
712
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

LETTER

Split-Jaccard Distance of Hierarchical Decompositions for Software
Architecture

Ki-Seong LEE†, Byung-Woo HONG†, Youngmin KIM†, Jaeyeop AHN†, Nonmembers,
and Chan-Gun LEE†a), Member

SUMMARY Most previous approaches on comparing the results for
software architecture recovery are designed to handle only flat decomposi-
tions. In this paper, we propose a novel distance called Split-Jaccard Dis-
tance of Hierarchical Decompositions. It extends the Jaccard coefficient
and incorporates the concept of the splits of leaves in a hierarchical de-
composition. We analyze the proposed distance and derive its properties,
including the lower-bound and the metric space.
key words: split, clustering, hierarchical, decomposition, distance, metric

1. Introduction

There has been much effort toward deriving design infor-
mation from the source code of a software system. Such
information is critical to software maintenance and provides
abstract views to the software engineers [1]. Software clus-
tering techniques are commonly used for recovering archi-
tecture information such as a module view of the system.
Various approaches to software clustering have been pro-
posed, and each of them has strong and weak points from
different aspects [1], [2].

Therefore, evaluating various software clustering algo-
rithms is an important task to pick the most appropriate one
for the user’s context. One of the fundamental functions
needed for the evaluation is to compare the decompositions
which are the results generated from the software clustering
algorithms.

There have been many attempts to compare the de-
compositions by computing the similarities or differences
of them [3]–[5]. Unfortunately, most of them are designed
to handle only flat decompositions [6]; i.e., a cluster cannot
contain another cluster, hence they cannot compare hierar-
chical decompositions although most software clustering al-
gorithms produce hierarchical ones. It should be noted that
tree edit distance algorithms cannot be directly applied to
the problem of comparing software decompositions, which
are typically represented as unordered leaf-labeled trees [7].

In this paper, we propose a novel distance called Split-
Jaccard Distance of Hierarchical Decompositions for com-
paring hierarchical decompositions. The proposed distance
is influenced by the split-order distance [7] but our approach

Manuscript received June 1, 2014.
Manuscript revised September 18, 2014.
Manuscript publicized November 20, 2014.
†The authors are with Chung-Ang University, Seoul, 156–756

Korea.
a) E-mail: cglee@cau.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2014EDL8113

does not suffer from an anomaly shown in Sect. 3. We
designed the distance by incorporating Jaccard distance [8]
with the concept of split nodes in a tree. The lower-bound
analysis and the metric property of the distance are also pre-
sented.

The rest of our paper is composed as follows. Sec-
tion 2 defines the Split-Jaccard Distance and proves that it is
a metric. Section 3 discusses related work on comparisons
of software decompositions. Section 4 summarizes and con-
cludes the paper.

2. Split-Jaccard Distance of Hierarchical Decomposi-
tions

2.1 Notations

In this paper, we model the decomposition of a software into
a leaf-labeled tree. The label of a leaf represents a software
entity such as a function, a class, or a file. For example, a
file F1.c would be mapped to a leaf with the label “F1.c”.

A software clustering algorithm groups the similar en-
tities into a cluster. Each internal node of the tree represents
a cluster which can contain entities and nested clusters. Note
that the trees reflecting different decompositions for a given
software architecture consist of the same set of the leaves,
but their nested structures may be different. Every leaf cor-
responds to an entity to be clustered and the label of a leaf
identifies the entity.

More formally, let T be a rooted tree defined on a set
of vertices V and edges E. A vertex set V consists of inter-
nal vertices I that have children and terminal vertices L that
have no children. We consider tree T as being a labeled tree
where each vertex v ∈ V has its label L(v) that distinguishes
one vertex from another in V . The path P(v1, v2) from a
vertex v1 to a vertex v2 in tree T is a sequence of vertices
(x0 = v1, x1, . . . , xn−1, xn = v2) that traverse their associated
edges. The level �(v) of a vertex v in tree T is defined by
the length of the unique shortest path P(r, v) from the root
r to the vertex v. For a vertex v ∈ V in tree T , the subtree
S (v ; T) of T with v ∈ V as its root is given by a tree consist-
ing of v and its descendants and all edges incident to these
descendants.

2.2 Structural Discrepancy

In the computation of a similarity between two sampled sets

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

LETTER
713

A and B, we use the Jaccard coefficient J(A, B) as a similar-
ity measure defined by the size of the intersection of the sets
A and B divided by the size of their union as follows [8]:

J(A, B) =
|A ∩ B|
|A ∪ B| , (1)

where | · | denotes the cardinality of a set. The value of the
Jaccard coefficient ranges from 0 to 1 for a pair of finite sets,
where 0 represents no match and 1 represents perfect match.
Note that we set 0/0 = 0 in the definition.

We now introduce a discrepancy measure d(T1,T2) be-
tween a pair of trees T1 = (V1, E1) and T2 = (V2, E2) based
on the Jaccard coefficient, where V denotes the vertex set
and E denotes the edge set. In our application, we assume
that the number of terminal vertices L1 ⊂ V1 in tree T1 is
the same as the number of terminal vertices L2 ⊂ V2 in tree
T2. We assign a unique label l to each vertex v in terminal
vertex set L using the following mapping L(v) = l:

L : L→ N, (2)

where N is a set of labels such as {l1, l2, l3, · · · }, and each
element in the label set L(L) of terminal vertex set L is as-
sumed to be distinct:

L(u) � L(v) if u � v, (3)

where u, v ∈ L.
In the computation of similarity between T1 and T2,

we also assume that the label set L(L1) of terminal vertex
set L1 in tree T1 is identical to the label set L(L2) of termi-
nal vertex set L2 in tree T2 so that we can build one-to-one
correspondences between L(L1) and L(L2).

In our proposed discrepancy measure between a pair
of trees T1 and T2, we consider a combination of pairwise
structural similarity between their corresponding substruc-
tures as defined by:

S (u ; T1) ∼ S (v ; T2) = J(N1,N2), (4)

where ∼ denotes a similarity measure between two subtrees
S (u ; T1) and S (v ; T2), and S (u ; T) denotes the subtree of
T = (V, E) with u ∈ V being the root vertex of S (u ; T).
For the identification of vertices, N1 and N2 denote the la-
bel sets of the terminal vertex sets in S (u ; T1) and S (v ; T2),
respectively.

For a pair of labels l1, l2 that are included in both
L(L1) and L(L2) where L(L1) is constrained to be iden-
tical to L(L2) and we denote the common label set by
L(L) = L(L1) = L(L2), we define a structural discrepancy
d(l1, l2 ; T1,T2) between T1 and T2 given a pair of labels
l1, l2 ∈ L(L) as follows:

d(l1, l2 ; T1,T2) = S (u ; T1) ∼ S (v ; T2), (5)

where the correspondence between subtrees S (u ; T1) and
S (v ; T2) is established by assigning

u = arg min
p
{�(p) | p ∈ P(u1, u2)}, u1, u2 ∈ L1, (6)

Fig. 1 Decompositions T1 (left) and T2 (right).

v = arg min
p
{�(p) | p ∈ P(v1, v2)}, v1, v2 ∈ L2, (7)

l1 = L(v1) = L(u1), (8)

l2 = L(v2) = L(u2), (9)

where �(p) denotes the level of vertex p ∈ V in tree T =
(V, E) and the level of a vertex is defined by the length
from the root vertex to the given vertex. P(u1, u2) denotes
a unique path that consists of a sequence of consecutive ver-
tices connecting u1 and u2. In the above, u and v are typi-
cally called splits [7] because each of them corresponds to
the nearest common ancestor of the leaves with the labels l1
and l2.

Given trees T1 = (V1, E1) and T2 = (V2, E2), their
structural similarity with a given pair of common labels
l1 ∈ L(L1) and l2 ∈ L(L2) for the vertices in the terminal
vertex sets L1 ⊂ V1 and L2 ⊂ V2 is computed by comparing
subtrees S (u ; T1) and S (v ; T2) where u is a common ances-
tor of u1 and u2 with the maximum level and v is a common
ancestor of v1 and v2 with the maximum level.

Then, we define a discrepancy measure D(T1,T2) be-
tween T1 and T2 by considering the combination of struc-
tural comparisons with respect to all possible pairs of labels
as follows:

D(T1,T2) = 1 − 1(
n
2

)
ln∑

i=l1

ln∑
j=i

d(i, j ; T1,T2), (10)

where n denotes the cardinality of the label set L(L) =
{l1, l2, . . . , ln} and

(
n
2

)
=

n(n−1)
2 . Then, the value of the dis-

crepancy D(T1,T2) for any pair of trees T1,T2 ranges from
0 to 1, where 0 indicates perfect match and 1 indicates no
match.

Before presenting the properties of the proposed dis-
tance, we provide an example of calculating the distance of
two decompositions of a software in the following. Note
that we assign labels to some internal nodes for the illustra-
tion purpose. As mentioned in Sect. 3, every leaf should be
tagged with a label, but internal nodes do not have such a
requirement.

Example 1. Figure 1 shows two hierarchical decomposi-
tions T1 and T2 for a software architecture. The structural
similarity between substructures for the pair of labels (A, B)
is calculated as follows:

714
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

Fig. 2 Examples of trees that yield the maximum distance.

d(A, B ; T1,T2) = S (i2 ; T1) ∼ S (R ; T2)

= J({A, B} ; T1) ∼ J({A, B,C,D} ; T2)

=
|{A, B} ∩ {A, B,C,D}|
|{A, B} ∪ {A, B,C,D}| =

1
2

Similarly, the remaining combinations of labels are com-
puted as follows: d(A,C, ; T1,T2) = 0.75, d(A,D, ; T1,T2) =
1.0, d(B,C, ; T1,T2) = 0.5, d(B,D, ; T1,T2) = 0.5,
d(C,D, ; T1,T2) = 0.75. Hence, D(T1,T2) = 0.67.

We now analyze the range of our distance measure and
the necessary condition that yields the maximal distance.

Lemma 1. Let T1 = (V1, E1) and T2 = (V2, E2) be trees with
vertex sets V1 = I1∪L1 and V2 = I2∪L2 where I denotes a set
of internal vertices and L denotes a set of terminal vertices.
A necessary condition for the structural distance D(T1,T2)
to be maximal is that each vertex in L1 and L2 has different
level from 1 to n when |L1| = |L2| = n with an assumption
that |I1| = |L1| and |I2| = |L2|.
Proof. Our structural distance is measured based on the ra-
tio of the cardinality of the intersection and the union of
terminal vertices in the corresponding subtrees for all the
combination of label pairs. Let L(i, j)

1 and L(i, j)
2 be sets of ter-

minal vertices of the subtrees S (u; T1) and S (v; T2) which
are considered in the computation of d(l1, l2; T1,T2). Thus,
the structural distance increases when the following quantity
decreases:

ln∑
i=l1

ln∑
j=i

(
|L(i, j)

1 | + |L(i, j)
2 |

)
, (11)

A pair of trees that are shaped in such a way that the above
quantity is minimized yield the minimal set of intersection
in the computation of the distance. A graphical illustration
of trees that satisfy this condition is presented in Fig. 2. �

Lemma 2. A necessary condition for the structure distance
D(T1,T2) to be maximal is to satisfy the following condition:

�(u) = n − �(v) + 1, L(u) = L(v) (12)

where u ∈ L1, v ∈ L2, and n is the number of terminal

vertices in each tree.

Proof. The cardinality of the union sets in the computation
of the structural distance is maximized when the label of
the terminal vertices in one tree is reversely ordered to the
label of the terminal vertices in the other tree with the shape
of one tree being the same as the shape of the other tree as
shown in Fig. 2. �

Theorem 1. Let T1 = (V1, E1) and T2 = (V2, E2) be trees
with vertex sets V1 = I1∪L1 and V2 = I2∪L2 where I denotes
a set of internal vertices and L denotes a set of terminal
vertices. The structural distance D(T1,T2) between T1 and
T2 is bounded by 1 − (n+4)(n−1)

3n(n+1) where a constraint on the
cardinality of the terminal vertex sets is imposed by |L1| =
|L2|.
Proof. In the computation of the structural distance be-
tween trees T1 and T2, it is assumed that |L1| = |L2| and
L(L1) = L(L2). Let us denote N = {l1, l2, · · · , ln} a set of
common label sets N = L(L1) = L(L2). The structural dis-
tance D(T1,T2) between T1 and T2 is maximized when the
following quantity is maximized:

n∑
i=1

|�(ui) − �(vi)|2, L(ui) = L(vi) = li, li ∈ N (13)

The visual illustration for an example of trees yielding the
maximal structural distance between them in Fig. 2. The
sum of structural discrepancy between corresponding sub-
trees for all the combination of label pairs is obtained by

ln∑
i=l1

ln∑
j=i

d(i, j; T1,T2)

=

(
2
n
+

3
n
+ · · · + n

n

)
+

(
2
n
+

3
n
+ · · · + n − 1

n

)

+ · · · + 2
n

=
2(n − 1) + 3(n − 2) + · · · + (n − 1)2 + n

n

=
1
n

n∑
k=2

k(n − (k − 1)) =
n2 + 3n − 4

6

Then, the structural distance D(T1,T2) of T1 and T2 which
are maximally different in terms of our discrepancy measure
becomes:

D(T1,T2) = 1 − 2
n(n + 1)

n2 + 3n − 4
6

= 1 − (n + 4)(n − 1)
3n(n + 1)

(14)

�

2.3 Metric Space

An order pair (T,D) where T denotes a set representing a

LETTER
715

tree and D denotes the discrepancy measure on T forms a
metric space, which indicates that a function D : T ×T → R
for any T1,T2,T3 ∈ T satisfies the following properties:

(a) D(T1,T2) ≥ 0

(b) D(T1,T2) = 0 if and only if T1 = T2

(c) D(T1,T2) = D(T2,T1)

(d) D(T1,T3) ≤ D(T1,T2) + D(T2,T3)

The condition (a) follows from the other three properties:

2D(T1,T2) = D(T1,T2) + D(T2,T1) ≥ D(T1,T1) = 0.

(15)

The condition (b) can be proved as follows:

T1 = T2 ⇐⇒ d(l1, l2 ; T1,T2) = 1, ∀l1, l2 ∈ L(L)

⇐⇒ D(T1,T2) = 0 (16)

where L(L) denotes the label set of L1 and L2. The condi-
tion (c) holds due to the symmetric property of the Jaccard
coefficient as follows:

J(N1,N2) = J(N2,N1)

=⇒ d(l1, l2, T1,T2) = d(l1, l2, T2,T1)

=⇒ D(T1,T2) = D(T2,T1) (17)

where N1 denotes the label set of the terminal vertices in
S (v ; T1) and N2 denotes the label set of the terminal vertices
in S (u ; T2) following the definition given in Eq. (4). The
condition (d) is satisfied by the following relations:

J(N1,N3) ≤ J(N1,N2) + J(N2,N3) =⇒
d(l1, l2, T1,T3) ≤ d(l1, l2, T1,T2) + d(l1, l2, T2,T3),

∀l1, l2 ∈ L(L) =⇒
d(l1, l2, T1,T3) ≤ d(l1, l2, T1,T2) + d(l1, l2, T2,T3),

∀l1, l2 ∈ L(L) =⇒ D(T1,T3) ≤ D(T1,T2) + D(T2,T3)
(18)

2.4 Complexity

Let us derive the complexity of computing d(T1,T2) for the
trees T1 = (V1, E1) and T2 = (V2, E2) where V denotes the
vertex set and E denotes the edge set. n represents the num-
ber of terminal vertices L1 ⊂ V1 and it is the same as the
number of terminal vertices L2 ⊂ V2.

As shown in Eq. (10), computing the proposed distance
requires the cardinality of the intersection and the union of
terminal vertices in the subtrees of the splits for all the com-
bination of label pairs.

For a pair of labels (i, j), let L(i, j)
1 and L(i, j)

2 be sets of
terminal vertices of the subtrees of S (u; T1) and S (v; T2), re-
spectively where u and v are the splits of (i, j) in each tree.
L(i, j)

1 can be derived as a bit vector of length n. Each bit maps
to a unique label and indicates whether the corresponding
terminal vertex with the label is a member of S (u; T1). L(i, j)

2

can be derived similarly. We assume that the access time to
each bit in the vector mapped to a label is O(1). Locating
two terminal vertices corresponding to i and j and finding
their split u in T1 can be done in O(|V1|). Collecting the
terminal vertices rooted at u and constructing the bit vec-
tor representing L(i, j)

1 can be done in O(|V1|). L(i, j)
2 can be

constructed similarly in O(|V2|). Computing the intersection
and the union of two bit vectors takes O(n).

Therefore, the time complexity of computing the met-
ric is O(n2(|V1| + |V2|)) because we need to consider all the
combinations of label pairs. The space complexity is the
same as the size of the trees O(|V1| + |V2|).

3. Related Work

There have been many approaches to compare tree struc-
tures. The tree edit distance is a well-known metric to com-
pare two trees, where their internal and leaf nodes are all la-
beled. The tree edit distance is considered intuitive because
it represents the number of items to be edited to convert a
given tree to the corresponding tree. The typical edit op-
erations include insert, delete, and rename. It is known that
the tree edit distance computation for unordered trees is NP-
complete [9]. There are a few algorithms [9]–[13] with poly-
nomial complexities for ordered trees. An extensive survey
on tree edit distance algorithms can be found in [14].

It is worth noting that the tree edit distance does not
fit to the problem addressed in our paper. For the decom-
position results obtained for software architecture recov-
ery, there is no ordering among the siblings; which means
that the result is an unordered leaf-labeled tree, as men-
tioned earlier in Sect. 1. As indicated in [7], the general tree
edit distance algorithms may generate answers contradict-
ing our understanding of the hierarchies, when we consider
unordered leaf-labeled trees as ordered fully-labeled trees.
Figure 3 illustrates such examples. The tree edit distance
between T1 and T2 is 2 because we can make them identical
by editing two labels. Note that these trees in fact represent
the same decompositions in our purpose. On the other hand,
The tree edit distance between T1 and T3 is also 2, where we
indeed have different decompositions.

For this reason, in the following we restrict ourselves to
the approaches to compare flat decompositions or unordered
leaf-labeled trees. Most previous work on comparing soft-
ware clustering results has focused on only flat decomposi-
tions [6]. Our work most closely relates to recent work by
Shtern et al. [6], [15] and Zhang et al. [7].

Fig. 3 Decompositions T1 (left), T2(center) and T3 (right).

716
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.3 MARCH 2015

The END framework [15] is designed to apply the eval-
uation methods, which are originally capable of processing
only flat decompositions, for hierarchical decompositions.
The framework enables this by incrementally reducing the
hierarchical decompositions into flat ones level by level.
The END framework produces a vector, which needs to be
transformed to a scalar value by a user function. The frame-
work does not provide a specific guideline for the user func-
tions [6].

UpMoJo [6] extends MoJo so that it can compute the
distance between hierarchical decompositions. As well as
classical Join and Move operations of MoJo, it adds Up op-
eration so that the entities can move to upper levels in the
decomposition. However, UpMoJo is not a metric because
its range is not confined.

Zhang et al. [7] proposed a metric called Split-Order
distance. For each triple of leaves (l1, l2, l3) where l1 � l2 �
l3, the algorithm computes the order of the split nodes for
(l1, l2) and (l1, l3) in each tree. The order of the nodes i and j
is defined as “<” when i is closer to the root than j. In case
j is closer, then the result is “<”. Otherwise the result is
“=”. If the orders from the trees are different, then the met-
ric increases by one. For example, the splits of (A, B) and
(A,C) are i2 and i1 respectively in T1. In T2, the splits of the
corresponding pairs are both R. Thus, the order results from
the trees are “>” and “=”, hence this increases the metric by
one for this particular triple.

Note that Fig. 1, which was used in Example 1, depicts
the case where the split-order distance [7] determines that
the two decompositions are totally different. However, the
decompositions are slightly different in fact; only the nodes
with the labels A and D are swapped and the configurations
of the rest nodes are the same. This phenomenon is referred
to as the anomaly of split-order distance. Our proposed dis-
tance does not suffer from this issue.

4. Conclusions

We proposed Split-Jaccard Distance of Hierarchical Decom-
positions, which can be used for comparing the results ob-
tained for software architecture recovery. It is based on the
Jaccard coefficient and utilizes the information regarding the
splits of leaves in the hierarchical decompositions. We pro-
posed use of this distance as a metric and analyzed its prop-
erties, including the lower-bound.

Acknowledgements

This research was supported by the Chung-Ang Univer-

sity Excellent Student Scholarship, the National Research
Foundation (NRF-2011-0013924, NRF-2014-005519) and
the MSIP (Ministry of Science, ICT and Future Planning)
under the ITRC (Information Technology Research Center)
support Program (NIPA-2014-H0301-14-1023) supervised
by the NIPA.

References

[1] O. Maqbool and H.A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Trans. Softw. Eng., vol.33, no.11,
pp.759–780, 2007.

[2] M. Shtern and V. Tzerpos, “Methods for selecting and improving
software clustering algorithms,” Software: Practice and Experience,
vol.44, no.1, pp.33–46, 2014.

[3] V. Tzerpos and R.C. Holt, “Mojo: A distance metric for software
clusterings,” Proc. Sixth Working Conference on Reverse Engineer-
ing, 1999, pp.187–193, 1999.

[4] N. Anquetil and T.C. Lethbridge, “Experiments with clustering as
a software remodularization method,” Proc. Sixth Working Confer-
ence on Reverse Engineering, 1999, pp.235–255, 1999.

[5] B.S. Mitchell and S. Mancoridis, “Comparing the decompositions
produced by software clustering algorithms using similarity mea-
surements,” Proc. IEEE International Conference on Software Main-
tenance, 2001, pp.744–753, 2001.

[6] M. Shtern and V. Tzerpos, “Lossless comparison of nested software
decompositions,” 14th Working Conference on Reverse Engineer-
ing, 2007. WCRE 2007, pp.249–258, 2007.

[7] Q. Zhang, E.Y. Liu, A. Sarkar, and W. Wang, “Split-order distance
for clustering and classification hierarchies,” in Scientific and Statis-
tical Database Management, pp.517–534, Springer, 2009.

[8] P. Jaccard, “The distribution of the flora in the alpine zone,” New
Phytologist, vol.11, no.2, pp.37–60, 1912.

[9] K. Zhang and D. Shasha, “Simple fast algorithms for the editing
distance between trees and related problems,” SIAM J. Comput.,
vol.18, no.6, pp.1245–1262, 1989.

[10] H. Touzet, “Tree edit distance with gaps,” Inf. Process. Lett., vol.85,
no.3, pp.123–129, 2003.

[11] E.D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An op-
timal decomposition algorithm for tree edit distance,” ACM Trans.
Algorithms, vol.6, no.1, pp.2:1–2:19, 2009.

[12] M. Pawlik and N. Augsten, “Rted: A robust algorithm for the tree
edit distance,” Proc. VLDB Endow., vol.5, no.4, pp.334–345, Dec.
2011.

[13] M. Pawlik and N. Augsten, “A memory-efficient tree edit distance
algorithm,” in Database and Expert Systems Applications, ed. H.
Decker, L. Lhotska, S. Link, M. Spies, and R.R. Wagner, Lect. Notes
Comput. Sci., vol.8644, pp.196–210, 2014.

[14] P. Bille, “A survey on tree edit distance and related problems,” Theor.
Comput. Sci., vol.337, no.1, pp.217–239, 2005.

[15] M. Shtern and V. Tzerpos, “A framework for the comparison of
nested software decompositions,” Proc. 11th Working Conference
on Reverse Engineering, 2004, pp.284–292, 2004.

