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Novel Improvements on the Fuzzy-Rough QuickReduct Algorithm

Javad Rahimipour ANARAKI†a), Mahdi EFTEKHARI††b), Nonmembers, and Chang Wook AHN†c), Member

SUMMARY Feature Selection (FS) is widely used to resolve the
problem of selecting a subset of information-rich features; Fuzzy-Rough
QuickReduct (FRQR) is one of the most successful FS methods. This paper
presents two variants of the FRQR algorithm in order to improve its perfor-
mance: 1) Combining Fuzzy-Rough Dependency Degree with Correlation-
based FS merit to deal with a dilemma situation in feature subset selection
and 2) Hybridizing the newly proposed method with the threshold based
FRQR. The effectiveness of the proposed approaches are proven over six-
teen UCI datasets; smaller subsets of features and higher classification ac-
curacies are achieved.
key words: fuzzy-rough set, dependency degree, feature selection, fuzzy-
rough quickreduct

1. Introduction

Many problems in machine learning and pattern recogni-
tion involve high-dimensional datasets. This would be even
worse when the number of features is greater than the num-
ber of objects in the dataset, due to the problem of ‘curse of
dimensionality’. This characteristic makes further process-
ing infeasible and impossible. One solution to this problem
is Feature Selection (FS) which tries to select information-
rich features out of redundant and irrelevant features. Re-
dundant features are the ones which have the same informa-
tion as others, while irrelevant features are those which do
not contain any information about outcome. It is natural to
eliminate these two kinds of features so as to minimize the
number of features to those which have more impact on the
classification result [1].

Some of the FS methods (e.g., transformation based
methods) destroy semantics of data while others (e.g., sta-
tistical correlation-based approaches) need additional infor-
mation. This implies that an approach which preserves se-
mantics of data and needs no human provided information
is desired. Rough Set theory is a promising alternative to
the above requirements. Selecting m features out of N ones
by means of comprehensive search is an NP-hard problem
as N!/[m!(N − m)!]. Even worse, it can be proven that ap-
proximating the minimal relevant subset of features is hard
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up to a very large factor [2]; thus, greedy search methods are
suitable to overcome this problem.

A novel Fuzzy-Rough FS (FRFS) technique which is
guided by fuzzy entropy was proposed by Parthalain et
al. [3]. They proposed another approach which uses the in-
formation gathered from both lower approximation depen-
dency value and the number of objects in the boundary re-
gion and the distance of those objects from the lower ap-
proximation [4]. Chen et al. introduced a new Rough Set ap-
proach [5] to FS based on Ant Colony Optimization (ACO),
which adopts mutual information based feature significance.
A novel heuristic algorithm was developed by employing
the appearing frequency of attribute as heuristic informa-
tion [6].

This paper enhances the conventional Fuzzy-Rough
QuickReduct (FRQR) [7] by 1) combining Fuzzy-Rough
Dependency Degree (FDD) with correlation based merit [1]
in a dilemma situation of selecting the best feature and
2) hybridizing the proposed method with the threshold based
FRQR (T-FRQR) [8].

2. Rough Set Based Feature Selection

Rough Set theory was proposed by Pawlak as a tool to deal
with uncertainty. LetU be the universe of discourse and R be
the equivalence relation on U; approximation space is rep-
resented by (U,R). Let X be a subset of U and P be a subset
of features A; approximation of this subset using Rough Set
theory is conducted by means of lower and upper approx-
imation. Objects in lower approximation (PX) are surely
classified into X with regard to attributes in P. Upper ap-
proximation of X (PX) contains objects which are possibly
classified into X considering attributes in P. Let P and Q be
subsets of A, then the dependency of Q on P is denoted by
P⇒κ Q, where κ is Dependency Degree (DD) as given by

κ = γP(Q) =
|POS P(Q)|
|U| . (1)

Here, the notation | · | is used for cardinality. Positive re-
gion of the partition U/Q with respect to P, denoted by
|POS P(Q)|, is the set of all elements which can be classi-
fied into partition U/Q using P [7].

3. Fuzzy-Rough Set Based Feature Selection

In general, datasets which contain both crisp and real-valued
data cannot be handled by Rough Set [7]. The need for a
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Algorithm 1: Fuzzy-Rough QuickReduct (FRQR)
C, the set of all conditional attributes
D, the set of decision attributes
R← {}; γ′best = 0; γ′prev = 0
do
T ← R
γ′prev ← γ′best
foreach x ∈ (C − R)

if γ′R∪{x}(D) > γ′T (D)
T ← R ∪ {x}
γ′best ← γ′T (D)

R← T
until γ′best = γ

′
prev

return R

method to handle all kinds of data motivated researchers
to combine Fuzzy and Rough Set theories. Definitions of
Fuzzy lower and upper approximations are given in Eqs. (2)
and (3).

μRPX(x) = inf
y∈U I{μRP (x, y), μX(y)} (2)

μRPX(x) = sup
y∈U

T {μRP (x, y), μX(y)} (3)

where I is Lukasiewics Fuzzy implicator which is defined by
min(1 − x + y, 1) and T is Lukasiewics Fuzzy t-norm which
is given by max(x + y − 1, 0).

μRa (x, y) (4)

= max

{
min

{
(a(y)− (a(x)−σa))
(a(x)− (a(x)−σa))

,
((a(x)+σa)− a(y))
((a(x)+σa)− a(x))

}
, 0

}

μRP (x, y) =
⋂
a∈P

{μRa (x, y)} (5)

where σa is the variance of feature a, RP is Fuzzy similar-
ity relation, and μRa (x, y) is the degree of similarity between
objects x and y considering feature a. Moreover, fuzzy pos-
itive region and FDD are defined in Eqs. (6) and (7), respec-
tively [7].

μPOS RP (Q)(x) = sup
X∈U/Q

μRPX(x) (6)

γ′P(Q) =
|μPOS RP (Q)(x)|

|U| =

∑
x∈U μPOS RP (Q)(x)

|U| (7)

Based on the FDD, Fuzzy version of QuickReduct is shown
in the Algorithm 1.

4. Proposed Enhancements

By monitoring behavior of FRQR in facing different
datasets, some undetermined situations are raised and re-
main unseen due to the nature of FRQR which is greedy for-
ward algorithm. However, these situations can be handled to
improve its performance by employing proper methods. In
this section, one of these situations is found and solved by
employing FS merit, and then hybridized with previously
proposed T-FRQR [8]. Two enhancements on the FRQR al-
gorithm are presented as follows:

Fig. 1 An example of equal situation.

• Wise Fuzzy-Rough QuickReduct (W-FRQR)
• Hybridization of Threshold & Wise FRQR (H-FRQR)

4.1 Wise Fuzzy-Rough QuickReduct (W-FRQR)

One of the main drawbacks of the FRQR algorithm is Equal
Situation which is depicted in Fig. 1. This situation arises
when the algorithm faces more than one subset with the
same dependency value. Conventional algorithm simply se-
lects the first feature subset regarding its nature, but the other
subsets might have more influence on classification accu-
racy. In Fig. 1, FS starts with an empty subset and continues
by calculating FDD of each subset. In the first step, feature
b is selected owing to its highest impact on FDD. Next, FDD
of combination of feature b with remaining features (i.e., a
and c) are calculated. As mentioned above, both combina-
tions have the same increase in FDD. In this situation, tradi-
tional remedy selects the first combination with the greatest
value; thus, {b, a} is selected with no proper examination
on the quality of subset {b, c}. To overcome this problem,
a combination of FDD and correlation-based heuristic [1] is
suggested. When FRQR confronts the Equal Situation, the
correlation-based merit as given in Eq. (8) is calculated and
a subset with the highest value is chosen.

MeritS =
krc f√

k + k(k − 1)r f f

(8)

where MeritS is the heuristic of selected subset S , k is the
number of features in S , rc f is the mean of feature-class cor-
relation, and r f f is the mean of feature-feature correlation.
The proposed method is presented in Algorithm 2.

4.2 Hybridization of Threshold & Wise FRQR (H-FRQR)

In our previous work, the cardinality of selected subset was
controlled using a threshold. Since adding a new feature to
the reduct subset is not only time consuming while encoun-
tering dimensional datasets, but might also increase FDD
too slightly; therefore, this process can be stopped by em-
ploying a threshold. This stopping criterion is formulated as
follows:

(γ′overall − γ′best) × |U| < 1 (9)
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Algorithm 2: Wise FRQR (W-FRQR)
C, the set of all conditional attributes
D, the set of decision attributes
R← {}; γ′best = 0; γ′prev = 0;
do
T ← R
γ′prev ← γ′best
X ← (C − R)
forall x ∈ X calculate FDDx

if |Max(FDDX)| > 1
foreach x calculate MeritS (x)
x ≡ max(MeritS )

elseif |Max(FDDX)| = 1
x ≡ max(FDDX)

T ← R ∪ {x}
γ′best ← γ′T (D)
R← T

until γ′best = γ
′
prev

return R

Algorithm 3: Hybridization of Threshold & Wise
FRQR (H-FRQR)

C, the set of all conditional attributes
D, the set of decision attributes
R← {}; γ′best = 0; γ′prev = 0; γ′overall
do
T ← R
γ′prev ← γ′best
X ← (C − R)
forall x ∈ X calculate FDDx

if |Max(FDDX)| > 1
foreach x calculate MeritS (x)
x ≡ max(MeritS )

elseif |Max(FDDX)| = 1
x ≡ max(FDDX)

T ← R ∪ {x}
γ′best ← γ′T (D)
R← T

until (γ′overall − γ′best) × |U| < 1
return R

where γ′overall is the overall FDD which is calculated in the
presence of all features of dataset with the complexity of
O((n2 + n)/2) where n is the number of features, γ′best is the
current FDD of reducted subset, and |U| is the cardinality
of dataset. A new hybridized method which benefited from
both T-FRQR and W-FRQR is introduced to improve the
performance of FRQR by selecting less features, and taking
a wise manner in Equal Situation. By referring to the funda-
mentals of both ideas, one can expect more contribution of
T-FRQR than W-FRQR in H-FRQR outcome. The H-FRQR
is shown in Algorithm 3. It is obvious that the complexity
of all proposed methods can be bounded by O((n2 + n)/2)
where n is the number of features of dataset.

5. Experimental Results

Sixteen UCI datasets as depicted in Table 1, were employed
to evaluate each methods’ performance. The FRQR, T-
FRQR and two proposed successors were applied to select

Table 1 Datasets specifications.

No Datasets Instances Attributes
1 Blood Transfusion 748 5
2 Breast Cancer 699 10
3 Breast Tissue 106 10
4 Cleveland 297 14
5 Glass 214 10
6 Heart 270 13
7 Ionosphere 351 34
8 Libras Movement 360 91
9 Lung Cancer 32 56
10 Olitos 120 26
11 Parkinson 197 23
12 Pima Indian Diabetes 768 8
13 Sonar 208 60
14 Soybean 47 35
15 SPECTF Heart 80 45
16 Wine 178 13

Table 2 Number of selected features.

Datasets Unred. FRQR T-FRQR W-FRQR H-FRQR
Blood Transfusion 5 4 3 3 3

Breast Cancer 10 7 5 7 5
Breast Tissue 10 9 8 8 8

Cleveland 14 11 6 5 6
Glass 10 9 8 8 8
Heart 13 7 6 7 6

Ionosphere 34 7 6 7 6
Libras Movement 91 2 6 8 6

Lung Cancer 56 6 5 6 5
Olitos 26 5 4 5 4

Parkinson 23 5 4 5 4
Pima Indian Diabetes 8 8 7 7 7

Sonar 60 5 4 5 4
Soybean 35 2 1 2 1

SPECTF Heart 45 5 4 5 4
Wine 13 5 4 5 4

information-rich features. The results of all methods as well
as unreducted datasets in term of the number of selected fea-
tures are demonstrated in Table 2.

Nine classifiers of different categories such as PART,
JRip, Naı̈ve Bayes, Bayes Net, J48, BFTree, FT, NBTree
and RBFNetwrok were selected to classify resulting sub-
sets of features by each method. The results are presented
in Table 3 where the mean of classification accuracies of
nine classifiers for each dataset and each method along with
unreducted datasets is shown in each cell, and the last row
indicates the mean of the mean of classification accuracies.
The lowest mean was gained by FRQR and ranking order to
the best was H-FRQR, T-FRQR, W-FRQR and unreducted
datasets. The highest mean of classification accuracies was
gained in expense of employing all features, which means
that feature selection methods are not always successful in
increasing classification accuracy, but in decreasing model
complexity by sacrificing inconsiderable accuracy. As Ta-
ble 3 shows, for seven datasets the original model gained
the highest classification accuracy, six for FRQR, five for
T-FRQR and four for both W-FRQR and H-FRQR.

Since both the classification accuracies and the number
of selected features are important, divisions of classification
accuracies (Table 3) by the number of selected features (Ta-
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Table 3 Mean of classification accuracies (%).

Datasets Unred. FRQR T-FRQR W-FRQR H-FRQR
Blood Transfusion 77.20 66.46 66.25 66.26 66.25

Breast Cancer 96.18 96.23 96.49 96.29 96.49
Breast Tissue 66.46 66.46 66.25 66.25 66.25

Cleveland 50.13 49.76 51.52 51.22 50.99
Glass 61.89 67.29 64.64 64.64 64.64
Heart 79.55 78.48 73.25 78.48 73.25

Ionosphere 89.68 91.39 90.09 90.57 90.09
Libras Movement 61.70 21.76 52.10 45.31 52.10

Lung Cancer 55.56 58.85 51.44 58.85 51.44
Olitos 69.81 66.39 67.96 66.39 67.96

Parkinson 82.34 85.07 86.38 85.07 86.38
Pima Indian Diabetes 75.00 75.00 75.46 75.46 75.46

Sonar 67.47 69.82 70.94 69.82 70.94
Soybean 98.58 100.00 85.34 100.00 85.34

SPECTF Heart 73.06 64.86 65.56 70.42 65.56
Wine 85.32 95.63 94.88 94.51 94.88
Mean 74.37 72.09 72.41 73.72 72.38

Table 4 Division of classification accuracies and number of selected
features.

Datasets Unred. FRQR T-FRQR W-FRQR H-FRQR
Blood Transfusion 15.44 16.62 22.08 22.08 22.08

Breast Cancer 9.61 13.75 19.30 13.76 19.30
Breast Tissue 6.64 7.38 8.28 8.28 8.28

Cleveland 3.58 4.52 8.59 10.24 8.50
Glass 6.18 7.48 8.08 8.08 8.08
Heart 6.11 11.21 11.21 11.21 11.21

Ionosphere 2.63 13.06 15.02 12.94 15.02
Libras Movement 0.67 10.88 8.68 5.66 8.68

Lung Cancer 0.99 9.81 10.29 9.81 10.29
Olitos 2.68 13.28 16.99 13.28 16.99

Parkinson 3.58 17.01 21.60 17.01 21.60
Pima Indian Diabetes 9.38 9.38 10.78 10.78 10.78

Sonar 1.12 13.96 17.74 13.96 17.74
Soybean 2.81 50.00 85.34 50.00 85.34

SPECTF Heart 1.62 12.97 16.39 14.08 16.39
Wine 6.56 19.13 23.72 18.90 23.72
Mean 4.98 14.40 19.01 15.00 19.00

Table 5 Average rankings of the algorithms (Friedman).

Algorithm Ranking
T-FRQR 1.7812
H-FRQR 1.8438
W-FRQR 2.9385

FRQR 3.4688
Unred. 4.9688

ble 2) were considered as a measure to compare the results.
Therefore, a method which ends to the highest classifica-
tion accuracy and the minimum number of features is re-
garded as the best method. The results are shown in Table 4
where original datasets achieved the lowest value, T-FRQR
reached the highest value, and the performance of both T-
FRQR and H-FRQR were nearly identical. As for the re-
sults in Table 4, a non-parametric statistical analysis was
conducted to compare all the algorithms. Average ranking
obtained by each method in the Friedman test are presented
in Table 5. As expected, the rankings were the same as the
rankings which were given in Table 4. Friedman statistic
(distributed according to the chi-square with 4 degrees of
freedom) is 44.3, and P-value computed by Friedman Test

was 0.

6. Concluding Remarks

Two novel successors to Fuzzy-Rough QuickReduct were
presented in this paper. Experimental results over sixteen
datasets taken from UCI apparently showed the applicabil-
ity and effectiveness of proposed methods over the conven-
tional methods. The number of selected features, classifica-
tion accuracies, and the division of classification accuracies
by the number of selected features were used to measure the
performance of each algorithm. The Friedman test was uti-
lized for ranking the algorithms based on the statistical fun-
damentals and the aforementioned division. The T-FRQR
and H-FRQR outperformed W-FRQR and FRQR in terms
of the number of selected features. Although W-FRQR was
placed third, but the method led to the highest classifica-
tion accuracy among the proposed methods. According to
the number of selected features, the classification accura-
cies and the statistical results, it is natural to recommend
T-FRQR and H-FRQR for handling real-world applications.
More investigations on the hybridization of FDD and newly
emerged FS merits can be made to deal with the dilemma of
selecting a subset among those with the same FDD value.
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