1], the first 231 subjects are used
for training, and the rest for testing. We select 6 im-
ages with varying illuminations of each subject under seven
views (−45◦,−30◦,−15◦, 0◦, 15◦, 35◦, 45◦) as the evaluation
dataset. In our experiments, the front view (0◦) is used as the
source domain DS , and the target domain DT corresponds

Table 1 Recognition results of different models under varying target
views on CMU Multi-PIE dataset (%).

Models −45◦ −30◦ −15◦ 15◦ 30◦ 45◦ Avg

Linear 68.1 80.2 90.6 97.0 81.8 71.1 81.5

CDBN−L1 75.6 90.2 94.7 98.7 91.0 83.5 89.0
CDBN−L2 76.9 92.0 96.4 99.4 92.9 84.9 90.4

CDBN Path−L1 76.3 91.2 95.8 99.5 92.0 84.3 89.8
CDBN Path−L2 80.0 95.3 99.5 99.8 95.9 88.4 93.2
CDBN Path−L3 78.9 94.3 98.7 99.5 95.4 87.6 92.4

to the other six respectively. For each pair of cross-view
datasets, we consider three datasets to form the interpolating
path: the source-view dataset DS , the intermediate dataset
DM , and the target-view dataset DT . The only intermediate
dataset DM consists of half of DS and half of DT . Corre-
sponding, three CDBNs are respectively trained on the three
datasets. For the CDBN on each dataset, we train 24 first
layer filters, each 10× 10 pixels, and 40 second layer filters,
each 12× 12. The pooling ratio C is empirically set as 3 and
2 for the two layers respectively. For the path feature ob-
tained, we first apply PCA to reduce the dimension as 1000,
and then employ the discriminant learning.

3.2 Results and Analysis

To investigate the effectiveness of our method, we present
the accuracy for individual models in Table 1. (1) Base-
line “Linear” model, where linear transforms are learned for
the source and target views. (2) CDBN, where a CDBN is
trained with the data from both the source and target views,
ignoring the notion of interpolating path. The one-layer and
two-layer versions of models are denoted by L1 and L2. (3)
The CDBN Path model. As shown, the deep models gen-
erally achieve better results than the linear one, suggesting
that the deep learning architecture exhibits more powerful
ability to capture the nonlinear variations of face images.
The comparison of CDBN and CDBN Path demonstrates the
benefit of intermediate representation learning along the in-
terpolating path. It also indicates that modeling the correla-
tion of cross-view data imposes much significance to prompt
the performance of cross-view recognition task. Further-
more, the two-layer models (L2) generally perform better
than one-layer versions (L1). This is in agreement with ex-
isting deep learning literature and provides justification for
learning deep hierarchical representations. We also experi-
ment by setting the layer number as 3 for the CDBN Path
model, denoted as L3 in Table 1. The average accuracy re-
sults in 92.4%, indicating that a larger layer number doesn’t
help to improve the performance of the proposed method.
Generally, networks with deeper layers have more powerful
modeling ability but also more parameters to be adjusted.
For a limited dataset, too deep layers make the model much
too complicated for the current problem, which further leads
the model overfitting on the small training set while gener-
alizing badly on the test set. To trade off on our dataset, we
set the layer number as 2 for the proposed model according
to the results in Table 1.

Table 2 reports the comparison with state-of-art meth-
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Table 2 Performance comparison on CMU Multi-PIE dataset (%).

Methods −45◦ −30◦ −15◦ 15◦ 30◦ 45◦ Avg

PLS 81.0 86.2 93.0 94.5 82.5 79.0 86.0
CDEF 70.6 89.9 98.8 99.1 94.2 77.7 88.4
Dictionary Path 82.0 91.0 96.0 97.0 92.0 85.0 90.5
DLID 79.4 92.0 98.4 98.7 93.4 83.7 90.9
CDBN Path 80.0 95.3 99.5 99.8 95.9 88.4 93.2

Fig. 4 (a) Performance with different filter sizes. (b) Performance with
different mapping dimensions.

ods. We observe that classical linear models (CDEF [1],
PLS [2]), which only consider single-view data for train-
ing, are heavily biased under cross views, and all the in-
terpolating path methods improve upon them. Specially, the
Dictionary Path method [16] learns representations by inter-
polating intermediate dictionaries between cross-view data.
The comparison of Dictionary Path and CDBN Path demon-
strates the advantage of deep nonlinear path model over the
linear dictionary path model, suggesting the deep architec-
ture models the source to target path information more effec-
tively. Furthermore, we also verify the superior performance
of CDBN Path over the similar DLID model [9] in Table 2.
We experiment with the source code used in DLID, which
was published by [14]. The CDBN Path performs better
than DLID on face recognition for learning high-level struc-
tured features by exploiting the implicit structure of face im-
ages and potentially achieving better model discrimination
with the well-designed linear discriminant learning stage.
This result also provides further justification for the superi-
ority of CDBN Path claimed in Sect. 2.

We also give a detailed analysis of the important pa-
rameters: NW (the filter size of CRBM); the mapping di-
mension d′. First, we evaluate NW of the first-layer CRBM
by varying it from 6 to 14 in step of 2. The result is shown
as the blue line (Layer-1) in Fig. 4 (a). As seen, just as NW

is around 10, the average accuracy reaches the peak. Fixing
NW as 10 in the first layer, we evaluate NW for the second-
layer CRBM in the same way, and show the result as the red
line (Layer-2) in Fig. 4 (a). The filter size of 12 results in the
highest accuracy. Actually, it is difficult to capture enough
spatial information with small size filters, while overly large
filter size result in severe over-smoothing of small details
in the image. For the mapping dimension d′, we evaluate
by varying it from 200 to 1000 in step of 200. Figure 4 (b)
shows the influence of d′ to the one-layer (Layer-1) and two-
layer (Layer-2) CDBN model. Similar variations occur for
the two models. As seen, the accuracy benefits from increas-
ing the mapping dimension. With too low dimension, per-
formance drops for losing much discriminative information

in the mapping operation. The best performance is obtained
at d′ = 600. A continued growth leads to a downward trend,
because a high dimension leads the model overfitting on the
small training set while generalizing badly on the test set.

4. Conclusion

We have developed a novel feature learning method to
obtain high-level, domain-robust representations for cross-
view face recognition. Convolutional Deep Belief Networks
(CDBN) is introduced as the feature learning model. An
CDBN based interpolating path is built to model the correla-
tion of cross-view data. Moreover, the discriminant analysis
is applied on the resulting features in order to gain more dis-
criminative power. Comparative experiments demonstrate
the proposal’s high accuracy in cross-view recognition task.
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