
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014
2967

LETTER

ACK Loss-Aware RTO Calculation Algorithm over Flooding-Based
Routing Protocols for UWSNs

Sungwon LEE†a), Nonmember and Dongkyun KIM†b), Member

SUMMARY In typical end-to-end recovery protocols, an ACK segment
is delivered to a source node over a single path. ACK loss requires the
source to retransmit the corresponding data packet. However, in underwa-
ter wireless sensor networks which prefer flooding-based routing protocols,
the source node has redundant chances to receive the ACK segment since
multiple copies of the ACK segment can arrive at the source node along
multiple paths. Since existing RTO calculation algorithms do not consider
inherent features of underlying routing protocols, spurious packet retrans-
missions are unavoidable. Hence, in this letter, we propose a new ACK
loss-aware RTO calculation algorithm, which utilizes statistical ACK ar-
rival times and ACK loss rate, in order to reduce such retransmissions.
key words: UWSN, flooding based routing, TCP, retransmission, round
trip time

1. Introduction

Recently, much research interest in underwater wireless sen-
sor networks (UWSNs) has increased to support many ap-
plications such as pollution sensing and tactical surveil-
lance [1]. In UWSNs, since underwater communications be-
tween sensor nodes rely on an acoustic wave, they should
cope with many limitations such as high propagation delay,
noise, high loss ratio, etc. Among them, since the high loss
ratio is a major cause of throughput degradation, many pro-
tocols have been designed to provide reliable packet trans-
missions in various layers such as PHY, MAC, and routing
layers [2].

In particular, to route packets between a source node
and the sink, flooding-based routing protocols which pro-
vide highly reliable packet delivery have been considered
most appropriate for UWSNs [3], [4]. In these protocols,
each sensor node determines a predefined forwarding area
based on geographical information to control the number
of forwarding nodes. Only the nodes located within the
area participate in forwarding, however, the packets are still
flooded along multiple paths in their own flooding area.

In addition to routing, a transport protocol is also
needed to provide reliable end-to-end packet delivery, since
packet loss is unavoidable while flooding packets. More-
over, some applications such as tactical surveillance in mili-
tary environments require loss-free communication between

Manuscript received June 25, 2014.
Manuscript revised July 31, 2014.
Manuscript publicized August 22, 2014.
†The authors are with the School of Computer Science and En-

gineering, Kyungpook National University, Korea.
a) E-mail: swlee@monet.knu.ac.kr
b) E-mail: dongkyun@knu.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2014EDL8127

the source node and the sink [5]. Packet loss might be re-
covered in hop-by-hop, but the hop-by-hop approach would
lead to much channel contention especially in underwater
environments. Therefore, it is desirable to develop an end-
to-end (E2E) transport protocol which can recover the lost
packets in underwater networks.

In most of the E2E recovery protocols such as TCP in
the Internet, a source node sends a data segment and sets a
timer called RTO (Retransmission Timeout). Then, it should
wait for a corresponding ACK segment from the destination
(the sink) [6]. If the RTO expires before the ACK segment
arrives, the source concludes that the data segment has been
lost in the network and it retransmits the missing data seg-
ment. Hence, the retransmission efficiency totally depends
on the RTO calculation algorithm selected. Jacobson’s RTO
calculation algorithm [7] which is described in more detail
in Sect. 2 is widely used to perform timely retransmission.

However, the original Jacobson’s RTO calculation al-
gorithm does not consider the existence of multiple ACK
copies. Thus, if the RTO expires even though some ACK
segments expected to arrive early have been lost and oth-
ers ACK copies can be received later, spurious retransmis-
sions are unavoidable in case that the algorithm might be
applied to flooding-based routing in UWSNs. The network
is flooded with unnecessarily retransmitted data segments,
generating much traffic in the network as well as causing a
lot of contention to channel access. In particular, this spu-
rious retransmission (i.e. unnecessary retransmission) pre-
vents the source from transmitting its next data segment un-
til an ACK segment corresponding to the retransmitted data
segment is received. Consequently, throughput degradation
becomes serious.

Hence, the algorithm of calculating an accurate RTO is
required to avoid spurious retransmission. However, since
high loss rate in underwater environment makes it almost
impossible to obtain the accurate RTO, the development of
a loss-aware RTO calculation algorithm has the most impor-
tance in UWSNs.

In this letter, we propose an ACK loss-aware RTO cal-
culation algorithm which considers an additional waiting
time (called ACK Copies Waiting Time, ACWT) during
which the source node awaits any other ACK copies even
after the typical RTO expiration. Due to redundant chances
to receive other ACK segments during ACWT which are
flooded along multiple paths, the source node can avoid spu-
rious retransmissions. However, if a large or small ACWT is
taken, late or spurious retransmission is still performed, re-

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

2968
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

spectively. Our proposed algorithm allows the source node
to calculate the best ACWT, based on inter-arrival times of
ACK copies and the ACK copy loss rate.

2. Related Work

Over the flooding-based routing, the source node can receive
multiple ACK copies. However, the source node can decide
that the data packet has been successfully delivered to the
sink only if one ACK copy is received. Hence, the source
node calculates the RTO based on the ACK copy which first
arrives at the source node according to Jacobson’s RTO cal-
culation algorithm [7] (see Eq. (1)). Of course, an enhanced
RTO calculation algorithm with the judicious consideration
of characteristics of UWSNs (rather than Jacobson’s RTO)
should be developed, but it is out of scope of this work.

RTO typ = RTTest + α ∗ DEVRTT

RTTest = β ∗ RTTpre + (1 − β) ∗ RTTcur (1)

DEVRTT =
∑
|RTTi − RTTavg|/N

RTOtyp denotes a typical RTO which is calculated by
Jacobson’s algorithm. RTTest is an estimated RTT and
DEVRTT is mean deviation of RTTs. RTTpre and RTTcur is
a previous estimated RTT and the current RTT, respectively.
RTTavg is an average RTT and N is the number of received
ACK segments. α and β are system parameters.

3. Proposed Algorithm

As mentioned before, even after Jacobson’s RTO [5] ex-
pires, the source node will have a chance to receive other
ACK segments which are transmitted along different paths
according to flooding-based routing. Hence, the source node
should wait more time until other ACK copies are received
after Jacobson’s RTO expiration to avoid the spurious packet
retransmissions. However, the source node should not wait
for those ACK copies indefinitely. There could be a case
that a data packet itself was not delivered to the sink due to
packet loss. In addition, in case that the source node waits a
very long time, retransmission would be delayed, leading to
lower throughput. Hence, the source node should calculate
ACK Copies Waiting Time (ACWT) that is an expected ar-
rival time of a next ACK copy and waits more only during
ACWT after Jacobson’s RTO expiration.

Over most flooding-based routing protocols, some of
ACK copies are expected to arrive within a period of time.
Hence, based on the arrival time of each ACK copy, the
source calculates the average inter-arrival time of ACK
copies TACK . When the source node cannot receive any
copies of an ACK packet during Jacobson’s RTO expiration
due to ACK loss, the next copy of this ACK packet would be
arrive at the source node after TACK . If the ACK copy loss
were absent, TACK would be enough for the source node to
await the next ACK copy. However, ACK copies are still
loss-prone in UWSNs, and the waiting time should be in-
creased with the number of lost ACK copies. In particular,

since the number of lost ACK copies cannot be measured
exactly, the source node utilizes the estimated number of
ACK copies (denoted by k) which have been lost until one
ACK copy is received based on statistics of ACK arrival.

As mentioned before, as the number of lost ACK
copies becomes larger, it takes more time for the source
node to receive the next ACK copy. In other words, the
gap between Jacobson’s RTO expiration and the reception
time of the ACK copy increases with the number of lost
ACK copies. Hence, assuming that ACK copies arrive at
the source node every TACKs, k becomes equal to this gap
divided by TACK . Finally, in order to wait for an ACK copy
which is expected not to be lost, the source node derives
ACWT from the product of TACK and k + 1.

According to most flooding-based routing protocols,
TACK depends on the holding-time [3] which is a conven-
tional technique to reduce packet collisions. In these pro-
tocols, forwarding nodes hold their packets during their
holding-time which is set based on various metrics such
as residual energy and geographical information. Since
these metrics are stationary in a short period of time, the
source node uses the latest estimated TACK in calculating
the ACWT.

Different from TACK , k depends on channel quality. In
UWSNs, since the channel quality is variable, the source
node estimates the average k based on the reception history
of ACK copies. However, an arithmetic mean is not ap-
propriate to estimate the average k, since it puts the same
weight to each of samples. Hence, in order to reflect the
current channel quality better, the source node estimates the
average k and calculates ACWT according to the EWMA
formation and Eq. (2), respectively.

kcur = (RTO − RTTcur)/TACK

k = γ ∗ kcur + (1 − γ) ∗ kpre (2)

ACWT = (k + 1) ∗ TACK

RTO and RTTcur are Jacobson’s RTO and the current
RTT, respectively. TACK is the latest estimated TACK . kcur

and kpre are the current estimated k and previous estimated
k, respectively. γ is given as a system parameter.

4. Performance Evaluation

4.1 Simulation Environments

Through the NS-2 simulator, we implemented our proposed
algorithm and Jacobson’s algorithm into the stop-and-wait
protocol, not pipelined protocols. In the stop-and-wait pro-
tocol, a source is allowed to transmit only one data packet
at a time before receiving its corresponding ACK packet [8].
On the other hand, the pipelined protocols enable the source
to transmit multiple data packets without waiting for an
ACK packet (no more than some maximum allowable num-
ber of packets in the pipeline). However, the pipeline
protocols require a new congestion control mechanism for
UWSN to be devised, which is out of scope of this work.

LETTER
2969

The interest of this work lies in the E2E RTO-based reliable
data transfer mechanism.

As our baseline flooding-based routing protocol, the
DBR [3] was chosen with the broadcasting mode of IEEE
802.11 MAC protocol. We placed 250 sensor nodes at ran-
dom locations in the square of 1500m × 1000m among
which one sink was located in the center of the sea surface.
The source nodes were chosen randomly among the nodes
located lower than 800m from the sea surface to generate
multiple paths between the sink and source nodes. They
generated an FTP traffic for 1800 seconds towards the sink.
The data packet size of the traffic was set to 128Kbytes. We
repeated our simulation 50 times and measured average per-
formances in terms of retransmission ratio and throughput,
respectively.

To emulate high error rate in UWSNs, link error rates
of 8% and 3% were set for DATA and ACK segment trans-
missions, respectively. Since the size of a DATA segment is
larger than that of an ACK segment, the link error rate for
the DATA segment was assumed to be higher. The maxi-
mum transmission range of a sensor node and a bandwidth
were set to 300m and 10kHz, respectively.

Moreover, in terrestrial networks such as the Internet, α
and β values in Jacobson’s algorithm are set to 4 and 0.125.
It is known that these values were found using the empiri-
cal method. In order to select appropriate values in under-
water environments, we also found the best ones for them
empirically (α, β and γ value are set to 3.4, 0.2 and 0.25,
respectively).

4.2 Simulation Results

First, we measured retransmission ratio of our proposed al-
gorithm and Jacobson’s RTO algorithm with different num-
ber of flows (Fig. 1). Regardless of the number of traffic
flows, our proposed algorithm outperforms Jacobson’s RTO
algorithm in terms of lower retransmission ratio. In Jacob-
son’s RTO algorithm, despite the successful reception of
data packets at the sink and existence of other ACK copies
in the network, the source node would retransmit the data
packets if an ACK copy did not arrive before its RTO ex-
piration. In contrast, in our proposed algorithm, the source
node avoids spurious retransmissions because it waits for an
ACK copy additionally during the ACWT.

However, as the number of traffic flows increases, the
network gets more congested and the number of lost data
packet increases accordingly. Since both of algorithms
should retransmit data packets which are actually lost, their
performance gap is reduced. In particular, when the network
becomes congested (e.g., the number of traffic flows is larger
than 4), high retransmission ratio (almost 30%) is observed,
regardless of the implemented algorithms due to bottleneck
effect around the sink. The deployment of multiple sinks
could avoid the bottleneck effect, which is our future work.

Second, we conducted the comparisons of their total
average throughput according to the various number of traf-
fic flows (see Fig. 2). Jacobson’s RTO algorithm has lower

Fig. 1 Retransmission Ratio.

Fig. 2 Throughput.

throughput, since it could not avoid the spurious packet
retransmissions, which causes the network resource to be
wasted and deteriorate the network congestion. However, in
our proposed algorithm, the throughput slightly decreases
only if a large waiting time is taken. Still, it is observed
that our proposed algorithm outperforms Jacobson’s RTO
algorithm with higher throughput, regardless of the num-
ber of traffic flows. In addition, as the network gets more
congested, it is more likely that a data packet itself is not
delivered to the sink. In this case, the gap is reduced since
the additional ACWT would cause the source node to delay
its retransmissions.

5. Conclusion

In this letter, we proposed a new ACK loss-aware algorithm
which calculates a retransmission timeout (RTO) value for
end-to-end packet recovery in order to reduce spurious re-
transmissions over the flooding-based routing protocols for
UWSNs. In loss-prone UWSNs, a large amount of ACK
loss can force the source node to retransmit packets un-
necessarily. Hence, in our proposed algorithm, the source
node increases the RTO in proportion to the number of ACK
copies which are lost before the reception of one ACK copy.
Since the number of lost ACK copies cannot be measured
accurately, the source node estimates this number based on

2970
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.11 NOVEMBER 2014

inter-arrival times of ACK copies and the reception time of
one ACK copy.

Through NS-2 simulations, we verified that our pro-
posed algorithm could achieve performance improvements
of 11% ∼ 46% and 14% ∼ 55% in terms of retransmission
ratio and throughput, respectively.

Acknowledgments

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract UD130007DD.

References

[1] E.M. Sozer, M. Stojanovic, and J.G. Proakis, “Underwater acoustic

networks,” J. Oceanic Engineering, pp.72–83, 2000.
[2] I.F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic

sensor networks: Research challenges,” Ad Hoc Networks Journal,
pp.257–279, 2005.

[3] H. Yan, Z. Shi, and J.H. Cui, “DBR: Depth-based routing for under-
water sensor networks,” IFIP Networking, pp.16–1221, 2008.

[4] D. Hwang and D. Kim, “DFR: Directional flooding-based routing pro-
tocol for underwater sensor networks,” Proc. MTS/IEEE OCEANS,
pp.1–7, 2008.

[5] H. Chin-Ya, P. Ramanathan, and K. saluja, “Routing TCP flows in
underwater mesh networks,” IEEE J. Sel. Areas Commun., vol.29,
pp.2022–2032, 2011.

[6] V. Paxson and M. Allman, “Computing TCP’s retransmission timer,”
RFC 2988, 2000.

[7] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM,
Computer Communication Review, pp.314–329, 1988.

[8] S. Lin, D. Costello, and M. Miller, “Automatic-repeat-request error-
control scheme,” IEEE Commun., vol.22, pp.5–17, 1984.

