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Action Recognition Using Weighted Locality-Constrained Linear
Coding

Jiangfeng YANG†a), Member and Zheng MA†b), Nonmember

SUMMARY Recently, locality-constrained linear coding (LLC) as a
coding strategy has attracted much attention, due to its better reconstruc-
tion than sparse coding and vector quantization. However, LLC ignores the
weight information of codewords during the coding stage, and assumes that
every selected base has same credibility, even if their weights are different.
To further improve the discriminative power of LLC code, we propose a
weighted LLC algorithm that considers the codeword weight information.
Experiments on the KTH and UCF datasets show that the recognition sys-
tem based on WLLC achieves better performance than that based on the
classical LLC and VQ, and outperforms the recent classical systems.
key words: action recognition, action representation, weighted locality-
constrained linear coding

1. Introduction

In recent work on object recognition and action recognition,
the bag-of-features (BoF) is one of the most popular mod-
els for feature design. There are three stages in BoF-based
human action recognition: extracting local features from
videos, obtaining a video representation vector via these
local features, and classifying action videos with a classi-
fier based upon the video representation vector. To obtain
the video representation vector, several feature coding and
pooling schemes have been developed. Many authors used
k-means and vector quantization (VQ) for feature coding, as
well as average-pooling to group these feature codes to gen-
erate the video representation vector. To reduce the quan-
tization error caused by k-means and VQ that assign one
codeword for a feature, soft vector quantization (SVQ) [3]
and sparse coding (SC) [21] are used to encode local fea-
tures for action recognition tasks.

However, the local features usually reside on nonlin-
ear manifolds [20]. Neither SVQ nor SC can preserve the
nonlinear manifold structure. The manifold is nonlinear
and not Euclidean in its own space, but is linear and Eu-
clidean in a local region [23]. For this reason, Yu et al. [7]
provided a Local Coordinate Coding (LCC) to encode fea-
ture with locality-constrained, Wang et al. [8] introduced an
improved version of LCC named Locality-constrained Lin-
ear Coding (LLC) to reduce computation cost (see Fig. 2).
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Fig. 1 The proposed weighted locality-constrained linear coding
(WLLC). (a) sample data x and 4 selected bases. (b) selected bases {bi} and
their weight information {wi}. (c) coding result by classical LLC without
considering weight information. zi denotes coding coefficient related to bi.
(d) weight normalization. (e) corrected coding result zi using normalized
weight.

Fig. 2 Comparison between VQ, SC and LLC. The selected bases for
representation are highlighted in black.

Due the properties of LLC, such as better reconstruction, lo-
cal smooth sparsity, and analytical solution, it has attracted
much attention.

However, LLC ignores the weight information present
in the codebook during coding. A codebook usually con-
tains three types information: sample information, spatio-
temporal (ST) position and weight information. Sample in-
formation is represented as codeword vector; ST position
relationship between codewords can be measured by their
Euclidean distance; and weight value of a codeword is de-
cided by the percent of total training samples assigned to
it, for instance, if 3 out of total 10 training samples is as-
signed to a clustering center (or a codeword), the code-
word weight is 0.3. Original LLC concentrates on the
first two types information only, and ignores the last one.
To improve the discrimination performance of LLC code,
we propose a weighted locality-constrained linear coding
(WLLC) method that makes use of the weight information
(see Fig. 1).
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Our paper has two contributions:

• using the weight of codewords, we propose a WLLC
algorithm for improving the discriminative power of
LLC code.
• the weight information of codewords can be beneficial

to boost the performance of recognition system based
on WLLC.

The rest of this paper is organized as follows. Re-
lated work is presented in Sect. 2. Then, WLLC is proposed
in Sect. 3. Experimental results and analysis are shown in
Sect. 4. Next, the conclusions are drawn in Sect. 5. Finally,
acknowledgements is provided.

2. Related Work

Let us consider a codebook denoted by B = {bi ∈ �d, i =
1, · · · ,K}. The codebook is constructed on a subset of lo-
cal descriptors {xi ∈ �d, i = 1, · · · ,N} extracted from the
training dataset.

In the original BoW method [1], coding local descrip-
tors is performed with hard assignment. Each local descrip-
tor is assigned to the nearest visual word, i.e.,

zi, j =

⎧⎪⎪⎨⎪⎪⎩
1, if j = arg min

j=1,··· ,K
‖xi − b j‖22 ,

0, otherwise ,
(1)

with zi the code of size K associated to the descriptor x i.
As reported in [2], [3], [11], such coding scheme has

several limitations, mainly the sensitivity to distortion er-
rors of the codebook, and the significant reconstruction error
caused by it. Using sparse coding [6] (SC) as an alternative
has significantly improved its robustness to these problems.
Therefore, coding is performed by solving the �1-norm reg-
ularized approximate problem:

zi = arg min
z∈�K

‖xi − Bz‖22 + λ‖z‖1, λ ∈ � (2)

where B denotes a over-complete codebook with K atoms,
z denotes the reconstruction coefficient associated to sample
xi. Nevertheless, this optimization problem is computation-
ally expensive and leads to non-consistent encoding of sim-
ilar descriptors [8]. Indeed, it might select different bases
for similar descriptors due to the over-completeness of the
codebook, which results in large deviations in representing
similar local features.

As suggested in [5], locality is more essential than spar-
sity, as locality must lead to sparsity but not necessary vice
versa. Therefore, authors of [8], [9] proposed more efficient
and consistent coding methods relying on the locality prop-
erty introduced by [7]. Their hypothesis is that descriptors
approximately reside on a lower dimensional manifold in an
ambient descriptor space. Then, using Euclidean distances
for assigning descriptors to visual words is only meaningful
within a local region. Hence, local bases are selected to per-
form the coding. The formulation of original LLC [8] is the
following:

zi = arg min
z∈�K

‖xi − Bz‖22 + λ‖di � z‖22,

s.t. 1T zi = 1 (3)

where di = exp( dist(xi,B)
σ

), and distance vector dist(xi,B) =
[dist(xi,b1), · · · , dist(xi,bK)]T the Euclidean distances be-
tween xi and the basis vectors; and parameter σ controls
the weight decay speed for the locality; � denotes the
element-wise multiplication. We usually further normalize
di to be between (0, 1] by subtracting max(dist(xi,B)) from
dist(xi,B). The constraint 1T ci = 1 makes sure the shift-
invariant requirements of the LLC code. Note that the LLC
code in (3) is not sparse in the sense of �0 norm, but is sparse
in the sense that the solution only has few significant values.
In practice, we simply threshold those small coefficients to
be zero.

3. Weighted Locality-Constrained Linear Coding

In [24], Leibe et al. learned an Implicit Shape Model (ISM)
based upon local appearance features of images/videos for
object detection tasks. An ISM consists of two compo-
nents: a class-specific alphabet (the codebook) of local ap-
pearances that are prototypical for the object category, and
a spatial probability distribution which specifics where each
codebook entry may be found on the object. In [25], Gall
et al. employed Hough forest to partition the input sample
space, and the set leaves in the Hough forest are regarded as
an implicit appearance codebook, each leaf node contains
its center position and the spatial distribution of its training
sample. Inspired by the success of the work in [24], [25]
that incorporated the spatial probability distribution around
a codeword/leaf node, we propose an improved version of
LLC named Weighted LLC (WLLC).

To achieve good classification performance, the coding
scheme should generate similar codes for similar descrip-
tors. Following this requirement, the locality regulariza-
tion term ‖di � z‖22 in Eq. (3) presents two attractive prop-
erties, which ensure the model LLC+BoF outperform either
VQ+BoF or SC+BoF:

• Better reconstruction. In VQ, each descriptor is repre-
sented by a single basis in the codebook, as illustrated
in Fig. 2 (a). Due to the large quantization errors, the
VQ code for similar descriptors might be very differ-
ent. Besides, the VQ process ignores the relationships
between different bases. Hence nonlinear kernel pro-
jection is required to make up such information loss.
On the other side, as shown in Fig. 2 (c) in LLC, each
descriptor is more accurately represented by multiple
bases, and LLC code captures the correlations between
similar descriptors by sharing bases.
• Local smooth sparsity. Similar to LLC, SC also

achieves less reconstruction error by using multiple
bases. Nevertheless, the regularization term of �1 norm
in SC is not smooth. As shown in Fig. 2 (b), due to
the over-completeness of the codebook, the SC process
might select quite different bases for similar patches to
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favor sparsity, thus losing correlations between codes.

The reason why WLLC+BoF outperforms LLC+BoF
mainly lies in that using the weight information of code-
words, the effect of noisy codewords upon the resulting
codes can be reduced. Specifically, during the stage of build-
ing a codebook, the space of training samples is divided into
lots of cluster centers (codewords). The number of sam-
ples assigned to different centers usually are various. If the
sample number of a center is much less than the others,
the center could be a noisy codeword, and its contribution
to the coding should be reduced to enhance the discrimi-
native power of the resulting codes. In WLLC, the influ-
ence of the noisy codewords is oppressed, while, in LLC,
all the selected bases, including noisy bases, makes equal
contribution to the coding. As a result, our codes have more
discriminative power, and the recognition system based on
WLLC+BoF achieves higher performance.

It can be observed in (3) that LLC algorithm ignores the
weight information of codewords. More specifically, given a
sample x, our mission is to find a reconstruction coefficient
vector z = [z1, · · · , zK], where zk is coefficient component
related to the base vector bk. In (3), zk is decided by two
factors: the distance dist(x,bk) and the similarity sim(x,bk).
The value dist(x,bk) decides whether the base vector bk is
selected as nearest bases for reconstructing x, and sim(x,bk)
determines the value assigned to zk.

In LLC scheme, the weight of every codeword is con-
sidered as same, and everyone makes equal contribution to
reconstruction task, whatever their weight are. In our opin-
ion, however, compared to the low-weighted codewords,
the high-weighted ones should make more contribution to
LLC coding stage. In order to produce more discrimina-
tive power of LLC code, we proposed a improved version
of LLC named WLLC method that utilizes the weight in-
formation in codebook. The proposed WLLC is given as
follows:

1. Given a sample data x ∈ �d, b1,b2, · · · ,bNs de-
note Ns selected neighboring bases for reconstruct-
ing x; and w1, w2, · · · , wNs denote their corresponding
weights. Weight wn of codeword bn is defined by

wn=
training samples assigned to codeword bn

total training samples for building B
(4)

2. Once the neighboring bases surrounding x is deter-
mined, their weights are normalized and denoted as
w1, w2, · · · , wNs .

3. Finally, weight information of codewords are fused
into weighted coefficient vector z = [z1, z2, · · · , zNs ],
where zn = zn.wn.

In normalization stage, to achieve the property of scale-
invariance, the codeword weights should be normalized.
Besides the simplest normalization method – sum normal-
ization (�1 normalization) [8] that is widely used in im-
age processing, entropy normalization and exponent nor-
malization are utilized to normalize the codeword weight

Table 1 The ARRE on the KTH, UCF Sports datasets in the training
stage. For LLC and WLLC, the number of selected bases is set as 5. The
codebook size is set as 500 for the two datasets.

Methods KTH(%) UCF Sports(%)
BoF+LLC 0.0015 0.0016
BoF+WLLC (sum norm.) 0.42 0.46
BoF+WLLC (entropy norm.) 0.25 0.21
BoF+WLLC (exponent norm.) 0.21 0.28

w = [w1, · · · , wK], 0 < wn < 1:

• sum normalization: wn = wn/
∑

j w j.
• entropy normalization: wn = (−wn).ln(wn)/

∑
j(−w j).

ln(w j), where (−wn).ln(wn) is the entropy of codeword
weight wn, 0 < wn < 1.
• exponent normalization: wn = exp(wn)/

∑
j exp(w j).

where (−wn).ln(wn) is the entropy of codeword weight wn.
In information theory, Shannon entropy [26] is calculated
to measure the amount of information taken by a symbol.
Here, using Shannon entropy, the weight of a codeword
is transformed into the amount of information. We use
exponential function exp(x) rather than Gaussian function
exp(−x2/σ2), because when the input x changes slightly,
Gaussian function produces the output with significantly
changes, and the parameter σ has a great impact on the
Gaussian function and its value is hard to be set. In con-
trast to the Gaussian function, exponential function keeps
the smoother output when the input changes. In addition,
the reconstruction error ‖xi − Bzi‖2 caused by the normal-
ization should be kept lower level to guarantee the corrected
codes with high quality. The average relative reconstruction
error (ARRE) is defined as follows:

ARRE =
1
N

N∑

i=1

(
‖xi − Bzi‖2
‖xi‖2 ) (5)

where xi denotes the i-th training sample; zi denotes the nor-
malized code of xi; B is the codebook; N is the number of
training samples. In LLC, zi = zi. Table 1 presents the
ARRE in the training stage on the KTH and UCF Sports
datasets. It can be seen that compared with the ARRE of
LLC, the ARRE increases considerably after normalization.
Nevertheless, in contrast to the improvement on recognition
accuracy, such ARRE is acceptable.

4. Experiments and Analysis

4.1 Experimental Datasets

We evaluated our approach on two widely used datasets:
KTH dataset and UCF sports dataset.

• The KTH dataset contains six types of human action
examples (i.e., boxing, hand clapping, hand waving,
jogging, running, and walking) are performed by 25
different subjects. Each action is performed in four
scenarios: indoors, outdoors, outdoors with scale vari-
ation, and outdoors with different clothes. It contains
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Fig. 3 Examples from the two public datasets: (a) KTH dataset. (b) UCF
sports dataset.

Fig. 4 Both the number of nearest bases and weight normalization meth-
ods can effect the discriminative power of WLLC method. (a) Recogni-
tion result on the KTH dataset. (b) Recognition result on the UCF Sports
dataset.

600 low-resolution video sequences (160×120 pixels).
Examples of this dataset are shown in Fig. 3 (a).
• The UCF sports dataset includes a set of 150 videos,

which are collected from various broadcast sports
channels such as BBC and ESPN. It contains 10 differ-
ent actions: diving, golf swing, horse riding, kicking,
lifting, running, skating, swing bar, swing floor, and
walking. This dataset is challenging for a wide range
of scenarios and viewpoints. Examples of this datasets
are presented in Fig. 3 (b).

4.2 Experimental Setup

In all experiment, spatio-temporal interest points (STIPs)
are detected by using Dollar detector proposed in [12],
and cuboids is adopted to extract ST local features, and
HOG+HOF [13] is adopted to describe these features.

Table 2 The average recognition rate of BoF model with VQ, LLC, and
WLLC on the KTH, UCF Sports datasets. For LLC and WLLC, the number
of selected bases is set as 5.

Methods KTH(%) UCF Sports(%)
BoF+VQ 91.3 82.8
BoF+LLC 94.5 88.9
BoF+WLLC (sum norm.) 94.7 89.5
BoF+WLLC (entropy norm.) 95.1 90.7
BoF+WLLC (exponent norm.) 95.5 91.1

Table 3 Performance comparison with other systems.

Methods Year KTH(%) UCF Sports(%)
Zhu et al. [15] 2010 94.9 84.3
Wu et al. [16] 2011 94.5 91.3
Guha et al. [17] 2012 — 91.1
Bregonzio et al. [18] 2012 94.3 —
Saghafi et al. [19] 2012 92.6 —
BoF+WLLC (sum norm.) 94.7 89.5
BoF+WLLC (entropy norm.) 95.1 90.7
BoF+WLLC (exponent norm.) 95.5 91.1

The multi-scale version Dollar detector, whose spatial
scale τ = [1.2, 1.3, 1.4, 1.5] and temporal scale ω =

[0.4, 0.45, 0.5, 0.55], is used to extract STIPs. The code-
book is constructed with k-means algorithm at Euclidean
distance as metric over local mixed features, and its size is
set as 500 (K = 500). To compare the recognition perfor-
mance based on different coding strategies, VQ, LLC and
WLLC are used. Specifically, local features are encoded
as corresponding coefficient vectors by coding algorithm,
next, a coefficient histogram is obtained by average-pooling
method [14] over coefficient vectors from one action video.
As a result, an action video is represented as a coefficient
histogram. In classification, a linear support vector machine
(SVM) is employed to classify over these �2 normalized co-
efficient histograms.

The leave-one-out cross-validation (LOOCV) is used
to evaluate the performance of our algorithm. For the KTH
dataset, local features from all videos of one subject are used
to construct a codebook by k-means clustering algorithm.
For each LOO run, we learn a model from the videos of
24 subjects, test the videos of the remaining subject. The
recognition rate is the average value of the 25 runs. For UCF
sports, features from 20 videos (2 videos selected from each
action, 10 class actions) are used to build a codebook by k-
means. In each LOO, one video of each class is randomly
selected as test data, the other videos are treated as training
data. 100 LOO runs are carried out. The recognition rate is
the average value of the 100 runs.

4.3 Experimental Results

In Table 2, we can see that action recognition systems based
on the proposed WLLCs achieve better performance than
that based on VQ and LLC, since the codeword weight in-
formation is considered during coding stage, and that expo-
nent normalization method is reasonable than both entropy
and sum normalization.

From Table 3, it is clear that recognition system based
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on BOF+WLLC(exponent norm.) outperforms the classical
systems on the two datasets. And the accuracies of recogni-
tion systems based on BOF+WLLC(exponent norm.)/(sum
norm.) slightly drop.

5. Conclusion

The classical LLC algorithm ignores the weight informa-
tion of codewords during coding process. To improve the
coding performance of classical LLC algorithm, this pa-
per proposed the WLLC algorithm, which takes account of
such weight information. Experiment on the KTH and UCF
Sports datasets shows that action recognition system based
on WLLC outperforms that based on VQ and LLC methods.
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